Simulation of legume-rhizobia symbiosis evolution under the multi-strain competition of bacteria for inoculation of symbiotic habitats

Nikolay I Vorobyov , Nikolay A Provorov

Ecological Genetics ›› 2008, Vol. 6 ›› Issue (4) : 3 -11.

PDF
Ecological Genetics ›› 2008, Vol. 6 ›› Issue (4) :3 -11. DOI: 10.17816/ecogen643-11
Articles
research-article

Simulation of legume-rhizobia symbiosis evolution under the multi-strain competition of bacteria for inoculation of symbiotic habitats

Author information +
History +
PDF

Abstract

The model is suggested for evolution of N<sub>2</sub>-fixing legume-rhizobia symbiosis implemented under the conditions of multi-strain bacteria competition for inoculation of symbiotic habitats (rhizosphere, nodules). Competitiveness of each strain is characterized by the power coefficients which reflect the operation of frequency-dependent selection in the rhizobia population. When polymorphic bacteria populations are interacting with the dimorphic plant population, the selective pressures in favor of hostspecific symbionts (forming N<sub>2</sub>-fixing nodules only with one of the available plant genotypes) are higher than the pressures in favor of non-host-specific symbionts (forming these nodules with both plant genotypes). The highest mutualism efficiency is reached under an intermediate level of plant population diversity.

Cite this article

Download citation ▾
Nikolay I Vorobyov, Nikolay A Provorov. Simulation of legume-rhizobia symbiosis evolution under the multi-strain competition of bacteria for inoculation of symbiotic habitats. Ecological Genetics, 2008, 6(4): 3-11 DOI:10.17816/ecogen643-11

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

West S.A., Kiers E.T., Simms E.L., Denison R.F. 2002. Sanctions and mutualism stability: why do rhizobia fix nitrogen?//Proc. Roy. Soc. B. Vol. 269. P. 685-694.

[2]

West S.A., Kiers E.T., Pen I., Denison R.F. 2001. Sanctions and mutualism stability: when should less beneficial mutualists be tolerated?//J. Evol. Biol. Vol. 15. P. 830-837.

[3]

Simms E.L., Bever J.D. 1998. Evolutionary dynamics of rhizopine within spatially structured Rhizobium populations//Proc. Roy. Soc. Lond. B. Vol. 265. P. 1713-1719.

[4]

Sharypova L.A., Yurgel S.N., Keller M. et al. 1998. The eff-482 locus of Sinorhizobium meliloti CXM1 -105 that influences symbiotic effectiveness consists of three genes encoding an endoglucanase, a transcriptional regulator and an adenylate cyclase//Molec. Gen. Genet. Vol. 261. P. 1032-1044.

[5]

Provorov N.A., Vorobyov N.I. 2008b. Simulation of plant-bacteria co-evolution in the mutually beneficial symbiosis//Ecological Genetics. Vol. 6. N 2. P. 35-48.

[6]

Provorov N.A., Vorobyov N.I. 2008a. Evolution of symbiotic bacteria in «plant-soil» systems: interplay of molecular and population mechanisms//Progress in Environmental Microbiology. Ed. Kim M. -B. Nova Sci. Publ. Inc. New York. P. 11-67.

[7]

Provorov N.A., Vorobyov N.I. 2006. Interplay of Darwinian and frequency-dependent selection in the host-associated microbial populations//Theor. Populat. Biol. Vol. 70. P. 262-272.

[8]

Доросинский Л.М., Лазарева Н.М. 1968. О специфичности клубеньковых бактерий сои и люпина//Микробиология. Т. 37. Вып. 1. С. 115-121.

[9]

Проворов Н.А., 2000. Популяционная генетика клубеньковых бактерий//Журн. общей биологии. Т. 61. № 3. С. 229-257.

[10]

Проворов Н.А., Воробьев Н.И., 2000. Эволюционная генетика клубеньковых бактерий: молекулярные и популяционные аспекты//Генетика. Т. 36. № 12. С. 1573-1587.

[11]

Проворов Н.А., Воробьев Н.И., 2009. Моделирование ко-эволюции бактерий и растений в системе мутуалистического симбиоза//Генетика. Т. 45. № 3. С.

[12]

Проворов Н.А., Воробьев Н.И., Андронов Е.Е., 2008. Макро-и микроэволюция бактерий в системах симбиоза//Генетика. Т. 44. № 1. С. 12-28.

