Genome-wide epigenetic changes in compartments of genetically unbalanced human blastocysts

Andrei V. Tikhonov , Mikhail I. Krapivin , Olga V. Malysheva , Alla S. Koltsova , Evgeniia M. Komarova , Arina V. Golubeva , Olga A. Efimova , Anna A. Pendina

Ecological Genetics ›› 2024, Vol. 22 ›› Issue (3) : 265 -276.

PDF (2907KB)
Ecological Genetics ›› 2024, Vol. 22 ›› Issue (3) : 265 -276. DOI: 10.17816/ecogen631776
Human ecological genetics
research-article

Genome-wide epigenetic changes in compartments of genetically unbalanced human blastocysts

Author information +
History +
PDF (2907KB)

Abstract

BACKGROUND: Epigenetic genome reprogramming is an important determinant of human embryo development. However, its mechanisms remain poorly elucidated, especially in genetically unbalanced embryos.

AIM: The aim of this study is the analysis of DNA methylation and hydroxymethylation levels in trophectoderm and inner cell mass of genetically balanced and unbalanced human blastocysts.

MATERIALS AND METHODS: Twenty-two IVF-derived human blastocysts were enrolled in the study; of these blastocysts, 15 were genetically unbalanced and 7 — genetically balanced. Detection of 5-methylcytosine and 5-hydroxymethylcytosine was performed on trophectoderm and inner cell mass nuclei by indirect immunofluorescence.

RESULTS: In genetically unbalanced blastocysts, the DNA methylation level was elevated in both compartments. The DNA hydroxymethylation level, in contrast, was elevated only in inner cell mass, whereas trophectoderm cells retained the same level as in genetically balanced embryos. These changes equalized the inner cell mass and trophectoderm DNA hydroxymethylation levels in genetically unbalanced blastocysts, while in genetically balanced ones the 5-hydroxymethylcytosine content in inner cell mass lagged behind that in trophectoderm.

CONCLUSIONS: Genetic imbalance is associated with differential epigenetic changes in trophectoderm and inner cell mass cells of human blastocysts: DNA methylation level increases in both compartments while DNA hydroxymethylation level increases only in inner cell mass. The trophectoderm cells in genetically unbalanced blastocysts retain the same hydroxymethylation level as in genetically balanced ones, suggesting a possible explanation of the ability of karyotypically abnormal embryos to implant.

Keywords

5-methylcytosine / 5-hydroxymethylcytosine / human blastocyst / aneuploidy / trophectoderm / inner cell mass / assisted reproductive technologies

Cite this article

Download citation ▾
Andrei V. Tikhonov, Mikhail I. Krapivin, Olga V. Malysheva, Alla S. Koltsova, Evgeniia M. Komarova, Arina V. Golubeva, Olga A. Efimova, Anna A. Pendina. Genome-wide epigenetic changes in compartments of genetically unbalanced human blastocysts. Ecological Genetics, 2024, 22(3): 265-276 DOI:10.17816/ecogen631776

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hyde KJ, Schust DJ. Genetic considerations in recurrent pregnancy loss. Cold Spring Harb Perspect Med. 2015;5(3):a023119. doi: 10.1101/cshperspect.a023119

[2]

Hyde K.J., Schust D.J. Genetic considerations in recurrent pregnancy loss // Cold Spring Harb Perspect Med. 2015. Vol. 5, N 3. ID a023119. doi: 10.1101/cshperspect.a023119

[3]

Soler A, Morales C, Mademont-Soler I, et al. Overview of chromosome abnormalities in first trimester miscarriages: A series of 1,011 consecutive chorionic villi sample karyotypes. Cytogenet Genome Res. 2017;152(2):81–89. doi: 10.1159/000477707

[4]

Soler A., Morales C., Mademont-Soler I., et al. Overview of chromosome abnormalities in first trimester miscarriages: A series of 1,011 consecutive chorionic villi sample karyotypes // Cytogenet Genome Res. 2017. Vol. 152, N 2. P. 81–89. doi: 10.1159/000477707

