Dominant bacterial genera of microbiota of chernozems of the forest-steppe zone
Wentao Zheng , Konstantin S. Boyarshin , Valeria V. Adamova , Ekaterina V. Nikitinskaya , Olga Yu. Obukhova , Marina V. Kolkova , Olga S. Bespalova , Violetta V. Klyueva , Kristina A. Degtyareva , Lyubov V. Nesteruk , Yulia N. Kurkina , Olesya A. Makanina , Elena S. Ivanova , Irina V. Batlutskaya
Ecological Genetics ›› 2024, Vol. 22 ›› Issue (4) : 399 -412.
Dominant bacterial genera of microbiota of chernozems of the forest-steppe zone
BACKGROUND: Bacterial community plays a significant role in maintaining homeostasis and fertility of chernozems. Analysis of its components allows us to identify the dominant taxonomic groups, the ecological preferences of the species that form their basis, and helps to focus efforts on creating biological products and tests aimed at monitoring and enhancing fertility.
AIM: The aim of this study is to identify bacterial genera that dominate the microbiota of Chernozems in the forest-steppe zone of the European part of Russia, and to trace the influence of land use, summer season phase, agrochemical parameters and interactions with each other on their abundance.
MATERIALS AND METHODS: In the Belgorod region, 10 samples of arable and non-arable chernozems were taken twice during the summer. Based on metabarcoding data, the percentages of genera in bacterial communities were obtained. An agrochemical analysis was carried out with the calculation of correlation coefficients between the chemical indicators of chernozems and the proportions of bacterial genera. An analysis of correlations between bacterial genera was carried ut as well.
RESULTS: Dominant genera include Sphingomonas, Rubrobacter, Gemmatimonas, Bradyrhizobium, Haliangium and others. Under soil conditions, the proportion of representatives of the genera Sphingomonas and Gemmatimonas shows a strong positive correlation with nitrate nitrogen concentration, and the proportion of the genus Bradyrhizobium shows a strong negative correlation with phosphorus concentration. The largest number of positive correlation interactions with other genera was found for Nocardioides, Mycobacterium, Streptomyces, and Solirubrobacter.
CONCLUSIONS: The stability of the set of bacterial genera dominant in the chernozems of the forest-steppe zone of Russia in different environmental conditions (plowed and unplowed areas), as well as over time (June and August) was shown. A number of representatives belonging to the genera Sphingomonas, Gemmatimonas, Bradyrhizobium and others are strongly dependent on the concentrations of nitrogen and phosphorus fertilizer components. Representatives of actinomycetes and mycobacteria are closely involved in positive correlation interactions among bacterial genera.
microbiota / chernozems / microbiological profiling / 16S rRNA
| [1] |
Dokuchaev VV. Russian chernozem. Saint Petersburg: Printing house of Decleron and Evdokimov; 1883. 376 p. (In Russ.) |
| [2] |
Докучаев В.В. Русский чернозем. Санкт-Петербург: Типография Деклерона и Евдокимова, 1883. 376 с. |
| [3] |
Liu X, Burras CL, Kravchenko YS, et al. Overview of Mollisols in the world: Distribution, land use and management. Can J Soil Sci. 2012;92(3):383–402. doi: 10.4141/cjss2010-058 |
