Populations of the Caucasus as an object for studying the process of adaptation to conditions of high-altitude hypoxia
Murat A. Dzhaubermezov , Natalia V. Ekomasova , Rustam N. Mustafin , Ongar S. Chagarov , Yuliya Y. Fedorova , Liliya R. Gabidullina , Alfiya K. Nurgalieva , Darya S. Prokofyeva , Elza K. Khusnutdinovna
Ecological Genetics ›› 2024, Vol. 22 ›› Issue (3) : 277 -292.
Populations of the Caucasus as an object for studying the process of adaptation to conditions of high-altitude hypoxia
The work examines the main mechanisms responsible for the process of acclimatization of the population of high mountain regions to the conditions of hypobaric hypoxia. The purpose of this review is to describe the pathways of genetic, epigenetic and physiological control in the adaptation of indigenous populations of highlands to reduced barometric pressure and oxygen tension in the environment. It has been shown that populations living in different high-mountain regions demonstrate different ways of adaptation in response to a decrease in the partial pressure of oxygen in the inspired air. The changes that occur in the body in response to stressful conditions are extremely diverse. These include changes in the respiratory, cardiovascular, hematological systems and cellular adaptation. In this review, we examine genomic variations leading to evolutionary adaptation to life at high altitudes, gene expression, pathophysiological and metabolic features, and long-term adaptation in various high-altitude populations. We also consider the peoples of the Caucasus as one of the most promising populations for further study of complex adaptation mechanisms.
hypoxia / highlands / Caucasus / EGLN1 / XOC8 / SPRTN / EPAS1 / HIF1A
| [1] |
Naumenko SE. Mountain sickness: textbook. Novosibirsk: IPC NSU; 2018. 72 p. (In Russ.) |
| [2] |
Науменко С.Е. Горная болезнь: учебное пособие. Новосибирск: ИПЦ НГУ, 2018. 72 с. |
| [3] |
Hackett PH, Roach RC. High-altitude illness. N Engl J Med. 2001;345(2):107–114. doi: 10.1056/NEJM200107123450206 |
| [4] |
Hackett P.H., Roach R.C. High-altitude illness // N Engl J Med. 2001. Vol. 345, N 2. P. 107–114. doi: 10.1056/NEJM200107123450206 |
| [5] |
Burtscher M, Hefti U, Hefti JP. High-altitude illnesses: Old stories and new insights into the pathophysiology, treatment and prevention. Sport Med Health Sci. 2021;3(2):59–69. doi: 10.1016/j.smhs.2021.04.001 |
| [6] |
Burtscher M., Hefti U., Hefti J.P. High-altitude illnesses: Old stories and new insights into the pathophysiology, treatment and prevention // Sport Med Health Sci. 2021. Vol. 3, N 2. P. 59–69. doi: 10.1016/j.smhs.2021.04.001 |
| [7] |
Bigham AW, Lee FS. Human high-altitude adaptation: forward genetics meets the HIF pathway. Genes Dev. 2014;28(20):2189–2204. doi: 10.1101/gad.250167.114 |
| [8] |
Bigham A.W., Lee F.S. Human high-altitude adaptation: forward genetics meets the HIF pathway // Genes Dev. 2014. Vol. 28, N 20. P. 2189–2204. doi: 10.1101/gad.250167.114 |
| [9] |
Paralikar SJ, Paralikar JH. High-altitude medicine. Indian J Occup Environ Med. 2010;14(1):6–12. doi: 10.4103/0019-5278.64608 |
| [10] |
Paralikar S.J., Paralikar J.H. High-altitude medicine // Indian J Occup Environ Med. 2010. Vol. 14, N 1. P. 6–12. doi: 10.4103/0019-5278.64608 |
| [11] |
Tremblay JC, Ainslie PN. Global and country-level estimates of human population at high altitude. PNAS USA. 2021;118(18): e2102463118. doi: 10.1073/pnas.2102463118 |
| [12] |
Tremblay J.C., Ainslie P.N. Global and country-level estimates of human population at high altitude // PNAS USA. 2021. Vol. 118, N 18. ID e2102463118. doi: 10.1073/pnas.2102463118 |
| [13] |
Aldenderfer M. Modelling plateau peoples: The early human use of the world’s high plateau. World Archaeol. 2007;38(3):357–370. doi: 10.1080/00438240600813285 |
| [14] |
Aldenderfer M. Modelling plateau peoples: The early human use of the world’s high plateau // World Archaeol. 2007. Vol. 38, N 3. P. 357–370. doi: 10.1080/00438240600813285 |
| [15] |
Zhang XL, Ha BB, Wang SJ, et al. The earliest human occupation of the high-altitude Tibetan Plateau 40 thousand to 30 thousand years ago. Science. 2018;362(6418):1049–1051. doi: 10.1126/science.aat8824 |
| [16] |
Zhang X.L., Ha B.B., Wang S.J., et al. The earliest human occupation of the high-altitude Tibetan Plateau 40 thousand to 30 thousand years ago // Science. 2018. Vol. 362, N 6418. P. 1049–1051. doi: 10.1126/science.aat8824 |
| [17] |
Rademaker K, Hodgins G, Moore K, et al. Paleoindian settlement of the high-altitude Peruvian Andes. Science. 2014;346(6208): 466–469. doi: 10.1126/science.1258260 |
