Radish (Raphanus sativus L.) as an object of Agrobacterium-mediated transformation

Xenia A. Kuznetsova , Irina E. Dodueva , Lyudmila A. Lutova

Ecological Genetics ›› 2024, Vol. 22 ›› Issue (4) : 413 -422.

PDF (1653KB)
Ecological Genetics ›› 2024, Vol. 22 ›› Issue (4) : 413 -422. DOI: 10.17816/ecogen640859
Methodology in ecological genetics
review-article

Radish (Raphanus sativus L.) as an object of Agrobacterium-mediated transformation

Author information +
History +
PDF (1653KB)

Abstract

Radish (Raphanus sativus L.) is an annual root crop closely related to Arabidopsis thaliana. It can be widely used as a perspective model plant to study the genetic control of storage root development. Thus, obtaining stable genetic transformants of radish to study the function of genes involved in storage root development becomes an important task. In this review, we present the currently available data on Agrobacterium-mediated transformation methods for radish, including in vitro and in planta methods using Agrobacterium tumefaciens, and a method for the production of composite plants with transformed roots or even whole transgenic plants with Agrobacterium rhizogenes. Improvement of existing methods and development of new approaches for radish transformation will increase the productivity of radish varieties, and the wider use of this promising model plant will provide new data on the genetic control of storage root development.

Keywords

radish / Raphanus sativus / transformation / storage root / in vitro transformation / in planta transformation / Agrobacterium-mediated transformation

Cite this article

Download citation ▾
Xenia A. Kuznetsova, Irina E. Dodueva, Lyudmila A. Lutova. Radish (Raphanus sativus L.) as an object of Agrobacterium-mediated transformation. Ecological Genetics, 2024, 22(4): 413-422 DOI:10.17816/ecogen640859

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Curtis IS. The noble radish: past, present and future. Trends Plant Sci. 2003;8(7):305–357. doi: 10.1016/S1360-1385(03)00127-4

[2]

Curtis I.S. The noble radish: past, present and future // Trends Plant Sci. 2003. Vol. 8, N 7. P. 305–357. doi: 10.1016/S1360-1385(03)00127-4

[3]

Melim C, Lauro MR, Pires IM, et al. The Role of glucosinolates from cruciferous vegetables (Brassicaceae) in gastrointestinal cancers: From prevention to therapeutics. Pharmaceutics. 2022;14(1):190. doi: 10.3390/pharmaceutics14010190

[4]

Melim C., Lauro M.R., Pires I.M., et al. The Role of glucosinolates from cruciferous vegetables (Brassicaceae) in gastrointestinal cancers: From prevention to therapeutics // Pharmaceutics. 2022. Vol. 14, N 1. ID 190. doi: 10.3390/pharmaceutics14010190

[5]

Kitashiba H, Li F, Hirakawa H, et al. Draft sequences of the radish (Raphanus sativus L.) genome. DNA Res. 2014;21(5):481–490. doi: 10.1093/dnares/dsu014

[6]

Kitashiba H., Li F., Hirakawa H., et al. Draft sequences of the radish (Raphanus sativus L.) genome // DNA Res. 2014. Vol. 21, N 5. P. 481–490. doi: 10.1093/dnares/dsu014

[7]

Mitsui Y, Shimomura M, Komatsu K, et al. The radish genome and comprehensive gene expression profile of tuberous root formation and development. Sci Rep. 2015;5:10835. doi: 10.1038/srep10835

[8]

Mitsui Y., Shimomura M., Komatsu K., et al. The radish genome and comprehensive gene expression profile of tuberous root formation and development // Sci Rep. 2015. Vol. 5. ID 10835. doi: 10.1038/srep10835

[9]

Shirasawa K, Hirakawa H, Fukino N, et al. Genome sequence and analysis of a Japanese radish (Raphanus sativus) cultivar named ‘Sakurajima Daikon’ possessing giant root. DNA Res. 2020;27(2): dsaa010. doi: 10.1093/dnares/dsaa010