| [4] |
Liu X., Burras C.L., Kravchenko Y.S., et al. Overview of Mollisols in the world: Distribution, land use and management // Can J Soil Sci. 2012. Vol. 92, N 3. P. 383–402. doi: 10.4141/cjss2010-058 |
| [5] |
Bezuglova OS, Sherstnev AK, Zolotarev AL, et al. Soil-ecological monitoring of ordinary chernozems of the north Priazovye district. Bulletin of higher educational institutions. North Caucasus Region. Natural sciences. 2008;(5):83–89. EDN: JVLKSF |
| [6] |
Безуглова О.С., Шерстнев А.К., Золотарев А.Л., и др. Почвенно-экологический мониторинг черноземов обыкновенных Северного Приазовья // Известия вузов. Северо-Кавказский регион. Естественные науки. 2008. № 5. С. 83–89. EDN: JVLKSF |
| [7] |
Grebenshchikov VP, Grebenshchikova NV. Regional peculiarities of chernozems of Transdnistria. Priority scientific directions: from theory to practice. 2016;(23):14–19. EDN: TLQIQN (In Russ.) |
| [8] |
Гребенщиков В.П., Гребенщикова Н.В. Региональные особенности черноземов Приднестровья // Приоритетные научные направления: от теории к практике. 2016. № 23. С. 14–19. EDN: TLQIQN |
| [9] |
Shcheglov DI. Chernozems of the Central regions of Russia: the prezent condition and direction of evolution. Proceedings of Voronezh State University. Series: chemistry. Biology. Pharmacy. 2003;(2): 187–195. EDN: OIXYFZ |
| [10] |
Щеглов Д.И. Черноземы центральных областей России: современное состояние и направление эволюции // Вестник ВГУ. Серия: Химия. Биология. Фармация. 2003. № 2. С. 187–195. EDN: OIXYFZ |
| [11] |
Sycheva EV, Devyatova TA, Turusov VI, Garmashov VM. Agrochemical properties of ordinary chernozem in the conditions ofadaptive-landscapetechnologies. Proceedings of Voronezh State University. Series: chemistry. Biology. Pharmacy. 2013;(2):149–155. EDN: RELHAZ |
| [12] |
Сычева Е.В., Девятова Т.А., Турусов В.И., Гармашов В.М. Агрохимические показатели чернозема обыкновенного в условиях адаптивно-ландшафтной технологии // Вестник ВГУ. Серия: Химия. Биология. Фармация. 2013. № 2. С. 149–155. EDN: RELHAZ |
| [13] |
Raczka NC, Piñeiro J, Tfaily MM, et al. Interactions between microbial diversity and substrate chemistry determine the fate of carbon in soil. Sci Rep. 2021;11:19320. doi: 10.1038/s41598-021-97942-9 |
| [14] |
Raczka N.C., Piñeiro J., Tfaily M.M., et al. Interactions between microbial diversity and substrate chemistry determine the fate of carbon in soil // Sci Rep. 2021. Vol. 11. ID 19320. doi: 10.1038/s41598-021-97942-9 |
| [15] |
Abs E, Leman H, Ferrière R. A multi-scale eco-evolutionary model of cooperation reveals how microbial adaptation influences soil decomposition. Commun Biol. 2020;3:520. doi: 10.1038/s42003-020-01198-4 |
| [16] |
Abs E., Leman H., Ferrière R. A multi-scale eco-evolutionary model of cooperation reveals how microbial adaptation influences soil decomposition // Commun Biol. 2020. Vol. 3. ID 520. doi: 10.1038/s42003-020-01198-4 |
| [17] |
de Boer W, Folman LB, Summerbell RC, Boddy L. Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev. 2005;29(4):795–811. doi: 10.1016/j.femsre.2004.11.005 |
| [18] |
de Boer W., Folman L.B., Summerbell R.C., Boddy L. Living in a fungal world: impact of fungi on soil bacterial niche development // FEMS Microbiol Rev. 2005. Vol. 29, N 4. P. 795–811. doi: 10.1016/j.femsre.2004.11.005 |