| [18] |
Rademaker K., Hodgins G., Moore K., et al. Paleoindian settlement of the high-altitude Peruvian Andes // Science. 2014. Vol. 346, N 6208. P. 466–469. doi: 10.1126/science.1258260 |
| [19] |
Munchayev RM. Caucasus at the dawn of the Bronze Age. Moscow: Nauka; 1974. 416 p. (In Russ.) |
| [20] |
Мунчаев Р.М. Кавказ на заре бронзового века. Москва: Наука, 1974. 416 c. |
| [21] |
Semyonov PP, editor. Picturesque Russia. Caucasus. Vol. IX. Saint Petersburg, Moscow: Edition of the M.O. Wolf; 1883. P. II. (In Russ.) |
| [22] |
Живописная Россия. Кавказ. Т. IX / под ред. П.П. Семенова. Санкт-Петербург, Москва: Издание Т-ва М.О. Вольф, 1883. С. II. |
| [23] |
Tizengausen G. Collection of materials relating to the history of the Golden Horde. Vol. II: Extracts from Persian writings. 1941. P. 181. (In Russ.) |
| [24] |
Сборник материалов, относящихся к истории Золотой Орды. Т. II: Извлечения из персидских сочинений / под ред. Г. Тизенгаузена. 1941. С. 181. |
| [25] |
Gvozdetsky NA. Caucasus. Sketch of nature. Moscow: Geografgiz; 1963. 262 p. (In Russ.) |
| [26] |
Гвоздецкий Н.А. Кавказ. Очерк природы. Москва: Географгиз, 1963. 262 с. |
| [27] |
Treskov IV, editor. Materials of the scientific session on the problem of the origin of the Balkar and Karachai peoples; 1959 June 22–26. Nalchik: Kabardino-Balkarian Book Publishing House; 1960. (In Russ.) |
| [28] |
Материалы научной сессии по проблеме происхождения балкарского и карачаевского народов; Июнь 22–26, 1959 г. / под ред. И.В. Трескова. Нальчик: Кабардино-Балкарское книжное издательство, 1960. |
| [29] |
Karaketov MD, Sabanchiev H-MA, editors. Karachais. Balkars. Moscow: Nauka; 2014. 815 p. (In Russ.) |
| [30] |
Карачаевцы. Балкарцы / под ред. М.Д. Каракетова, Х.-М.А. Сабанчиева. Москва: Наука, 2014. 815 с. |
| [31] |
Alekseev VP. Origin of the peoples of the Caucasus. Craniological study. Moscow: Nauka; 1974. 317 p. (In Russ.) |
| [32] |
Алексеев В.П. Происхождение народов Кавказа. Краниологическое исследование. Москва: Наука, 1974. 317 с. |
| [33] |
rosstat.gov.ru [Internet]. Federal state statistics service [cited 2024 Apr 4]. Available from: https://rosstat.gov.ru/ (In Russ.) |
| [34] |
rosstat.gov.ru [Электронный ресурс]. Федеральная служба государственной статистики [дата обращения: 04.04.2024]. Режим доступа: https://rosstat.gov.ru/ |
| [35] |
topographic-map.com [Internet]. Federal state statistics service [cited 2024 Apr 1]. Available from: https://ru-ru.topographic-map.com/ (In Russ.) |
| [36] |
topographic-map.com [Электронный ресурс]. Федеральная служба государственной статистики [дата обращения: 01.04.2024]. Режим доступа: https://ru-ru.topographic-map.com/ |
| [37] |
Miziev IM. Traces on Elbrus. Karachaevsk: KChGPU; 2001. 184 p. (In Russ.) |
| [38] |
Мизиев И.М. Следы на Эльбрусе. Карачаевск: КЧГПУ, 2001. 184 с. |
| [39] |
Brutsaert TD, Kiyamu M, Elias Revollendo G, et al. Association of EGLN1 gene with high aerobic capacity of Peruvian Quechua at high altitude. PNAS USA. 2019;116(48):24006–24011. doi: 10.1073/pnas.1906171116 |
| [40] |
Brutsaert T.D., Kiyamu M., Elias Revollendo G., et al. Association of EGLN1 gene with high aerobic capacity of Peruvian Quechua at high altitude // PNAS USA. 2019. Vol. 116, N 48. P. 24006–24011. doi: 10.1073/pnas.1906171116 |
| [41] |
Heinrich EC, Wu L, Lawrence ES, et al. Genetic variants at the EGLN1 locus associated with high-altitude adaptation in Tibetans are absent or found at low frequency in highland Andeans. Ann Hum Genet. 2019;83(3):171–176. doi: 10.1111/ahg.12299 |
| [42] |
Heinrich E.C., Wu L., Lawrence E.S., et al. Genetic variants at the EGLN1 locus associated with high-altitude adaptation in Tibetans are absent or found at low frequency in highland Andeans // Ann Hum Genet. 2019. Vol. 83, N 3. P. 171–176. doi: 10.1111/ahg.12299 |
| [43] |
Bigham A, Bauchet M, Pinto D, et al. Identifying signatures of natural selection in Tibetan and Andean populations using dense genome scan data. PLoS Genet. 2010;6(9):e1001116. doi: 10.1371/journal.pgen.1001116 |
| [44] |
Bigham A., Bauchet M., Pinto D., et al. Identifying signatures of natural selection in Tibetan and Andean populations using dense genome scan data // PLoS Genet. 2010. Vol. 6, N 9. ID e1001116. doi: 10.1371/journal.pgen.1001116 |
| [45] |
Bigham AW, Wilson MJ, Julian CG, et al. Andean and Tibetan patterns of adaptation to high altitude. Am J Hum Biol. 2013;25(2): 190–197. doi: 10.1002/ajhb.22358 |
| [46] |