[5]

McCoy RC, Summers MC, McCollin A, et al. Meiotic and mitotic aneuploidies drive arrest of in vitro fertilized human preimplantation embryos. Genome Med. 2023;15(1):77. doi: 10.1186/s13073-023-01231-1

[6]

McCoy R.C., Summers M.C., McCollin A., et al. Meiotic and mitotic aneuploidies drive arrest of in vitro fertilized human preimplantation embryos // Genome Med. 2023. Vol. 15, N 1. ID 77. doi: 10.1186/s13073-023-01231-1

[7]

Chatzimeletiou K, Morrison EE, Prapas N, et al. Spindle abnormalities in normally developing and arrested human preimplantation embryos in vitro identified by confocal laser scanning microscopy. Hum Reprod. 2005;20(3):672–682. doi: 10.1093/humrep/deh652

[8]

Chatzimeletiou K., Morrison E.E., Prapas N., et al. Spindle abnormalities in normally developing and arrested human preimplantation embryos in vitro identified by confocal laser scanning microscopy // Hum Reprod. 2005. Vol. 20, N 3. P. 672–682. doi: 10.1093/humrep/deh652

[9]

Holubcová Z, Blayney M, Elder K, Schuh M. Human oocytes. Error-prone chromosome-mediated spindle assembly favors chromosome segregation defects in human oocytes. Science. 2015;348(6239):1143–1147. doi: 10.1126/science.aaa9529

[10]

Holubcová Z., Blayney M., Elder K., Schuh M. Human oocytes. Error-prone chromosome-mediated spindle assembly favors chromosome segregation defects in human oocytes // Science. 2015. Vol. 348, N 6239. P. 1143–1147. doi: 10.1126/science.aaa9529

[11]

Treff NR, Thompson K, Rafizadeh M, et al. SNP array-based analyses of unbalanced embryos as a reference to distinguish between balanced translocation carrier and normal blastocysts. J Assist Reprod Genet. 2016;33(8):1115–1119. doi: 10.1007/s10815-016-0734-0

[12]

Treff N.R., Thompson K., Rafizadeh M., et al. SNP array-based analyses of unbalanced embryos as a reference to distinguish between balanced translocation carrier and normal blastocysts // J Assist Reprod Genet. 2016. Vol. 33, N 8. P. 1115–1119. doi: 10.1007/s10815-016-0734-0

[13]

Bradley CK, Livingstone M, Traversa MV, McArthur SJ. Impact of multiple blastocyst biopsy and vitrification-warming procedures on pregnancy outcomes. Fertil Steril. 2017;108(6):999–1006. doi: 10.1016/j.fertnstert.2017.09.013

[14]

Bradley C.K., Livingstone M., Traversa M.V., McArthur S.J. Impact of multiple blastocyst biopsy and vitrification-warming procedures on pregnancy outcomes // Fertil Steril. 2017. Vol. 108, N 6. P. 999–1006. doi: 10.1016/j.fertnstert.2017.09.013

[15]

Fragouli E, Alfarawati S, Spath K, et al. Analysis of implantation and ongoing pregnancy rates following the transfer of mosaic diploid-aneuploid blastocysts. Hum Genet. 2017;136:805–819. doi: 10.1007/s00439-017-1797-4

[16]

Fragouli E., Alfarawati S., Spath K., et al. Analysis of implantation and ongoing pregnancy rates following the transfer of mosaic diploid-aneuploid blastocysts // Hum Genet. 2017. Vol. 136. P. 805–819. doi: 10.1007/s00439-017-1797-4

[17]

Lledo B, Morales R, Ortiz JA, et al. Implantation potential of mosaic embryos. Syst Biol Reprod Med. 2017;63(3):206–208. doi: 10.1080/19396368.2017.1296045

[18]