| [19] |
Semenov MV, Nikitin D, Stepanov AL, Semenov VM. The structure of bacterial and fungal communities in the rhizosphere and root-free loci of gray forest soil. Eur Soil Sci. 2019;52:319–332. doi 10.1134/S1064229319010137 |
| [20] |
Semenov M.V., Nikitin D., Stepanov A.L., Semenov V.M. The structure of bacterial and fungal communities in the rhizosphere and root-free loci of gray forest soil // Eur Soil Sci. 2019. Vol. 52. P. 319–332. doi 10.1134/S1064229319010137 |
| [21] |
Sheudzhen АK, Koltsov SA, Gutorova ОА, et al. Microflora of chernozem leached at long application of fertilizers. International research journal. 2017;(2–2):89–94. EDN: XVLBFX doi: 10.23670/IRJ.2017.56.067 |
| [22] |
Шеуджен А.Х., Кольцов С.А., Гуторова О.А., и др. Микрофлора чернозема выщелоченного при длительном применении минеральных удобрений // Международный научно-исследовательский журнал. 2017. № 2–2. С. 89–94. EDN: XVLBFX doi: 10.23670/IRJ.2017.56.067 |
| [23] |
Goldfarb KC, Karaoz U, Hanson CA, et al. Differential growth responses of soil bacterial taxa to carbon substrates of varying chemical recalcitrance. Front Microbiol. 2011;2:94. doi: 10.3389/fmicb.2011.00094 |
| [24] |
Goldfarb K.C., Karaoz U., Hanson C.A., et al. Differential growth responses of soil bacterial taxa to carbon substrates of varying chemical recalcitrance // Front Microbiol. 2011. Vol. 2. ID 94. doi: 10.3389/fmicb.2011.00094 |
| [25] |
Oates LG, Read HW, Gutknecht JLM, et al. A lipid extraction and analysis method for characterizing soil microbes in experiments with many samples. J Vis Exp. 2017;16(125):55310. doi: 10.3791/55310 |
| [26] |
Oates L.G., Read H.W., Gutknecht J.L.M., et al. A lipid extraction and analysis method for characterizing soil microbes in experiments with many samples // J Vis Exp. 2017. Vol. 16, N 125. ID 55310. doi: 10.3791/55310 |
| [27] |
Park C, Kim SB, Choi SH, Kim S. Comparison of 16S rRNA gene based microbial profiling using five next-generation sequencers and various primers. Front Microbiol. 2021;12:715500. doi: 10.3389/fmicb.2021.715500 |
| [28] |
Park C., Kim S.B., Choi S.H., Kim S. Comparison of 16S rRNA gene based microbial profiling using five next-generation sequencers and various primers // Front Microbiol. 2021. Vol. 12. ID 715500. doi: 10.3389/fmicb.2021.715500 |
| [29] |
Abraham BS, Caglayan D, Carrillo NV, et al. Shotgun metagenomic analysis of microbial communities from the Loxahatchee nature preserve in the Florida Everglades. Environ Microbiome. 2020;15(1):2. doi: 10.1186/s40793-019-0352-4 |
| [30] |
Abraham B.S., Caglayan D., Carrillo N.V., et al. Shotgun metagenomic analysis of microbial communities from the Loxahatchee nature preserve in the Florida Everglades // Environ Microbiome. 2020. Vol. 15, N 1. ID 2. doi: 10.1186/s40793-019-0352-4 |
| [31] |
Tanabe M, Kanehisa M. Using the KEGG database resource. Curr Protoc Bioinformatics. 2012;43. doi: 10.1002/0471250953.bi0112s38 |
| [32] |
Tanabe M., Kanehisa M. Using the KEGG database resource // Curr Protoc Bioinformatics. 2012. ID 43. doi: 10.1002/0471250953.bi0112s38 |
| [33] |