Bigham A.W., Wilson M.J., Julian C.G., et al. Andean and Tibetan patterns of adaptation to high altitude // Am J Hum Biol. 2013. Vol. 25, N 2. P. 190–197. doi: 10.1002/ajhb.22358 |
| [47] |
Pagani L, Ayub Q, MacArthur DG, et al. High altitude adaptation in Daghestani populations from the Caucasus. Hum Genet. 2012;131(3):423–433. doi: 10.1007/s00439-011-1084-8 |
| [48] |
Pagani L., Ayub Q., MacArthur D.G., et al. High altitude adaptation in Daghestani populations from the Caucasus // Hum Genet. 2012. Vol. 131, N 3. P. 423–433. doi: 10.1007/s00439-011-1084-8 |
| [49] |
Lessel D, Vaz B, Halder S, et al. Mutations in SPRTN cause early onset hepatocellular carcinoma, genomic instability and progeroid features. Nat Genet. 2014;46(11):1239–1244. doi: 10.1038/ng.3103 |
| [50] |
Lessel D., Vaz B., Halder S., et al. Mutations in SPRTN cause early onset hepatocellular carcinoma, genomic instability and progeroid features // Nat Genet. 2014. Vol. 46, N 11. P. 1239–1244. doi: 10.1038/ng.3103 |
| [51] |
Wu B, Guo W. The exocyst at a glance. J Cell Sci. 2015;128(16):2957–2964. doi: 10.1242/jcs.156398 |
| [52] |
Wu B., Guo W. The exocyst at a glance // J Cell Sci. 2015. Vol. 128, N 16. P. 2957–2964. doi: 10.1242/jcs.156398 |
| [53] |
Rajput C, Arif E, Vibhuti A, et al. Predominance of interaction among wild-type alleles of CYP11B2 in Himalayan natives associates with high-altitude adaptation. Biochem Biophys Res Commun. 2006;348(2):735–740. doi: 10.1016/j.bbrc.2006.07.116 |
| [54] |
Rajput C., Arif E., Vibhuti A., et al. Predominance of interaction among wild-type alleles of CYP11B2 in Himalayan natives associates with high-altitude adaptation // Biochem Biophys Res Commun. 2006. Vol. 348, N 2. P. 735–740. doi: 10.1016/j.bbrc.2006.07.116 |
| [55] |
Mallet RT, Burtscher J, Pialoux V, et al. Molecular mechanisms of high-altitude acclimatization. Int J Mol Sci. 2023;24(2):1698. doi: 10.3390/ijms24021698 |
| [56] |
Mallet R.T., Burtscher J., Pialoux V., et al. Molecular mechanisms of high-altitude acclimatization // Int J Mol Sci. 2023. Vol. 24, N 2. ID 1698. doi: 10.3390/ijms24021698 |
| [57] |
Ahsan A, Norboo T, Baig MA, Qadar Pasha MA. Simultaneous selection of the wild-type genotypes of the G894T and 4B/ 4A polymorphisms of NOS3 associate with high-altitude adaptation. Ann Hum Genet. 2005;69(3):260–267. doi: 10.1046/j.1529-8817.2005.00158.x |
| [58] |
Ahsan A., Norboo T., Baig M.A., Qadar Pasha M.A. Simultaneous selection of the wild-type genotypes of the G894T and 4B/4A polymorphisms of NOS3 associate with high-altitude adaptation // Ann Hum Genet. 2005. Vol. 69, N 3. P. 260–267. doi: 10.1046/j.1529-8817.2005.00158.x |
| [59] |
Droma Y, Hanaoka M, Basnyat B, et al. Genetic contribution of the endothelial nitric oxide synthase gene to high altitude adaptation in Sherpas. High Alt Med Biol. 2006;7(3):209–220. doi: 10.1089/ham.2006.7.209 |
| [60] |
Droma Y., Hanaoka M., Basnyat B., et al. Genetic contribution of the endothelial nitric oxide synthase gene to high altitude adaptation in Sherpas // High Alt Med Biol. 2006. Vol. 7, N 3. P. 209–220. doi: 10.1089/ham.2006.7.209 |
| [61] |
Liu L, Zhang Y, Zhang Z, et al. Associations of high altitude polycythemia with polymorphisms in EPHA2 and AGT in Chinese Han and Tibetan populations. Oncotarget. 2017;8(32):53234–53243. doi: 10.18632/oncotarget.18384 |
| [62] |
Liu L., Zhang Y., Zhang Z., et al. Associations of high altitude polycythemia with polymorphisms in EPHA2 and AGT in Chinese Han and Tibetan populations // Oncotarget. 2017. Vol. 8, N 32. P. 53234–53243. doi: 10.18632/oncotarget.18384 |
| [63] |
Dijkstra AE, Postma DS, van Ginneken B, et al. Novel genes for airway wall thickness identified with combined genome-wide association and expression analyses. Am J Respir Crit Care Med. 2015;191(5):547–556. doi: 10.1164/rccm.201405-0840OC |
| [64] |
Dijkstra A.E., Postma D.S., van Ginneken B., et al. Novel genes for airway wall thickness identified with combined genome-wide association and expression analyses // Am J Respir Crit Care Med. 2015. Vol. 191, N 5. P. 547–556. doi: 10.1164/rccm.201405-0840OC |
| [65] |
Oshima N, Onimaru H, Yamagata A, et al. Erythropoietin, a putative neurotransmitter during hypoxia, is produced in RVLM neurons and activates them in neonatal Wistar rats. Am J Physiol Regul Integr Comp Physiol. 2018;314(5):R700–R708. doi: 10.1152/ajpregu.00455.2017 |
| [66] |
Oshima N., Onimaru H., Yamagata A., et al. Erythropoietin, a putative neurotransmitter during hypoxia, is produced in RVLM neurons and activates them in neonatal Wistar rats // Am J Physiol Regul Integr Comp Physiol. 2018. Vol. 314, N 5. P. R700–R708. doi: 10.1152/ajpregu.00455.2017 |