Lledo B., Morales R., Ortiz J.A., et al. Implantation potential of mosaic embryos // Syst Biol Reprod Med. 2017. Vol. 63, N 3. P. 206–208. doi: 10.1080/19396368.2017.1296045

[19]

Munné S, Blazek J, Large M, et al. Detailed investigation into the cytogenetic constitution and pregnancy outcome of replacing mosaic blastocysts detected with the use of high-resolution next-generation sequencing. Fertil Steril. 2017;108(1):62–71.e8. doi: 10.1016/j.fertnstert.2017.05.002

[20]

Munné S., Blazek J., Large M., et al. Detailed investigation into the cytogenetic constitution and pregnancy outcome of replacing mosaic blastocysts detected with the use of high-resolution next-generation sequencing // Fertil Steril. 2017. Vol. 108, N 1. P. 62–71.e8. doi: 10.1016/j.fertnstert.2017.05.002

[21]

Kubicek D, Hornak M, Horak J, et al. Incidence and origin of meiotic whole and segmental chromosomal aneuploidies detected by karyomapping. Reprod Biomed Online. 2019;38(3):330–339. doi: 10.1016/j.rbmo.2018.11.023

[22]

Kubicek D., Hornak M., Horak J., et al. Incidence and origin of meiotic whole and segmental chromosomal aneuploidies detected by karyomapping // Reprod Biomed Online. 2019. Vol. 38, N 3. P. 330–339. doi: 10.1016/j.rbmo.2018.11.023

[23]

Chow JFC, Cheng HHY, Lau EYL, et al. Distinguishing between carrier and noncarrier embryos with the use of long-read sequencing in preimplantation genetic testing for reciprocal translocations. Genomics. 2020;112(1):494–500. doi: 10.1016/j.ygeno.2019.04.001

[24]

Chow J.F.C., Cheng H.H.Y., Lau E.Y.L., et al. Distinguishing between carrier and noncarrier embryos with the use of long-read sequencing in preimplantation genetic testing for reciprocal translocations // Genomics. 2020. Vol. 112, N 1. P. 494–500. doi: 10.1016/j.ygeno.2019.04.001

[25]

Konstantinidis M, Ravichandran K, Gunes Z, et al. Aneuploidy and recombination in the human preimplantation embryo. Copy number variation analysis and genome-wide polymorphism genotyping. Reprod Biomed Online. 2020;40(4):479–493. doi: 10.1016/j.rbmo.2019.12.008

[26]

Konstantinidis M., Ravichandran K., Gunes Z., et al. Aneuploidy and recombination in the human preimplantation embryo. Copy number variation analysis and genome-wide polymorphism genotyping // Reprod Biomed Online. 2020. Vol. 40, N 4. P. 479–493. doi: 10.1016/j.rbmo.2019.12.008

[27]

Fragouli E, Lenzi M, Ross R, et al. Comprehensive molecular cytogenetic analysis of the human blastocyst stage. Hum Reprod. 2008;23(11):2596–2608. doi: 10.1093/humrep/den287

[28]

Fragouli E., Lenzi M., Ross R., et al. Comprehensive molecular cytogenetic analysis of the human blastocyst stage // Hum Reprod. 2008. Vol. 23, N 11. P. 2596–2608. doi: 10.1093/humrep/den287

[29]

Fragouli E, Alfarawati S, Spath K, et al. The origin and impact of embryonic aneuploidy. Hum Genet. 2013;132(9):1001–1013. doi: 10.1007/s00439-013-1309-0

[30]

Fragouli E., Alfarawati S., Spath K., et al. The origin and impact of embryonic aneuploidy // Hum Genet. 2013. Vol. 132, N 9. P. 1001–1013. doi: 10.1007/s00439-013-1309-0

[31]

Capalbo A, Poli M, Rienzi L, et al. Mosaic human preimplantation embryos and their developmental potential in a prospective, non-selection clinical trial. Am J Hum Genet. 2021;108(12):2238–2247. doi: 10.1016/j.ajhg.2021.11.002