[10]

Shirasawa K., Hirakawa H., Fukino N., et al. Genome sequence and analysis of a Japanese radish (Raphanus sativus) cultivar named ‘Sakurajima Daikon’ possessing giant root // DNA Res. 2020. Vol. 27, N 2. ID dsaa010. doi: 10.1093/dnares/dsaa010

[11]

Curtis IS. Genetic engineering of radish: current achievements and future goals. Plant Cell Rep. 2011;30(5):733–744. doi: 10.1007/s00299-010-0978-6

[12]

Curtis I.S. Genetic engineering of radish: current achievements and future goals // Plant Cell Rep. 2011. Vol. 30, N 5. P. 733–744. doi: 10.1007/s00299-010-0978-6

[13]

Natarajan B, Kondhare KR, Hannapel DJ, Banerjee AK. Mobile RNAs and proteins: Prospects in storage organ development of tuber and root crops. Plant Sci. 2019;284:73–81. doi: 10.1016/j.plantsci.2019.03.019

[14]

Natarajan B., Kondhare K.R., Hannapel D.J., Banerjee A.K. Mobile RNAs and proteins: Prospects in storage organ development of tuber and root crops // Plant Sci. 2019. Vol. 284. P. 73–81. doi: 10.1016/j.plantsci.2019.03.019

[15]

Narbut SI. Genetic collection of inbred lines of radish. Russian Journal of Genetics. 1966;(5):89–100. (In Russ.)

[16]

Narbut SI. Genetic collection of inbred lines of radish // Генетика. 1966. № 5. С. 89–100.

[17]

Buzovkina IS, Lutova LA. Genetic collection of inbred lines of radish: history and prospects. Russian Journal of Genetics. 2007;43(10):1411–1423. EDN: HGCCFX

[18]

Бузовкина И.С., Лутова Л.А. Генетическая коллекция инбредных линий редиса: история и перспективы // Генетика. 2007. Т. 43, № 10. С. 1411–1423. EDN: HGCCFX

[19]

Cho MA, Min SR, Ko SM, et al. Agrobacterium-mediated genetic transformation of radish (Raphanus sativus L.). Plant Biotechnol. 2008;25(2):205–208. doi: 10.5511/plantbiotechnology.25.205

[20]

Cho M.A., Min S.R., Ko S.M., et al. Agrobacterium-mediated genetic transformation of radish (Raphanus sativus L.) // Plant Biotechnol. 2008. Vol. 25, N 2. P. 205–208. doi: 10.5511/plantbiotechnology.25.205

[21]

Muto N, Komatsu K, Matsumoto T. Efficient Agrobacterium-mediated genetic transformation method using hypocotyl explants of radish (Raphanus sativus L.). Plant Biotechnol (Tokyo). 2021;38(4):457–461. doi: 10.5511/plantbiotechnology.21.1021b

[22]

Muto N., Komatsu K., Matsumoto T. Efficient Agrobacterium-mediated genetic transformation method using hypocotyl explants of radish (Raphanus sativus L.) // Plant Biotechnol (Tokyo). 2021. Vol. 38, N 4. P. 457–461. doi: 10.5511/plantbiotechnology.21.1021b

[23]

Curtis IS, Nam HG. Transgenic radish (Raphanus sativus L. longipinnatus Bailey) by floral-dip method: Plant development and surfactant are important in optimizing transformation efficiency. Transgenic Res. 2001;10:363–371. doi: 10.1023/A:1016600517293

[24]

Curtis I.S., Nam H.G. Transgenic radish (Raphanus sativus L. longipinnatus Bailey) by floral-dip method: Plant development and surfactant are important in optimizing transformation efficiency // Transgenic Res. 2001. Vol. 10. P. 363–371. doi: 10.1023/A:1016600517293

[25]