| [67] |
Silverman EK. Genetics of COPD. Annu Rev Physiol. 2020;82: 413–431. doi: 10.1146/annurev-physiol-021317-121224 |
| [68] |
Silverman E.K. Genetics of COPD // Annu Rev Physiol. 2020. Vol. 82. P. 413–431. doi: 10.1146/annurev-physiol-021317-121224 |
| [69] |
Dmytriiev K, Mostovoy Y, Slepchenko N, Smereka Y. Clinical course of COPD in patients with Arg16Gly (rs1042713) polymorphism of ADRB2 gene. Monaldi Arch Chest Dis. 2022;93(2):2314. doi: 10.4081/monaldi.2022.2314 |
| [70] |
Dmytriiev K., Mostovoy Y., Slepchenko N., Smereka Y. Clinical course of COPD in patients with Arg16Gly (rs1042713) polymorphism of ADRB2 gene // Monaldi Arch Chest Dis. 2022. Vol. 93, N 2. ID 2314. doi: 10.4081/monaldi.2022.2314 |
| [71] |
Wang Y, Li Z, Zhang X, et al. EPO rs1617640 A>C is a protective factor for chronic obstructive pulmonary disease: A case control study. Front Biosci (Landmark Ed). 2023;28(9):215. doi: 10.31083/j.fbl2809215 |
| [72] |
Wang Y., Li Z., Zhang X., et al. EPO rs1617640 A>C is a protective factor for chronic obstructive pulmonary disease: A case control study // Front Biosci (Landmark Ed). 2023. Vol. 28, N 9. ID 215. doi: 10.31083/j.fbl2809215 |
| [73] |
Young JM, Williams DR, Thompson AAR. Thin air, thick vessels: historical and current perspectives on hypoxic pulmonary hypertension. Front Med (Lausanne). 2019;6:93. doi: 10.3389/fmed.2019.00093 |
| [74] |
Young J.M., Williams D.R., Thompson A.A.R. Thin air, thick vessels: historical and current perspectives on hypoxic pulmonary hypertension // Front Med (Lausanne). 2019. Vol. 6. ID 93. doi: 10.3389/fmed.2019.00093 |
| [75] |
Wang N, Hua J, Fu Y, et al. Updated perspective of EPAS1 and the role in pulmonary hypertension. Front Cell Dev Biol. 2023;11:1125723. doi: 10.3389/fcell.2023.1125723 |
| [76] |
Wang N., Hua J., Fu Y., et al. Updated perspective of EPAS1 and the role in pulmonary hypertension // Front Cell Dev Biol. 2023. Vol. 11. ID 1125723. doi: 10.3389/fcell.2023.1125723 |
| [77] |
Yi X, Liang Y, Huerta-Sanchez E, et al. Sequencing of 50 human exomes reveals adaptation to high altitude. Science. 2010;329(5987):75–78. doi: 10.1126/science.1190371 |
| [78] |
Yi X., Liang Y., Huerta-Sanchez E., et al. Sequencing of 50 human exomes reveals adaptation to high altitude // Science. 2010. Vol. 329, N 5987. P. 75–78. doi: 10.1126/science.1190371 |
| [79] |
Huerta-Sánchez E, Casey FP. Archaic inheritance: Supporting high-altitude life in Tibet. J Appl Physiol (1985). 2015;119(10): 1129–1134. doi: 10.1152/japplphysiol.00322.2015 |
| [80] |
Huerta-Sánchez E., Casey F.P. Archaic inheritance: Supporting high-altitude life in Tibet // J Appl Physiol (1985). 2015. Vol. 119, N 10. P. 1129–1134. doi: 10.1152/japplphysiol.00322.2015 |
| [81] |
Zhang X, Witt KE, Bañuelos MM, et al. The history and evolution of the Denisovan-EPAS1 haplotype in Tibetans. PNAS USA. 2021;118(22):e2020803118. doi: 10.1073/pnas.2020803118 |
| [82] |
Zhang X., Witt K.E., Bañuelos M.M., et al. The history and evolution of the Denisovan-EPAS1 haplotype in Tibetans // PNAS USA. 2021. Vol. 118, N 22. ID e2020803118. doi: 10.1073/pnas.2020803118 |
| [83] |
Döring F, Onur S, Fischer A, et al. A common haplotype and the Pro582Ser polymorphism of the hypoxia-inducible factor-1alpha (HIF1A) gene in elite endurance athletes. J Appl Physiol (1985). 2010;108(6):1497–500. doi: 10.1152/japplphysiol.01165.2009 |
| [84] |
Döring F., Onur S., Fischer A., et al. A common haplotype and the Pro582Ser polymorphism of the hypoxia-inducible factor-1alpha (HIF1A) gene in elite endurance athletes // J Appl Physiol (1985). 2010. Vol. 108, N 6. P. 1497–500. doi: 10.1152/japplphysiol.01165.2009 |
| [85] |
Malczewska-Lenczowska J, Orysiak J, Majorczyk E, et al. HIF-1α and NFIA-AS2 polymorphisms as potential determinants of total hemoglobin mass in endurance athletes. J Strength Cond Res. 2022;36(6):1596–1604. doi: 10.1519/JSC.0000000000003686 |
| [86] |
Malczewska-Lenczowska J., Orysiak J., Majorczyk E., et al. HIF-1α and NFIA-AS2 polymorphisms as potential determinants of total hemoglobin mass in endurance athletes // J Strength Cond Res. 2022. Vol. 36, N 6. P. 1596–1604. doi: 10.1519/JSC.0000000000003686 |
| [87] |
Ipekoglu G, Cetin T, Apaydin N, et al. The role of AGT, AMPD1, HIF1α, IL-6 gene polymorphisms in the athletes’ power status: A meta-analysis. J Hum Kinet. 2023;89:77–87. doi: 10.5114/jhk/169262 |
| [88] |
Ipekoglu G., Cetin T., Apaydin N., et al. The role of AGT, AMPD1, HIF1α, IL-6 gene polymorphisms in the athletes’ power status: A meta-analysis // J Hum Kinet. 2023. Vol. 89. P. 77–87. doi: 10.5114/jhk/169262 |