[13]

Проворов Н.А., Симаров Б.В., 1992. Генетический полиморфизм бобовых культур по способности к симбиозу с клубеньковыми бактериями//Генетика. Т. 28. № 6. C. 5-14.

[14]

Проворов Н.А., Тихонович И.А., 2003. Эколого-генетические принципы селекции растений на повышение эффективности взаимодействия с микроорганизмами//С.-х. биология. № 3. С. 11-25.

[15]

Amarger N., Lobreau J.P. 1982. Quantitative study of nodulation competitiveness in Rhizobium strains//Appl. Environ. Microbiol. Vol. 44. N 3. P. 583-588.

[16]

Beattie G.A., Clayton M.K., Handelsman J. 1989. Quantitative comparison of the laboratory and field competitiveness of Rhizobium leguminosarum biovar phaseoli//Appl. Environ. Microbiol. Vol. 55. P 2755-2761.

[17]

Bever J.D., Simms E.L. 2000. Evolution of nitrogen fixation in spatially structured populations of Rhizobium//Heredity. Vol. 85. P. 366-372.

[18]

Bosworth A.H., Williams M.K., Albrecht K.A. et al. 1994. Alfalfa yield response to inoculation with the recombinant strains of Rhizobium meliloti with an extra copy of dctABD and/or modified nifA expression//Appl.

[19]

Foster K.R., Kokko H. 2006. Cheating can stabilize cooperation in mutualisms//Proc. Roy. Soc. B. Vol. 273. P. 2233-2239.

[20]

Frank S.A. 1994. Genetics of mutualism: the evolution of altruism between species//J. Theor. Biol. Vol. 17. P. 393-400.

[21]

Jimenez J., Casadesus J. 1989. An altruistic model of Rhizobium-legume association//J. Heredity. Vol. 80. P. 335-337.

[22]

Maynard Smith J. 1989. Generating novelty by symbiosis//Nature. Vol. 341. N 6240. P. 284-285.

[23]

Nei M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals//Genetics. Vol. 89. P. 583-590.

[24]

Olivieri I., Frank S.A. 1994. The evolution of nodulation in Rhizobium: altruism in the rhizosphere//J. Heredity. Vol. 85. P. 46-47.

[25]

Person C., Samborski D.J., Rohringer R. 1962. The gene-for-gene concept//Nature. Vol. 194. P 561-562.

[26]

Provorov N.A., Simarov B.V. 1990. Genetic variation in alfalfa, sweet clover and fenugreek for the activity of symbiosis with Rhizobium meliloti//Plant Breeding. Vol. 105. N 3. P. 300-310.

[27]

Provorov N.A., Vorobyov N.I. 2000. Population genetics of rhizobia: construction and analysis of an infection and release» model//J. Theor. Biol. Vol. 205. P. 105-119.

[28]

Provorov N.A., Vorobyov N.I. 2006. Interplay of Darwinian and frequency-dependent selection in the host-associated microbial populations//Theor. Populat. Biol. Vol. 70. P. 262-272.

[29]

Provorov N.A., Vorobyov N.I. 2008a. Evolution of symbiotic bacteria in «plant-soil» systems: interplay of molecular and population mechanisms//Progress in Environmental Microbiology. Ed. Kim M. -B. Nova Sci. Publ. Inc. New York. P. 11-67.

[30]

Provorov N.A., Vorobyov N.I. 2008b. Simulation of plant-bacteria co-evolution in the mutually beneficial symbiosis//Ecological Genetics. Vol. 6. N 2. P. 35-48.

[31]

Sharypova L.A., Yurgel S.N., Keller M. et al. 1998. The eff-482 locus of Sinorhizobium meliloti CXM1 -105 that influences symbiotic effectiveness consists of three genes encoding an endoglucanase, a transcriptional regulator and an adenylate cyclase//Molec. Gen. Genet. Vol. 261. P. 1032-1044.

[32]

Simms E.L., Bever J.D. 1998. Evolutionary dynamics of rhizopine within spatially structured Rhizobium populations//Proc. Roy. Soc. Lond. B. Vol. 265. P. 1713-1719.

[33]

West S.A., Kiers E.T., Pen I., Denison R.F. 2001. Sanctions and mutualism stability: when should less beneficial mutualists be tolerated?//J. Evol. Biol. Vol. 15. P. 830-837.

RIGHTS & PERMISSIONS

Vorobyov N.I., Provorov N.A.

AI Summary AI Mindmap
PDF

273

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/