Fujiyoshi S, Muto-Fujita A, Maruyama F. Evaluation of PCR conditions for characterizing bacterial communities with full-length 16S rRNA genes using a portable nanopore sequencer. Sci Rep. 2020;10:12580. doi: 10.1038/s41598-020-69450-9 |
| [34] |
Fujiyoshi S., Muto-Fujita A., Maruyama F. Evaluation of PCR conditions for characterizing bacterial communities with full-length 16S rRNA genes using a portable nanopore sequencer // Sci Rep. 2020. Vol. 10. ID 12580. doi: 10.1038/s41598-020-69450-9 |
| [35] |
Pershina EV, Ivanova EA, Korvigo IO, et al. Investigation of the core microbiome in main soil types from the East European plain. Sci Total Environ. 2018;631–632:1421–1430. doi: 10.1016/j.scitotenv.2018.03.136 |
| [36] |
Pershina E.V., Ivanova E.A., Korvigo I.O., et al. Investigation of the core microbiome in main soil types from the East European plain // Sci Total Environ. 2018. Vol. 631–632. P. 1421–1430. doi: 10.1016/j.scitotenv.2018.03.136 |
| [37] |
Ivanova EA, Pershina EV, Andronov EE, et al. The structure of microbial community in aggregates of a typical chernozem aggregates under contrasting variants of its agricultural use. Eurasian Soil Science. 2015;(11):1367–1382. EDN: UIMGXZ doi: 10.7868/S0032180X15110088 |
| [38] |
Иванова Е.А., Кутовая О.В., Тхакахова А.К., и др. Структура микробного сообщества агрегатов чернозема типичного в условиях контрастных вариантов сельскохозяйственного использования // Почвоведение. 2015. № 11. С. 1367–1382. EDN: UIMGXZ doi: 10.7868/S0032180X15110088 |
| [39] |
Semenov MV, Chernov TI, Tkhakakhova AK, et al. Distribution of prokaryotic communities throughout the Chernozem profiles under different land uses for over a century. Appl Soil Ecol. 2018;127:8–18. doi: 10.1016/j.apsoil.2018.03.002 |
| [40] |
Semenov M.V., Chernov T.I., Tkhakakhova A.K., et al. Distribution of prokaryotic communities throughout the Chernozem profiles under different land uses for over a century // Appl Soil Ecol. 2018. Vol. 127. P. 8–18. doi: 10.1016/j.apsoil.2018.03.002 |
| [41] |
Nielsen MN, Winding A. Microorganisms as indicators of soil health. NERI Technical report No. 388. Copenhagen: Grønager’s Grafisk Produktion AS; 2001. 85 p. |
| [42] |
Nielsen M.N., Winding A. Microorganisms as indicators of soil health. NERI Technical report No. 388. Copenhagen: Grønager’s Grafisk Produktion AS, 2001. 85 p. |
| [43] |
Kim H, Park Y-H, Yang JE, et al. Analysis of major bacteria and diversity of surface soil to discover biomarkers related to soil health. Toxics. 2022;10(3):117. doi: 10.3390/toxics10030117 |
| [44] |
Kim H., Park Y.-H., Yang J.E., et al. Analysis of major bacteria and diversity of surface soil to discover biomarkers related to soil health // Toxics. 2022. Vol. 10, N 3. ID 117. doi: 10.3390/toxics10030117 |
| [45] |
Schloter M, Nannipieri P, Sørensen SJ, van Elsas JD. Microbial indicators for soil quality. Biol Fertil Soils. 2018;54:1–10. doi: 10.1007/s00374-017-1248-3 |
| [46] |
Schloter M., Nannipieri P., Sørensen S.J., van Elsas J.D. Microbial indicators for soil quality // Biol Fertil Soils. 2018. Vol. 54. P. 1–10. doi: 10.1007/s00374-017-1248-3 |
| [47] |
Willms IM, Rudolph AY, Göschel I, et al. Globally abundant “Candidatus Udaeobacter” benefits from release of antibiotics in soil and potentially performs trace gas scavenging. mSphere. 2020;5(4):00186–20. doi: 10.1128/msphere.00186-20 |