Park B-J, Liu Z, Kanno A, Kameya T. Transformation of radish (Raphanus sativus L.) via sonication and vacuum infiltration of germinated seeds with Agrobacterium harboring a group 3 LEA gene from B. napus. Plant Cell Rep. 2005;24:494–500. doi: 10.1007/s00299-005-0973-5

[26]

Park B.-J., Liu Z., Kanno A., Kameya T. Transformation of radish (Raphanus sativus L.) via sonication and vacuum infiltration of germinated seeds with Agrobacterium harboring a group 3 LEA gene from B. napus // Plant Cell Rep. 2005. Vol. 24. P. 494–500. doi: 10.1007/s00299-005-0973-5

[27]

Frolova NV, Matveeva TV, Lutova LA. Using the method of agrobacterial transformation in vivo to obtain phenocopies of tumor formation in a non-tumor line of radish (Raphanus sativus L.). Biotechnology in Russia. 2004;(4):3–7. EDN: HSUNHT

[28]

Фролова Н.В., Матвеева Т.В., Лутова Л.А. Использование метода агробактериальной трансформации in vivo для получения фенокопий опухолеобразования у безопухолевой линии редиса Raphanus sativus L. // Биотехнология. 2004. № 4. С. 3–7. EDN: HSUNHT

[29]

Dodueva IE, Ilyina EL, Arkhipova TN, et al. Influence of Agrobacterium tumefaciens ipt and Agrobacterium rhizogenes rolC genes on spontaneous tumor formation and endogenous cytokinins content in radish (Raphanus sativus) inbred lines. Transgenic Plant Journal. 2008;2(1):45–53. EDN: WLMEAZ

[30]

Dodueva I.E., Ilyina E.L., Arkhipova T.N., et al. Influence of Agrobacterium tumefaciens ipt and Agrobacterium rhizogenes rolC genes on spontaneous tumor formation and endogenous cytokinins content in radish (Raphanus sativus) inbred lines // Transgenic Plant Journal. 2008. Vol. 2, N 1. P. 45–53. EDN: WLMEAZ

[31]

Pervitasari AN, Nugroho ABD, Jung WH, et al. An efficient Agrobacterium tumefaciens-mediated transformation of apical meristem in radish (Raphanus sativus L.) using a needle perforation. Plant Cell Tiss Organ Cult. 2022;148:305–318. doi: 10.1007/s11240-021-02190-4

[32]

Pervitasari A.N., Nugroho A.B.D., Jung W.H., et al. An efficient Agrobacterium tumefaciens-mediated transformation of apical meristem in radish (Raphanus sativus L.) using a needle perforation // Plant Cell Tiss Organ Cult. 2022. Vol. 148. P. 305–318. doi: 10.1007/s11240-021-02190-4

[33]

Ilina EL, Logachov AA, Laplaze L, et al. Composite Cucurbita pepo plants with transgenic roots as a tool to study root development. Ann Bot. 2012;110(2):479–489. doi: 10.1093/aob/mcs086

[34]

Ilina E.L., Logachov A.A., Laplaze L., et al. Composite Cucurbita pepo plants with transgenic roots as a tool to study root development // Ann Bot. 2012. Vol. 110, N 2. P. 479–489. doi: 10.1093/aob/mcs086

[35]

Lebedeva (Osipova) MA, Tvorogova VE, Vinogradova AP, et al. Initiation of spontaneous tumors in radish (Raphanus sativus): Cellular, molecular and physiological events. J Plant Physiol. 2015;173: 97–104. doi: 10.1016/j.jplph.2014.07.030

[36]

Lebedeva (Osipova) M.A., Tvorogova V.E., Vinogradova A.P., et al. Initiation of spontaneous tumors in radish (Raphanus sativus): Cellular, molecular and physiological events // J Plant Physiol. 2015. Vol. 173. P. 97–104. doi: 10.1016/j.jplph.2014.07.030

[37]