[32]

Capalbo A., Poli M., Rienzi L., et al. Mosaic human preimplantation embryos and their developmental potential in a prospective, non-selection clinical trial // Am J Hum Genet. 2021. Vol. 108, N 12. P. 2238–2247. doi: 10.1016/j.ajhg.2021.11.002

[33]

Chiryaeva OG, Pendina AA, Tikhonov AV, et al. A comparative cytogenetic analysis of miscarriages following natural conception and assisted reproductive technologies. Journal of obstetrics and women’s diseases. 2012;61(3):132–140. EDN: QAQIMR doi: 10.17816/JOWD613132-140

[34]

Чиряева О.Г., Пендина А.А., Тихонов А.В., и др. Сравнительный анализ аномалий кариотипа при неразвивающейся беременности, наступившей естественным путем и с применением вспомогательных репродуктивных технологий // Журнал акушерства и женских болезней. 2012. Т. 61, № 3. С. 132–140. EDN: QAQIMR doi: 10.17816/JOWD613132-140

[35]

Nagaoka SI, Hassold TJ, Hunt PA. Human aneuploidy: mechanisms and new insights into an age-old problem. Nat Rev Genet. 2012;13(7):493–504. doi: 10.1038/nrg3245

[36]

Nagaoka S.I., Hassold T.J., Hunt P.A. Human aneuploidy: mechanisms and new insights into an age-old problem // Nat Rev Genet. 2012. Vol. 13, N 7. P. 493–504. doi: 10.1038/nrg3245

[37]

Zhu P, Guo H, Ren Y, et al. Single-cell DNA methylome sequencing of human preimplantation embryos. Nat Genet. 2018;50:12–19. doi: 10.1038/s41588-017-0007-6

[38]

Zhu P., Guo H., Ren Y., et al. Single-cell DNA methylome sequencing of human preimplantation embryos // Nat Genet. 2018. Vol. 50. P. 12–19. doi: 10.1038/s41588-017-0007-6

[39]

Arand J, Reijo Pera RA, Wossidlo M. Reprogramming of DNA methylation is linked to successful human preimplantation development. Histochem Cell Biol. 2021;156(3):197–207. doi: 10.1007/s00418-021-02008-6

[40]

Arand J., Reijo Pera R.A., Wossidlo M. Reprogramming of DNA methylation is linked to successful human preimplantation development // Histochem Cell Biol. 2021. Vol. 156, N 3. P. 197–207. doi: 10.1007/s00418-021-02008-6

[41]

Fulka H, Mrazek M, Tepla O, Fulka J Jr. DNA methylation pattern in human zygotes and developing embryos. Reproduction. 2004;128(6):703–708. doi: 10.1530/rep.1.00217

[42]

Fulka H., Mrazek M., Tepla O., Fulka J. Jr. DNA methylation pattern in human zygotes and developing embryos // Reproduction. 2004. Vol. 128, N 6. P. 703–708. doi: 10.1530/rep.1.00217

[43]

Feng S, Jacobsen SE, Reik W. Epigenetic reprogramming in plant and animal development. Science. 2010;330(6004):622–627. doi: 10.1126/science.1190614

[44]

Feng S., Jacobsen S.E., Reik W. Epigenetic reprogramming in plant and animal development // Science. 2010. Vol. 330, N 6004. P. 622–627. doi: 10.1126/science.1190614

[45]

Seisenberger S, Peat JR, Hore TA, et al. Reprogramming DNA methylation in the mammalian life cycle: building and breaking epigenetic barriers. Philos Trans R Soc Lond B Biol Sci. 2013;368(1609):20110330. doi: 10.1098/rstb.2011.0330

[46]

Seisenberger S., Peat J.R., Hore T.A., et al. Reprogramming DNA methylation in the mammalian life cycle: building and breaking epigenetic barriers // Philos Trans R Soc Lond B Biol Sci. 2013. Vol. 368, N 1609. ID 20110330. doi: 10.1098/rstb.2011.0330