| [48] |
Willms I.M., Rudolph A.Y., Göschel I., et al. Globally abundant “Candidatus Udaeobacter” benefits from release of antibiotics in soil and potentially performs trace gas scavenging // mSphere. 2020. Vol. 5, N 4. ID 00186-20. doi: 10.1128/msphere.00186-20 |
| [49] |
Tang J, Su L, Fang Y, et al. Moderate nitrogen reduction increases nitrogen use efficiency and positively affects microbial communities in agricultural soils. Agriculture. 2023;13(4):796. doi: 10.3390/agriculture13040796 |
| [50] |
Tang J., Su L., Fang Y., et al. Moderate nitrogen reduction increases nitrogen use efficiency and positively affects microbial communities in agricultural soils // Agriculture. 2023. Vol. 13, N 4. ID 796. doi: 10.3390/agriculture13040796 |
| [51] |
Boyarshin KS, Adamova VV, Zheng W, et al. Dominant bacterial taxa in chernozems and factors affecting their abundance in the bacterial community. Eurasian Soil Science. 2024;57(6):1007–1017. doi: 10.1134/S106422932460026X |
| [52] |
Boyarshin K.S., Adamova V.V., Zheng W., et al. Dominant bacterial taxa in chernozems and factors affecting their abundance in the bacterial community // Eurasian Soil Science. 2024. Vol. 57, N. 6. P. 1007–1017. doi: 10.1134/S106422932460026X |
| [53] |
Boyarshin KS, Adamova VV, Wentao Z, Obuhova OY. The effect of long-term agricultural use on the bacterial microbiota of chernozems of the forest-steppe zone. Diversity. 2023;15(2):191. doi: 10.3390/d15020191 |
| [54] |
Boyarshin K.S., Adamova V.V., Wentao Z., Obuhova O.Y. The effect of long-term agricultural use on the bacterial microbiota of chernozems of the forest-steppe zone // Diversity. 2023. Vol. 15, N 2. ID 191. doi: 10.3390/d15020191 |
| [55] |
IUSS Working Group WRB. World reference base for soil resources. International soil classification system for naming soils and creating legends for soil maps. 4th edit. Vienna: International Union of Soil Sciences (IUSS); 2022. 236 p. |
| [56] |
IUSS Working Group WRB. World reference base for soil resources. International soil classification system for naming soils and creating legends for soil maps. 4th edit. Vienna: International Union of Soil Sciences (IUSS), 2022. 236 p. |
| [57] |
Derzhavin LM, Samokhvalov SG, Sokolova NV, et al. Soils. Determination of salt extract pH, exchangeable acidity, exchangeable cations, nitrate content, exchangeable ammonium and mobile sulfur by CINAO methods. GOST 26483–85 — GOST 26490–85 / State Standards of the USSR. Moscow: USSR State Committee for Standards; Standards Publishing House; 1985. 6 p. (In Russ.) |
| [58] |
Державин Л.М., Самохвалов С.Г., Соколова Н.В., и др. Почвы. Определение pH солевой вытяжки, обменной кислотности, обменных катионов, содержания нитратов, обменного аммония и подвижной серы методами ЦИНАО. ГОСТ 26483–85 – ГОСТ 26490–85 / Государственные стандарты Союза ССР. Москва: Государственный комитет СССР по стандартам, Издательство стандартов, 1985. 6 с. |
| [59] |
Nakhimova LI, editor. Soils. Methods for determination of organic matter. GOST 26213–2021. Moscow: Russian Institute of Standardization; 2021. 8 p. (In Russ.) |
| [60] |
Почвы. Методы определения органического вещества. ГОСТ 26213–2021 / под ред. Нахимовой Л.И. Москва: Российский институт стандартизации, 2021. 8 с. |