Kuznetsova K, Dodueva I, Gancheva M, Lutova L. Transcriptomic Analysis of Radish (Raphanus sativus L.) Roots with CLE41 Overexpression. Plants (Basel). 2022;11(16):2163. doi: 10.3390/plants11162163

[38]

Kuznetsova K., Dodueva I., Gancheva M., Lutova L. Transcriptomic Analysis of Radish (Raphanus sativus L.) Roots with CLE41 Overexpression // Plants (Basel). 2022. Vol. 11, N 16. ID 2163. doi: 10.3390/plants11162163

[39]

Muto N, Matsumoto T. CRISPR/Cas9-mediated genome editing of RsGL1a and RsGL1b in radish (Raphanus sativus L.). Front Plant Sci. 2022;13:951660. doi: 10.3389/fpls.2022.951660

[40]

Muto N., Matsumoto T. CRISPR/Cas9-mediated genome editing of RsGL1a and RsGL1b in radish (Raphanus sativus L.) // Front Plant Sci. 2022. Vol. 13. ID 951660. doi: 10.3389/fpls.2022.951660

[41]

Su W, Xu M, Radani Y, Yang L. Technological development and application of plant genetic transformation. Int J Mol Sci. 2023;24(13):10646. doi: 10.3390/ijms241310646

[42]

Su W., Xu M., Radani Y., Yang L. Technological development and application of plant genetic transformation // Int J Mol Sci. 2023. Vol. 24, N 13. ID 10646. doi: 10.3390/ijms241310646

[43]

Sparrow PAC, Townsend TM, Morgan CL, et al. Genetic analysis of in vitro shoot regeneration from cotyledonary petioles of Brassica oleracea. Theor Appl Genet. 2004;108:1249–1255. doi: 10.1007/s00122-003-1539-y

[44]

Sparrow P.A.C., Townsend T.M., Morgan C.L., et al. Genetic analysis of in vitro shoot regeneration from cotyledonary petioles of Brassica oleracea // Theor Appl Genet. 2004. Vol. 108. P. 1249–1255. doi: 10.1007/s00122-003-1539-y

[45]

Tzfira T, Citovsky V. Agrobacterium-mediated genetic transformation of plants: biology and biotechnology. Curr Opin Biotechnol. 2006;17(2):147–154. doi: 10.1016/j.copbio.2006.01.009

[46]

Tzfira T., Citovsky V. Agrobacterium-mediated genetic transformation of plants: biology and biotechnology // Curr Opin Biotechnol. 2006. Vol. 17, N 2. P. 147–154. doi: 10.1016/j.copbio.2006.01.009

[47]

Khan UM, Shaheen N, Farooq A, et al. Optimization of regeneration and Agrobacterium-mediated transformation protocols for Bi and multilocular varieties of Brassica rapa. Plants (Basel). 2022;12(1):161. doi: 10.3390/plants12010161

[48]

Khan U.M., Shaheen N., Farooq A., et al. Optimization of regeneration and Agrobacterium-mediated transformation protocols for Bi and multilocular varieties of Brassica rapa // Plants (Basel). 2022. Vol. 12, N 1. ID 161. doi: 10.3390/plants12010161

[49]

Bent AF. Arabidopsis in planta transformation. Uses, mechanisms, and prospects for transformation of other species. Plant Physiol. 2000;124(4):1540–1547. doi: 10.1104/pp.124.4.1540

[50]

Bent A.F. Arabidopsis in planta transformation. Uses, mechanisms, and prospects for transformation of other species // Plant Physiol. 2000. Vol. 124, N 4. P. 1540–1547. doi: 10.1104/pp.124.4.1540

[51]

Hu D, Bent AF, Hou X, Li Y. Agrobacterium-mediated vacuum infiltration and floral dip transformation of rapid-cycling Brassica rapa. BMC Plant Biol. 2019;19(1):246. doi: 10.1186/s12870-019-1843-6