| [89] |
Vadapalli S, Rani HS, Sastry B, Nallari P. Endothelin-1 and endothelial nitric oxide polymorphisms in idiopathic pulmonary arterial hypertension. Int J Mol Epidemiol Genet. 2010;1(3):208–213. doi: 10.1007/s12041-011-0008-7 |
| [90] |
Vadapalli S., Rani H.S., Sastry B., Nallari P. Endothelin-1 and endothelial nitric oxide polymorphisms in idiopathic pulmonary arterial hypertension // Int J Mol Epidemiol Genet. 2010. Vol. 1, N 3. P. 208–213. doi: 10.1007/s12041-011-0008-7 |
| [91] |
Tobe SW, Baker B, Hunter K, et al. The impact of endothelin-1 genetic analysis and job strain on ambulatory blood pressure. J Psychosom Res. 2011;71(2):97–101. doi: 10.1016/j.jpsychores.2011.01.003 |
| [92] |
Tobe S.W., Baker B., Hunter K., et al. The impact of endothelin-1 genetic analysis and job strain on ambulatory blood pressure // J Psychosom Res. 2011. Vol. 71, N 2. P. 97–101. doi: 10.1016/j.jpsychores.2011.01.003 |
| [93] |
Ahmed M, Rghigh A. Polymorphism in Endothelin-1 gene: An overview. Curr Clin Pharmacol. 2016;11(3):191–210. doi: 10.2174/1574884711666160701000900 |
| [94] |
Ahmed M., Rghigh A. Polymorphism in Endothelin-1 gene: An overview // Curr Clin Pharmacol. 2016. Vol. 11, N 3. P. 191–210. doi: 10.2174/1574884711666160701000900 |
| [95] |
Yu J, Liu C, Zhang C, et al. EDN1 gene potentially involved in the development of acute mountain sickness. Sci Rep. 2020;10(1):5414. doi: 10.1038/s41598-020-62379-z |
| [96] |
Yu J., Liu C., Zhang C., et al. EDN1 gene potentially involved in the development of acute mountain sickness // Sci Rep. 2020. Vol. 10, N 1. ID 5414. doi: 10.1038/s41598-020-62379-z |
| [97] |
Scheinfeldt LB, Soi S, Thompson S, et al. Genetic adaptation to high altitude in the Ethiopian highlands. Genome Biol. 2012;13(1):R1. doi: 10.1186/gb-2012-13-1-r1 |
| [98] |
Scheinfeldt L.B., Soi S., Thompson S., et al. Genetic adaptation to high altitude in the Ethiopian highlands // Genome Biol. 2012. Vol. 13, N 1. ID R1. doi: 10.1186/gb-2012-13-1-r1 |
| [99] |
Alkorta-Aranburu G, Beall CM, Witonsky DB, et al. The genetic architecture of adaptations to high altitude in Ethiopia. PLoS Genet. 2012;8(12):e1003110. doi: 10.1371/journal.pgen.1003110 |
| [100] |
Alkorta-Aranburu G., Beall C.M., Witonsky D.B., et al. The genetic architecture of adaptations to high altitude in Ethiopia // PLoS Genet. 2012. Vol. 8, N 12. ID e1003110. doi: 10.1371/journal.pgen.1003110 |
| [101] |
Getu A. Ethiopian native highlander’s adaptation to chronic high-altitude hypoxia. Biomed Res Int. 2022;2022:5749382. doi: 10.1155/2022/5749382 |
| [102] |
Getu A. Ethiopian native highlander’s adaptation to chronic high-altitude hypoxia // Biomed Res Int. 2022. Vol. 2022. ID 5749382. doi: 10.1155/2022/5749382 |
| [103] |
Hirsilä M, Koivunen P, Günzler V, et al. Characterization of the human prolyl 4-hydroxylases that modify the hypoxia-inducible factor. Biol Chem. 2003;278(33):30772–30780. doi: 10.1074/jbc.M304982200 |
| [104] |
Hirsilä M., Koivunen P., Günzler V., et al. Characterization of the human prolyl 4-hydroxylases that modify the hypoxia-inducible factor // Biol Chem. 2003. Vol. 278, N 33. P. 30772–30780. doi: 10.1074/jbc.M304982200 |
| [105] |
Epstein AC, Gleadle JM, McNeill LA, et al. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell. 2001;107(1):43–54. doi: 10.1016/s0092-8674(01)00507-4 |
| [106] |
Epstein A.C., Gleadle J.M., McNeill L.A., et al. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation // Cell. 2001. Vol. 107, N 1. P. 43–54. doi: 10.1016/s0092-8674(01)00507-4 |
| [107] |
Metzen E, Berchner-pfannschmidt U, Stengel P, et al. Intracellular localisation of human HIF-1 alpha hydroxylases: implications for oxygen sensing. Cell Sci. 2002;116(7):1319–1326. doi: 10.1242/jcs.00318 |
| [108] |
Metzen E., Berchner-Pfannschmidt U., Stengel P., et al. Intracellular localisation of human HIF-1 alpha hydroxylases: implications for oxygen sensing // Cell Sci. 2002. Vol. 116, N 7. P. 1319–1326. doi: 10.1242/jcs.00318 |
| [109] |
Cioffi CL, Liu XQ, Kosinski PA, et al. Differential regulation of HIF-1 alpha prolyl-4-hydroxylase genes by hypoxia in human cardiovascular cells. Biochem Biophys Res Commun. 2003;303(3):947–953. doi: 10.1016/s0006-291x(03)00453-4 |
| [110] |
Cioffi C.L., Liu X.Q., Kosinski P.A., et al. Differential regulation of HIF-1 alpha prolyl-4-hydroxylase genes by hypoxia in human cardiovascular cells // Biochem Biophys Res Commun. 2003. Vol. 303, N 3. P. 947–953. doi: 10.1016/s0006-291x(03)00453-4 |