| [61] |
Derzhavin LM, Samokhvalov SG, Sokolova NV, et al. Soils. Determination of mobile phosphorus and potassium compounds by the Chirikov method modified by CINAO. GOST 26204–91. State Standard of the Union of Soviet Socialist Republics. Moscow: Committee for Standardization and Metrology of the USSR; 1991. 5 p. (In Russ.) |
| [62] |
Державин Л.М., Самохвалов С.Г., Соколова Н.В., и др. Почвы. Определение подвижных соединений фосфора и калия по методу Чирикова в модификации ЦИНАО. ГОСТ 26204–91. Государственный стандарт Союза ССР. Москва: Комитет стандартизации и метрологии СССР, 1991. 5 с. |
| [63] |
Derzhavin LM, Samokhvalov SG, Sokolova NV, et al. Soils. Determination of nitrates by ionometric method. GOST 26951–86. State standard of the Union of Soviet Socialist Republics. Moscow: USSR State Committee for Standards; Publishing house of standards; 1986. 10 p. (In Russ.) |
| [64] |
Державин Л.М., Самохвалов С.Г., Соколова Н.В., и др. Почвы. Определение нитратов ионометрическим методом. ГОСТ 26951–86. Государственный стандарт Союза ССР. Москва: Государственный комитет СССР по стандартам, Издательство стандартов, 1986. 10 с. |
| [65] |
Spearman C. The proof and measurement of association between two things. Am J Psychol. 1904;15(1):72–101. doi: 10.2307/1412159 |
| [66] |
Spearman C. The proof and measurement of association between two things // Am J Psychol. 1904. Vol. 15, N 1. P. 72–101. doi: 10.2307/1412159 |
| [67] |
Kruskal WH, Wallis WA. Use of ranks in one-criterion variance analysis. J Am Stat Assoc. 1952;47(260):583–621. doi: 10.2307/2280779 |
| [68] |
Kruskal W.H., Wallis W.A. Use of ranks in one-criterion variance analysis // J Am Stat Assoc. 1952. Vol. 47, N 260. P. 583–621. doi: 10.2307/2280779 |
| [69] |
Boyarshin KS, Adamova VV, Zheng W, et al. Bacterial genera associated with nitrogen cycle in microbial communities of chernozems. Ecological genetics. 2024;22(2):191–204. EDN: EPIFNU doi: 10.17816/ecogen603873 |
| [70] |
Бояршин К.С., Адамова В.В., Чжен В., и др. Бактериальные роды, связанные с циклом азота в микробных сообществах черноземов // Экологическая генетика. 2024. Т. 22, № 2. С. 191–204. EDN: EPIFNU doi: 10.17816/ecogen603873 |
| [71] |
Zotov VS, Punina NV, Khapchaeva SA, et al. The new taxonomic marker of nodulation bacteria of Rhizobium genus and its evolution. Ecological genetics. 2012;10(2):50–63. EDN: PFFISD doi: 10.17816/ecogen10250-63 |
| [72] |
Зотов В.С., Пунина Н.В., Хапчаева С.А., и др. Новый таксономический маркер клубеньковых бактерий рода Rhizobium и его эволюция // Экологическая генетика. 2012. Т. 10, № 2. С. 50–63. EDN: PFFISD doi: 10.17816/ecogen10250-63 |
| [73] |
Krutilo D.V., Zotov V.S. Genotypic analysis of nodule bacteria nodulating soybean in soils of Ukraine. Ecological genetics. 2013:11(4):86–95. |
| [74] |
Крутило Д.В., Зотов В.С. Генотипический анализ клубеньковых бактерий, нодулирующих сою в почвах Украины // Экологическая генетика. 2013. Т. 11, № 4. С. 86–95. |
| [75] |
Yenkina OV, Korobskoy NF. Microbiological aspects of fertility preservation of Kuban chernozems. Krasnodar: Agroprompolygraphizdat; 1999. 150 p. (In Russ.) |
| [76] |