[47]

Marcho C, Cui W, Mager J. Epigenetic dynamics during preimplantation development. Reproduction. 2015;150(3):R109–R120. doi: 10.1530/REP-15-0180

[48]

Marcho C., Cui W., Mager J. Epigenetic dynamics during preimplantation development // Reproduction. 2015. Vol. 150, N 3. P. R109–R120. doi: 10.1530/REP-15-0180

[49]

White CR, MacDonald WA, Mann MR. Conservation of DNA methylation programming between mouse and human gametes and preimplantation embryos. Biol Reprod. 2016;95(3):61. doi: 10.1095/biolreprod.116.140319

[50]

White C.R., MacDonald W.A., Mann M.R. Conservation of DNA methylation programming between mouse and human gametes and preimplantation embryos // Biol Reprod. 2016. Vol. 95, N 3. ID 61. doi: 10.1095/biolreprod.116.140319

[51]

Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002;16(1):6–21. doi: 10.1101/gad.947102

[52]

Bird A. DNA methylation patterns and epigenetic memory // Genes Dev. 2002. Vol. 16, N 1. P. 6–21. doi: 10.1101/gad.947102

[53]

Pastor WA, Aravind L, Rao A. TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat Rev Mol Cell Biol. 2013;14(6):341–356. doi: 10.1038/nrm3589

[54]

Pastor W.A., Aravind L., Rao A. TETonic shift: biological roles of TET proteins in DNA demethylation and transcription // Nat Rev Mol Cell Biol. 2013. Vol. 14, N 6. P. 341–356. doi: 10.1038/nrm3589

[55]

Tahiliani M, Koh KP, Shen Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009;324(5929):930–935. doi: 10.1126/science.1170116

[56]

Tahiliani M., Koh K.P., Shen Y., et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1 // Science. 2009. Vol. 324, N 5929. P. 930–935. doi: 10.1126/science.1170116

[57]

Ito S, Shen L, Dai Q, et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science. 2011;333(6047):1300–1303. doi: 10.1126/science.1210597

[58]

Ito S., Shen L., Dai Q., et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine // Science. 2011. Vol. 333, N 6047. P. 1300–1303. doi: 10.1126/science.1210597

[59]

Guo H, Zhu P, Yan L, et al. The DNA methylation landscape of human early embryos. Nature. 2014;511(7511):606–610. doi: 10.1038/nature13544

[60]

Guo H., Zhu P., Yan L., et al. The DNA methylation landscape of human early embryos // Nature. 2014. Vol. 511, N 7511. P. 606–610. doi: 10.1038/nature13544

[61]

Moen EL, Mariani CJ, Zullow H, et al. New themes in the biological functions of 5-methylcytosine and 5-hydroxymethylcytosine. Immunol Rev. 2015;263(1):36–49. doi: 10.1111/imr.12242

[62]

Moen E.L., Mariani C.J., Zullow H., et al. New themes in the biological functions of 5-methylcytosine and 5-hydroxymethylcytosine // Immunol Rev. 2015. Vol. 263, N 1. P. 36–49. doi: 10.1111/imr.12242

[63]

Tikhonov AV, Krapivin MI, Malysheva OV, et al. Re-examination of PGT-A detected genetic pathology in compartments of human blastocysts: A series of 23 cases. J Clin Med. 2024;13(11):3289. doi: 10.3390/jcm13113289

[64]

Tikhonov A.V., Krapivin M.I., Malysheva O.V., et al. Re-examination of PGT-A detected genetic pathology in compartments of human blastocysts: A series of 23 cases // J Clin Med. 2024. Vol. 13, N 11. ID 3289. doi: 10.3390/jcm13113289

[65]

Koltsova AS, Efimova OA, Malysheva OV, et al. Cytogenomic profile of uterine leiomyoma: in vivo vs. in vitro comparison. Biomedicines. 2021;9(12):1777. doi: 10.3390/biomedicines9121777