| [111] |
Naranjo-Suárez S, Castellanos MC, Alvarez-Tejado M, et al. Down-regulation of hypoxia-inducible factor-2 in PC12 cells by nerve growth factor stimulation. J Biol Chem. 2003;278(34):31895–31901. doi: 10.1074/jbc.M304079200 |
| [112] |
Naranjo-Suárez S., Castellanos M.C., Alvarez-Tejado M., et al. Down-regulation of hypoxia-inducible factor-2 in PC12 cells by nerve growth factor stimulation // J Biol Chem. 2003. Vol. 278, N 34. P. 31895–31901. doi: 10.1074/jbc.M304079200 |
| [113] |
Lopez-Mosqueda J, Maddi K, Prgomet S, et al. SPRTN is a mammalian DNA-binding metalloprotease that resolves DNA-protein crosslinks. Elife. 2016;5:e21491. doi: 10.7554/eLife.21491 |
| [114] |
Lopez-Mosqueda J., Maddi K., Prgomet S., et al. SPRTN is a mammalian DNA-binding metalloprotease that resolves DNA-protein crosslinks // Elife. 2016. Vol. 5. ID e21491. doi: 10.7554/eLife.21491 |
| [115] |
Julian CG, Pedersen BS, Salmon CS, et al. Unique DNA methylation patterns in offspring of hypertensive pregnancy. Clin Transl Sci. 2015;8(6):740–745. doi: 10.1111/cts.12346 |
| [116] |
Julian C.G., Pedersen B.S., Salmon C.S., et al. Unique DNA methylation patterns in offspring of hypertensive pregnancy // Clin Transl Sci. 2015. Vol. 8, N 6. P. 740–745. doi: 10.1111/cts.12346 |
| [117] |
Julian CG. Epigenomics and human adaptation to high altitude. J Appl Physiol. 2017;123(5):1362–1370. doi: 10.1152/japplphysiol.00351.2017 |
| [118] |
Julian C.G. Epigenomics and human adaptation to high altitude // J Appl Physiol. 2017. Vol. 123, N 5. P. 1362–1370. doi: 10.1152/japplphysiol.00351.2017 |
| [119] |
Childebayeva A, Jones TR, Goodrich JM, et al. LINE-1 and EPAS1 DNA methylation associations with high-altitude exposure. Epigenetics. 2019;14(1):1–15. doi: 10.1080/15592294.2018.1561117 |
| [120] |
Childebayeva A., Jones T.R., Goodrich J.M., et al. LINE-1 and EPAS1 DNA methylation associations with high-altitude exposure // Epigenetics. 2019. Vol. 14, N 1. P. 1–15. doi: 10.1080/15592294.2018.1561117 |
| [121] |
Childebayeva A, Goodrich JM, Leon-Velarde F, et al. Genome-wide epigenetic signatures of adaptive developmental plasticity in the Andes. Genome Biol Evol. 2021;13(2):evaa239. doi: 10.1093/gbe/evaa239 |
| [122] |
Childebayeva A., Goodrich J.M., Leon-Velarde F., et al. Genome-wide epigenetic signatures of adaptive developmental plasticity in the Andes // Genome Biol Evol. 2021. Vol. 13, N 2. ID evaa239. doi: 10.1093/gbe/evaa239 |
| [123] |
Peng Y, Cui C, He Y, et al. Down-regulation of EPAS1 transcription and genetic adaptation of Tibetans to high-altitude hypoxia. Mol Biol Evol. 2017;34(4):818–830. doi: 10.1093/molbev/msw280 |
| [124] |
Peng Y., Cui C., He Y., et al. Down-regulation of EPAS1 transcription and genetic adaptation of Tibetans to high-altitude hypoxia // Mol Biol Evol. 2017. Vol. 34, N 4. P. 818–830. doi: 10.1093/molbev/msw280 |
| [125] |
Gonzales GF, Chaupis D. Higher androgen bioactivity is associated with excessive erythrocytosis and chronic mountain sickness in Andean Highlanders: a review. Andrologia. 2015;47(7):729–743. doi: 10.1111/and.12359 |
| [126] |
Gonzales G.F., Chaupis D. Higher androgen bioactivity is associated with excessive erythrocytosis and chronic mountain sickness in Andean Highlanders: a review // Andrologia. 2015. Vol. 47, N 7. P. 729–743. doi: 10.1111/and.12359 |
| [127] |
West JB. Physiological effects of chronic hypoxia. N Engl J Med. 2017;376(20):1965–1971. doi: 10.1056/NEJMra1612008 |
| [128] |
West J.B. Physiological effects of chronic hypoxia // N Engl J Med. 2017. Vol. 376, N 20. P. 1965–1971. doi: 10.1056/NEJMra1612008 |
| [129] |
Gao Y-M, Han G-X, Xue C-H, et al. Expression of key enzymes in glucose metabolism in chronic mountain sickness and its correlation with phenotype. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2023;31(1):197–202. doi: 10.19746/j.cnki.issn.1009-2137.2023.01.031 |
| [130] |
Gao Y.-M., Han G.-X., Xue C.-H., et al. Expression of key enzymes in glucose metabolism in chronic mountain sickness and its correlation with phenotype // Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2023. Vol. 31, N 1. P. 197–202. doi: 10.19746/j.cnki.issn.1009-2137.2023.01.031 |
| [131] |
Zhang P, Li Z, Yang F, et al. Novel insights into plasma biomarker candidates in patients with chronic mountain sickness based on proteomics. Biosci Rep. 2021;41(1):BSR20202219. doi: 10.1042/BSR20202219 |
| [132] |
Zhang P., Li Z., Yang F., et al. Novel insights into plasma biomarker candidates in patients with chronic mountain sickness based on proteomics // Biosci Rep. 2021. Vol. 41, N 1. ID BSR20202219. doi: 10.1042/BSR20202219 |