[52]

Hu D., Bent A.F., Hou X., Li Y. Agrobacterium-mediated vacuum infiltration and floral dip transformation of rapid-cycling Brassica rapa // BMC Plant Biol. 2019. Vol. 19, N 1. ID 246. doi: 10.1186/s12870-019-1843-6

[53]

Pua E-C, Sim G-E, Chi G-L, Kong L-F. Synergistic effect of ethylene inhibitors and putrescine on shoot regeneration from hypocotyl explants of Chinese radish (Raphanus sativus L. var. longipinnatus Bailey) in vitro. Plant Cell Rep. 1996;15:685–690. doi: 10.1007/BF00231925

[54]

Pua E.-C., Sim G.-E., Chi G.-L., Kong L.-F. Synergistic effect of ethylene inhibitors and putrescine on shoot regeneration from hypocotyl explants of Chinese radish (Raphanus sativus L. var. longipinnatus Bailey) in vitro // Plant Cell Rep. 1996. Vol. 15. P. 685–690. doi: 10.1007/BF00231925

[55]

Jeong WJ, Min SR, Liu JR. Somatic embryogenesis and plant regeneration in tissue cultures of radish (Raphanus sativus L.). Plant Cell Rep. 1995;14(10):648–651. doi: 10.1007/BF00232731

[56]

Jeong W.J., Min S.R., Liu J.R. Somatic embryogenesis and plant regeneration in tissue cultures of radish (Raphanus sativus L.) // Plant Cell Rep. 1995. Vol. 14, N 10. P. 648–651. doi: 10.1007/BF00232731

[57]

Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum. 1962;15(3):473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x

[58]

Murashige T., Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures // Physiologia Plantarum. 1962. Vol. 15, N 3. P. 473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x

[59]

Clough SJ, Bent AF. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998;16(6):735–743. doi: 10.1046/j.1365-313x.1998.00343.x

[60]

Clough S.J., Bent A.F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana // Plant J. 1998. Vol. 16, N 6. P. 735–743. doi: 10.1046/j.1365-313x.1998.00343.x

[61]

Desfeux C, Clough SJ, Bent AF. Female reproductive tissues are the primary target of Agrobacterium-mediated transformation by the Arabidopsis floral-dip method. Plant Physiol. 2000;123(3):895–904. doi: 10.1104/pp.123.3.895

[62]

Desfeux C., Clough S.J., Bent A.F. Female reproductive tissues are the primary target of Agrobacterium-mediated transformation by the Arabidopsis floral-dip method // Plant Physiol. 2000. Vol. 123, N 3. P. 895–904. doi: 10.1104/pp.123.3.895

[63]

Curtis IS, Nam HG, Yun JY, Seo K-H. Expression of an antisense GIGANTEA (GI) gene fragment in transgenic radish causes delayed bolting and flowering. Transgenic Res. 2002;11:249–256. doi: 10.1023/A:1015655606996

[64]

Curtis I.S., Nam H.G., Yun J.Y., Seo K.-H. Expression of an antisense GIGANTEA (GI) gene fragment in transgenic radish causes delayed bolting and flowering // Transgenic Res. 2002. Vol. 11. P. 249–256. doi: 10.1023/A:1015655606996

[65]

Huq E, Tepperman JM, Quail PH. GIGANTEA is a nuclear protein involved in phytochrome signaling in Arabidopsis. PNAS USA. 2000;97(17):9789–9794. doi: 10.1073/pnas.170283997

[66]

Huq E., Tepperman J.M., Quail P.H. GIGANTEA is a nuclear protein involved in phytochrome signaling in Arabidopsis // PNAS USA. 2000. Vol. 97, N 17. P. 9789–9794. doi: 10.1073/pnas.170283997

[67]