[66]

Koltsova A.S., Efimova O.A., Malysheva O.V., et al. Cytogenomic profile of uterine leiomyoma: in vivo vs. in vitro comparison // Biomedicines. 2021. Vol. 9, N 12. ID 1777. doi: 10.3390/biomedicines9121777

[67]

Pendina AA, Efimova OA, Fedorova ID, et al. DNA methylation patterns of metaphase chromosomes in human preimplantation embryos. Cytogenet Genome Res. 2011;132(1–2):1–7. doi: 10.1159/000318673

[68]

Pendina A.A., Efimova O.A., Fedorova I.D., et al. DNA methylation patterns of metaphase chromosomes in human preimplantation embryos // Cytogenet Genome Res. 2011. Vol. 132, N 1–2. P. 1–7. doi: 10.1159/000318673

[69]

Efimova OA, Pendina AA, Tikhonov AV, et al. Chromosome hydroxymethylation patterns in human zygotes and cleavage-stage embryos. Reproduction. 2015;149(3):223–233. doi: 10.1530/REP-14-0343

[70]

Efimova O.A., Pendina A.A., Tikhonov A.V., et al. Chromosome hydroxymethylation patterns in human zygotes and cleavage-stage embryos // Reproduction. 2015. Vol. 149, N 3. P. 223–233. doi: 10.1530/REP-14-0343

[71]

Pendina AA, Krapivin MI, Efimova OA, et al. Telomere length in metaphase chromosomes of human triploid zygotes. Int J Mol Sci. 2021;22(11):5579. doi: 10.3390/ijms22115579

[72]

Pendina A.A., Krapivin M.I., Efimova O.A., et al. Telomere length in metaphase chromosomes of human triploid zygotes // Int J Mol Sci. 2021. Vol. 22, N 11. ID 5579. doi: 10.3390/ijms22115579

[73]

Munné S, Grifo J, Cohen J, Weier HU. Chromosome abnormalities in human arrested preimplantation embryos: a multiple-probe FISH study. Am J Hum Genet. 1994;55(1):150–159.

[74]

Munné S., Grifo J., Cohen J., Weier H.U. Chromosome abnormalities in human arrested preimplantation embryos: a multiple-probe FISH study // Am J Hum Genet. 1994. Vol. 55, N 1. P. 150–159.

[75]

Munné S, Sultan KM, Weier H-U, et al. Assessment of numeric abnormalities of X, Y, 18, and 16 chromosomes in preimplantation human embryos before transfer. Am J Obstet Gynecol. 1995;172(4):1191–1201. doi: 10.1016/0002-9378(95)91479-x

[76]

Munné S., Sultan K.M., Weier H.-U., et al. Assessment of numeric abnormalities of X, Y, 18, and 16 chromosomes in preimplantation human embryos before transfer // Am J Obstet Gynecol. 1995. Vol. 172, N 4. P. 1191–1201. doi: 10.1016/0002-9378(95)91479-x

[77]

Pendina AA, Efimova OA, Chiryaeva OG, et al. A comparative cytogenetic study of miscarriages after IVF and natural conception in women aged under and over 35 years. J Assist Reprod Genet. 2014;31(2):149–155. doi: 10.1007/s10815-013-0148-1

[78]

Pendina A.A., Efimova O.A., Chiryaeva O.G., et al. A comparative cytogenetic study of miscarriages after IVF and natural conception in women aged under and over 35 years // J Assist Reprod Genet. 2014. Vol. 31, N 2. P. 149–155. doi: 10.1007/s10815-013-0148-1

[79]

Babariya D, Fragouli E, Alfarawati S, et al. The incidence and origin of segmental aneuploidy in human oocytes and preimplantation embryos. Hum Reprod. 2017;32(12):2549–2560. doi: 10.1093/humrep/dex324

[80]