| [133] |
Villafuerte FC, Corante N. Chronic mountain sickness: Clinical aspects, etiology, management, and treatment. High Alt Med Biol. 2016;17(2):61–69. doi: 10.1089/ham.2016.0031 |
| [134] |
Villafuerte F.C., Corante N. Chronic mountain sickness: Clinical aspects, etiology, management, and treatment // High Alt Med Biol. 2016. Vol. 17, N 2. P. 61–69. doi: 10.1089/ham.2016.0031 |
| [135] |
León-Velarde F, Richalet JP. Respiratory control in residents at high altitude: physiology and pathophysiology. High Alt Med Biol. 2006;7(2):125–137. doi: 10.1089/ham.2006.7.125 |
| [136] |
León-Velarde F., Richalet J.P. Respiratory control in residents at high altitude: physiology and pathophysiology // High Alt Med Biol. 2006. Vol. 7, N 2. P. 125–137. doi: 10.1089/ham.2006.7.125 |
| [137] |
Beall CM. Two routes to functional adaptation: Tibetan and Andean high-altitude natives. PNAS USA. 2007;104(S1):8655–8660. doi: 10.1073/pnas.0701985104 |
| [138] |
Beall C.M. Two routes to functional adaptation: Tibetan and Andean high-altitude natives // PNAS USA. 2007. Vol. 104, N S1. P. 8655–8660. doi: 10.1073/pnas.0701985104 |
| [139] |
Tremblay JC, Hoiland RL, Carter HH, et al. UBC-Nepal expedition: upper and lower limb conduit artery shear stress and flow-mediated dilation on ascent to 5,050 m in lowlanders and Sherpa. Am J Physiol Heart Circ Physiol. 2018;315(6):H1532–H1543. doi: 10.1152/ajpheart.00345.2018 |
| [140] |
Tremblay J.C., Hoiland R.L., Carter H.H., et al. UBC-Nepal expedition: upper and lower limb conduit artery shear stress and flow-mediated dilation on ascent to 5,050 m in lowlanders and Sherpa // Am J Physiol Heart Circ Physiol. 2018. Vol. 315, N 6. P. H1532–H1543. doi: 10.1152/ajpheart.00345.2018 |
| [141] |
Richalet J-P, Hermand E, Lhuissier FJ. Cardiovascular physiology and pathophysiology at high altitude. Nat Rev Cardiol. 2024;21(2): 75–88. doi: 10.1038/s41569-023-00924-9 |
| [142] |
Richalet J.-P., Hermand E., Lhuissier F.J. Cardiovascular physiology and pathophysiology at high altitude // Nat Rev Cardiol. 2024. Vol. 21, N 2. P. 75–88. doi: 10.1038/s41569-023-00924-9 |
| [143] |
León-Velarde F, Villafuerte FC, Richalet JP. Chronic mountain sickness and the heart. Prog Cardiovasc Dis. 2010;52(6):540–549. doi: 10.1016/j.pcad.2010.02.012 |
| [144] |
León-Velarde F., Villafuerte F.C., Richalet J.P. Chronic mountain sickness and the heart // Prog Cardiovasc Dis. 2010. Vol. 52, N 6. P. 540–549. doi: 10.1016/j.pcad.2010.02.012 |
| [145] |
Doutreleau S, Ulliel-Roche M, Hancco I, et al. Cardiac remodelling in the highest city in the world: effects of altitude and chronic mountain sickness. Eur J Prev Cardiol. 2022;29(17):2154–2162. doi: 10.1093/eurjpc/zwac166 |
| [146] |
Doutreleau S., Ulliel-Roche M., Hancco I., et al. Cardiac remodelling in the highest city in the world: effects of altitude and chronic mountain sickness // Eur J Prev Cardiol. 2022. Vol. 29, N 17. P. 2154–2162. doi: 10.1093/eurjpc/zwac166 |
| [147] |
Bailey DM, Brugniaux JV, Filipponi T, et al. Exaggerated systemic oxidative-inflammatory-nitrosative stress in chronic mountain sickness is associated with cognitive decline and depression. J Physiol. 2019;597(2):611–629. doi: 10.1113/JP276898 |
| [148] |
Bailey D.M., Brugniaux J.V., Filipponi T., et al. Exaggerated systemic oxidative-inflammatory-nitrosative stress in chronic mountain sickness is associated with cognitive decline and depression // J Physiol. 2019. Vol. 597, N 2. P. 611–629. doi: 10.1113/JP276898 |
| [149] |
Shanjun Z, Shenwei X, Bin X, et al. Individual chronic mountain sickness symptom is an early warning sign of cognitive impairment. Physiol Behav. 2020;214:112748. doi: 10.1016/j.physbeh.2019.112748 |
| [150] |
Shanjun Z., Shenwei X., Bin X., et al. Individual chronic mountain sickness symptom is an early warning sign of cognitive impairment // Physiol Behav. 2020. Vol. 214. ID 112748. doi: 10.1016/j.physbeh.2019.112748 |
| [151] |
Thiersch M, Swenson ER. High altitude and cancer mortality. High Alt Med Biol. 2018;19(2):116–123. doi: 10.1089/ham.2017.0061 |
| [152] |
Thiersch M., Swenson E.R. High altitude and cancer mortality // High Alt Med Biol. 2018. Vol. 19, N 2. P. 116–123. doi: 10.1089/ham.2017.0061 |
| [153] |
San Martin R, Brito J, Siques P, León-Velarde F. Obesity as a conditioning factor for high-altitude diseases. Obes Facts. 2017;10(4):363–372. doi: 10.1159/000477461 |
| [154] |
San Martin R., Brito J., Siques P., León-Velarde F. Obesity as a conditioning factor for high-altitude diseases // Obes Facts. 2017. Vol. 10, N 4. P. 363–372. doi: 10.1159/000477461 |