Енкина О.В., Коробской Н.Ф. Микробиологические аспекты сохранения плодородия черноземов Кубани. Краснодар: Агропромполиграфиздат, 1999. 150 с. |
| [77] |
Protsenko EP, Karaulova LN, Protsenko AA, et al. Comparative characteristic of black soils microbiota in commandment and anthropogenic regenerate associations. Izvestia of Samara Scientific Center of the Russian Academy of Sciences. 2011;13(1–5):1215–1218. EDN: OORZOP |
| [78] |
Проценко Е.П., Караулова Л.Н., Проценко А.А., и др. Сравнительная характеристика микробиоты черноземов в заповедных и антропогенно преобразованных сообществах // Известия Самарского научного центра РАН. 2011. Т. 13, № 1–5. С. 1215–1218. EDN: OORZOP |
| [79] |
Gorbacheva MA, Melnikova NV, Chechetkin VR, et al. DNA sequencing and metagenomics of cultivated and uncultivated chernozems in Russia. Geoderma Reg. 2018;14:e00180. doi: 10.1016/j.geodrs.2018.e00180 |
| [80] |
Gorbacheva M.A., Melnikova N.V., Chechetkin V.R., et al. DNA sequencing and metagenomics of cultivated and uncultivated chernozems in Russia // Geoderma Reg. 2018. Vol. 14. ID e00180. doi: 10.1016/j.geodrs.2018.e00180 |
| [81] |
Melnichuk TN, Egovtseva AYu, Abdurashitov SF, et al. Associative to Triticum aestivum L. Bacteria from chernozems southern and ordinary. Taurida herald of the agrarian sciences. 2018;(4):88–101. EDN: YPPSGT doi: 10.25637/TVAN2018.04.09 |
| [82] |
Мельничук Т.Н., Еговцева А.Ю., Абдурашитов С.Ф., и др. Ассоциативные бактерии к Triticum aestivum L. черноземов южного и обыкновенного // Таврический вестник аграрной науки. 2018. № 4. С. 88–101. EDN: YPPSGT doi: 10.25637/TVAN2018.04.09 |
| [83] |
Mehmood MA, Fu Y, Zhao H, et al. Enrichment of bacteria involved in the nitrogen cycle and plant growth promotion in soil by sclerotia of rice sheath blight fungus. Stress Biol. 2022;2:32. doi: 10.1007/s44154-022-00049-y |
| [84] |
Mehmood M.A., Fu Y., Zhao H., et al. Enrichment of bacteria involved in the nitrogen cycle and plant growth promotion in soil by sclerotia of rice sheath blight fungus // Stress Biol. 2022. Vol. 2. ID 32. doi: 10.1007/s44154-022-00049-y |
| [85] |
Erikson D. Differentiation of the vegetative and sporogenous phases of the actinomycetes. J Gen Microbiol. 1947;1(1):45–54. doi: 10.1099/00221287-1-1-45 |
| [86] |
Erikson D. Differentiation of the vegetative and sporogenous phases of the actinomycetes // J Gen Microbiol. 1947. Vol. 1, N. 1. P. 45–54. doi: 10.1099/00221287-1-1-45 |
| [87] |
da Cruz Silva G, Kitano IT, de Figueiredo Ribeiro IA, Lacava PT. The potential use of actinomycetes as microbial inoculants and biopesticides in agriculture. Front Soil Sci. 2022;2:833181. doi: 10.3389/fsoil.2022.833181 |
| [88] |
da Cruz Silva G., Kitano I.T., de Figueiredo Ribeiro I.A., Lacava P.T. The potential use of actinomycetes as microbial inoculants and biopesticides in agriculture // Front Soil Sci. 2022. Vol. 2. ID 833181. doi: 10.3389/fsoil.2022.833181 |
| [89] |
Ma Y, Wang J, Liu Y, et al. Nocardioides: “Specialists” for hard-to-degrade pollutants in the environment. Molecules. 2023;28(21):7433. doi: 10.3390/molecules28217433 |
| [90] |
Ma Y., Wang J., Liu Y., et al. Nocardioides: “Specialists” for hard-to-degrade pollutants in the environment // Molecules. 2023. Vol. 28, N 21. ID 7433. doi: 10.3390/molecules28217433 |
Eco-Vector
/
| 〈 |
|
〉 |