Babariya D., Fragouli E., Alfarawati S., et al. The incidence and origin of segmental aneuploidy in human oocytes and preimplantation embryos // Hum Reprod. 2017. Vol. 32, N 12. P. 2549–2560. doi: 10.1093/humrep/dex324

[81]

Pylyp LY, Spynenko LO, Verhoglyad NV, et al. Chromosomal abnormalities in products of conception of first-trimester miscarriages detected by conventional cytogenetic analysis: a review of 1000 cases. J Assist Reprod Genet. 2018;35(2):265–271. doi: 10.1007/s10815-017-1069-1

[82]

Pylyp L.Y., Spynenko L.O., Verhoglyad N.V., et al. Chromosomal abnormalities in products of conception of first-trimester miscarriages detected by conventional cytogenetic analysis: a review of 1000 cases // J Assist Reprod Genet. 2018. Vol. 35, N 2. P. 265–271. doi: 10.1007/s10815-017-1069-1

[83]

Yang M, Tao X, Scott K, et al. Evaluation of genome-wide DNA methylation profile of human embryos with different developmental competences. Hum Reprod. 2021;36(6):1682–1690. doi: 10.1093/humrep/deab074

[84]

Yang M., Tao X., Scott K., et al. Evaluation of genome-wide DNA methylation profile of human embryos with different developmental competences // Hum Reprod. 2021. Vol. 36, N 6. P. 1682–1690. doi: 10.1093/humrep/deab074

[85]

Chavez SL, Loewke KE, Han J, et al. Dynamic blastomere behaviour reflects human embryo ploidy by the four-cell stage. Nat Commun. 2012;3:1251. doi: 10.1038/ncomms2249

[86]

Chavez S.L., Loewke K.E., Han J., et al. Dynamic blastomere behaviour reflects human embryo ploidy by the four-cell stage // Nat Commun. 2012. Vol. 3. ID 1251. doi: 10.1038/ncomms2249

[87]

Grau N, Escrich L, Galiana Y, et al. Morphokinetics as a predictor of self-correction to diploidy in tripronucleated intracytoplasmic sperm injection-derived human embryos. Fertil Steril. 2015;104(3):728–735. doi: 10.1016/j.fertnstert.2015.05.024

[88]

Grau N., Escrich L., Galiana Y., et al. Morphokinetics as a predictor of self-correction to diploidy in tripronucleated intracytoplasmic sperm injection-derived human embryos // Fertil Steril. 2015. Vol. 104, N 3. P. 728–735. doi: 10.1016/j.fertnstert.2015.05.024

[89]

Martín Á, Rodrigo L, Beltrán D, et al. The morphokinetic signature of mosaic embryos: evidence in support of their own genetic identity. Fertil Steril. 2021;116(1):165–173. doi: 10.1016/j.fertnstert.2020.12.031

[90]

Martín Á., Rodrigo L., Beltrán D., et al. The morphokinetic signature of mosaic embryos: evidence in support of their own genetic identity // Fertil Steril. 2021. Vol. 116, N 1. P. 165–173. doi: 10.1016/j.fertnstert.2020.12.031

[91]

Martin A, Mercader A, Dominguez F, et al. Mosaic results after preimplantation genetic testing for aneuploidy may be accompanied by changes in global gene expression. Front Mol Biosci. 2023;10:1180689. doi: 10.3389/fmolb.2023.1180689

[92]

Martin A., Mercader A., Dominguez F., et al. Mosaic results after preimplantation genetic testing for aneuploidy may be accompanied by changes in global gene expression // Front Mol Biosci. 2023. Vol. 10. ID 1180689. doi: 10.3389/fmolb.2023.1180689

[93]

Beaujean N, Hartshorne G, Cavilla J, et al. Non-conservation of mammalian preimplantation methylation dynamics. Curr Biol. 2004;14(7): R266–R267. doi: 10.1016/j.cub.2004.03.019

[94]