Liang Y, Xiong Z, Zheng J, et al. Genome-wide identification, structural analysis and new insights into late embryogenesis abundant (LEA) gene family formation pattern in Brassica napus. Sci Rep. 2016;6:24265. doi: 10.1038/srep24265

[68]

Liang Y., Xiong Z., Zheng J., et al. Genome-wide identification, structural analysis and new insights into late embryogenesis abundant (LEA) gene family formation pattern in Brassica napus // Sci Rep. 2016. Vol. 6. ID 24265. doi: 10.1038/srep24265

[69]

Bae H, Kim YB, Park N-I, Kim H-S. Agrobacterium rhizogenes-mediated genetic transformation of radish (Raphanus sativus L. Cv. Valentine) for accumulation of anthocyanin. Plant OMICS. 2012;5(4):381–385.

[70]

Bae H., Kim Y.B., Park N.-I., Kim H.-S. Agrobacterium rhizogenes-mediated genetic transformation of radish (Raphanus sativus L. Cv. Valentine) for accumulation of anthocyanin // Plant OMICS. 2012. Vol. 5, N 4. P. 381–385.

[71]

Fahraeus G. The infection of clover root hairs by nodule bacteria studied by a simple glass slide technique. J Gen Microbiol. 1957;16(2):374–381. doi: 10.1099/00221287-16-2-374

[72]

Fahraeus G. The infection of clover root hairs by nodule bacteria studied by a simple glass slide technique // J Gen Microbiol. 1957. Vol. 16, N 2. P. 374–381. doi: 10.1099/00221287-16-2-374

[73]

Yi X, Wang C, Yuan X, et al. Exploring an economic and highly efficient genetic transformation and genome-editing system for radish through developmental regulators and visible reporter. Plant J. 2024;120(4):1682–1692. doi: 10.1111/tpj.17068

[74]

Yi X., Wang C., Yuan X., et al. Exploring an economic and highly efficient genetic transformation and genome-editing system for radish through developmental regulators and visible reporter // Plant J. 2024. Vol. 120, N 4. P. 1682–1692. doi: 10.1111/tpj.17068

[75]

Christey MC. Use of Ri-mediated transformation for production of transgenic plants. In Vitro Cell Dev Biol Plant. 2001;37:687–700. doi: 10.1007/s11627-001-0120-0

[76]

Christey M.C. Use of Ri-mediated transformation for production of transgenic plants // In Vitro Cell Dev Biol Plant. 2001. Vol. 37. P. 687–700. doi: 10.1007/s11627-001-0120-0

[77]

Neumann M, Prahl S, Caputi L, et al. Hairy root transformation of Brassica rapa with bacterial halogenase genes and regeneration to adult plants to modify production of indolic compounds. Phytochemistry. 2020;175:112371. doi: 10.1016/j.phytochem.2020.112371

[78]

Neumann M., Prahl S., Caputi L., et al. Hairy root transformation of Brassica rapa with bacterial halogenase genes and regeneration to adult plants to modify production of indolic compounds // Phytochemistry. 2020. Vol. 175. ID 112371. doi: 10.1016/j.phytochem.2020.112371

[79]

Schoof H, Lenhard M, Haecker A, et al. The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell. 2000;100(6): 635–644. doi: 10.1016/S0092-8674(00)80700-X

[80]

Schoof H., Lenhard M., Haecker A., et al. The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes // Cell. 2000. Vol. 100, N 6. P. 635–644. doi: 10.1016/S0092-8674(00)80700-X

[81]

Hirose N, Takei K, Kuroha T, et al. Regulation of cytokinin biosynthesis, compartmentalization and translocation. J Exp Bot. 2008;59(1):75–83. doi: 10.1093/jxb/erm157

[82]

Hirose N., Takei K., Kuroha T., et al. Regulation of cytokinin biosynthesis, compartmentalization and translocation // J Exp Bot. 2008. Vol. 59, N 1. P. 75–83. doi: 10.1093/jxb/erm157

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF (1653KB)

262

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/