Beaujean N., Hartshorne G., Cavilla J., et al. Non-conservation of mammalian preimplantation methylation dynamics // Curr Biol. 2004. Vol. 14, N 7. P. R266–R267. doi: 10.1016/j.cub.2004.03.019

[95]

Fulka H, Barnetova I, Mosko T, Fulka J. Epigenetic analysis of human spermatozoa after their injection into ovulated mouse oocytes. Hum Reprod. 2008;23(3):627–634. doi: 10.1093/humrep/dem406

[96]

Fulka H., Barnetova I., Mosko T., Fulka J. Epigenetic analysis of human spermatozoa after their injection into ovulated mouse oocytes // Hum Reprod. 2008. Vol. 23, N 3. P. 627–634. doi: 10.1093/humrep/dem406

[97]

Guo F, Li X, Liang D, et al. Active and passive demethylation of male and female pronuclear DNA in the mammalian zygote. Cell Stem Cell. 2014;15(4):447–459. doi: 10.1016/j.stem.2014.08.003

[98]

Guo F., Li X., Liang D., et al. Active and passive demethylation of male and female pronuclear DNA in the mammalian zygote // Cell Stem Cell. 2014. Vol. 15, N 4. P. 447–459. doi: 10.1016/j.stem.2014.08.003

[99]

Gao Y, Li L, Yuan P, et al. 5-Formylcytosine landscapes of human preimplantation embryos at single-cell resolution. PLoS Biol. 2020;18(7):e3000799. doi: 10.1371/journal.pbio.3000799

[100]

Gao Y., Li L., Yuan P., et al. 5-Formylcytosine landscapes of human preimplantation embryos at single-cell resolution // PLoS Biol. 2020. Vol. 18, N 7. ID e3000799. doi: 10.1371/journal.pbio.3000799

[101]

Parks JC, McCallie BR, Janesch AM, et al. Blastocyst gene expression correlates with implantation potential. Fertil Steril. 2011;95(4):1367–1372. doi: 10.1016/j.fertnstert.2010.08.009

[102]

Parks J.C., McCallie B.R., Janesch A.M., et al. Blastocyst gene expression correlates with implantation potential // Fertil Steril. 2011. Vol. 95, N 4. P. 1367–1372. doi: 10.1016/j.fertnstert.2010.08.009

[103]

Assou S, Boumela I, Haouzi D, et al. Transcriptome analysis during human trophectoderm specification suggests new roles of metabolic and epigenetic genes. PLoS One. 2012;7(6):e39306. doi: 10.1371/journal.pone.0039306

[104]

Assou S., Boumela I., Haouzi D., et al. Transcriptome analysis during human trophectoderm specification suggests new roles of metabolic and epigenetic genes // PLoS One. 2012. Vol. 7, N 6. ID e39306. doi: 10.1371/journal.pone.0039306

[105]

Liu Y, Zhang Y, Li S, Cui J. Gene expression pattern of trophoblast-specific transcription factors in trophectoderm by analysis of single-cell RNA-seq data of human blastocyst. Funct Integr Genomics. 2021;21(2):205–214. doi: 10.1007/s10142-021-00770-3

[106]

Liu Y., Zhang Y., Li S., Cui J. Gene expression pattern of trophoblast-specific transcription factors in trophectoderm by analysis of single-cell RNA-seq data of human blastocyst // Funct Integr Genomics. 2021. Vol. 21, N 2. P. 205–214. doi: 10.1007/s10142-021-00770-3

[107]

Lee S-M. Detecting DNA hydroxymethylation: exploring its role in genome regulation. BMB Rep. 2024;57(3):135–142. doi: 10.5483/BMBRep.2023–0250

[108]

Lee S.-M. Detecting DNA hydroxymethylation: exploring its role in genome regulation // BMB Rep. 2024. Vol. 57, N 3. P. 135–142. doi: 10.5483/BMBRep.2023-0250

Funding

Российский научный фондRussian Science Foundation(22-75-00125)

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF (2907KB)

80

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/