| [155] |
Ortiz-Prado E, Portilla D, Mosquera-Moscoso J, et al. Hematological parameters, lipid profile, and cardiovascular risk analysis among genotype-controlled indigenous Kiwcha men and women living at low and high altitudes. Front Physiol. 2021;12:749006. doi: 10.3389/fphys.2021.749006 |
| [156] |
Ortiz-Prado E., Portilla D., Mosquera-Moscoso J., et al. Hematological parameters, lipid profile, and cardiovascular risk analysis among genotype-controlled indigenous Kiwcha men and women living at low and high altitudes // Front Physiol. 2021. Vol. 12. ID 749006. doi: 10.3389/fphys.2021.749006 |
| [157] |
Kang J-G, Sung HJ, Amar MJ, et al. Low ambient oxygen prevents atherosclerosis. J Mol Med (Berl). 2016;94(3):277–286. doi: 10.1007/s00109-016-1386-3 |
| [158] |
Kang J.-G., Sung H.J., Amar M.J., et al. Low ambient oxygen prevents atherosclerosis // J Mol Med (Berl). 2016. Vol. 94, N 3. P. 277–286. doi: 10.1007/s00109-016-1386-3 |
| [159] |
Beall CM. Tibetan and Andean patterns of adaptation to high-altitude hypoxia. Hum Biol. 2000;72(1):201–228. |
| [160] |
Beall C.M. Tibetan and Andean patterns of adaptation to high-altitude hypoxia // Hum Biol. 2000. Vol. 72, N 1. P. 201–228. |
| [161] |
Yao H, Zhao H, Wang J, Haddad GG. Intracellular pH regulation in iPSCs-derived astrocytes from subjects with chronic mountain sickness. Neuroscience. 2018;375:25–33. doi: 10.1016/j.neuroscience.2018.02.008 |
| [162] |
Yao H., Zhao H., Wang J., Haddad G.G. Intracellular pH regulation in iPSCs-derived astrocytes from subjects with chronic mountain sickness // Neuroscience. 2018. Vol. 375. P. 25–33. doi: 10.1016/j.neuroscience.2018.02.008 |
| [163] |
Liu H, Tang F, Su J, et al. EPAS1 regulates proliferation of erythroblasts in chronic mountain sickness. Blood Cells Mol Dis. 2020;84:102446. doi: 10.1016/j.bcmd.2020 |
| [164] |
Liu H., Tang F., Su J., et al. EPAS1 regulates proliferation of erythroblasts in chronic mountain sickness // Blood Cells Mol Dis. 2020. Vol. 84. ID 102446. doi: 10.1016/j.bcmd.2020 |
| [165] |
Tegako LI, Kmetinsky E. Anthropology: Textbook. Moscow: New Knowledge; 2004. (In Russ.) |
| [166] |
Тегако Л.И., Кметинский Е. Антропология: Учебное пособие. Москва: Новое знание, 2004. |
| [167] |
Alekseev VP. Geography of human races. Moscow: Mysl; 1974. 351 p. (In Russ.) |
| [168] |
Алексеев В.П. География человеческих рас. Москва: Мысль, 1974. 351 с. |
| [169] |
Rychkov YuG. Anthropology and genetics of isolated populations (ancient isolates of the Pamirs). Moscow: MSU Publishing House; 1969. 222 p. (In Russ.) |
| [170] |
Рычков Ю.Г. Антропология и генетика изолированных популяций (древние изоляты Памира). Москва: Издательство МГУ, 1969. 222 с. |
| [171] |
Alekseeva TH. Adaptive processes in human populations. Moscow: MSU Publishing House; 1986. 215 p. (In Russ.) |
| [172] |
Алексеева Т.И. Адаптивные процессы в популяциях человека. Москва: Издательство МГУ, 1986. 215 с. |
| [173] |
Alekseeva TH. Human adaptation in different ecological niches (biological aspects). Moscow: MNEPU Publishing House; 1998. 283 p. (In Russ.) |
| [174] |
Алексеева Т.И. Адаптация человека в различных экологических нишах (биологические аспекты). Москва: Издательство МНЭПУ, 1998. 283 с. |
| [175] |
Alekseev VP. Essays on human ecology. Moscow: Nauka; 1993. 191 p. (In Russ.) |
| [176] |
Алексеев В.П. Очерки экологии человека. Москва: Наука, 1993. 191 с. |
| [177] |
Bunak VV. Climato-zonal and ethnic differences in facial and head structure in the indigenous population of North Asia (in connection with the problem of adaptation). In: Barbashova ZI, Likhnitska AI, editors. Human adaptation. Leningrad: Nauka; 1972. (In Russ.) |
| [178] |
Бунак В.В. Климато-зональные и этнические различия в строении лица и головы у коренного населения Северной Азии (в связи с проблемой адаптации). В кн.: Адаптация человека / под ред. З.И. Барбашовой, И.И. Лихницкой. Ленинград: Наука, 1972. |
| [179] |
Spitsyn VA. Ecological genetics. Moscow: Nauka; 2008. 502 p. (In Russ.) |
| [180] |
Спицын В.А. Экологическая генетика. Москва: Наука, 2008. 502 с. |
| [181] |
Lordkipanidze D, Jashashvili T, Vekua A, et al. Postcranial evidence from early Homo from Dmanisi, Georgia. Nature. 2007;449(7160):305–310. doi: 10.1038/nature06134 |
| [182] |
Lordkipanidze D., Jashashvili T., Vekua A., et al. Postcranial evidence from early Homo from Dmanisi, Georgia // Nature. 2007. Vol. 449, N 7160. P. 305–310. doi: 10.1038/nature06134 |
| [183] |
Adler DS, Bar-Yosef O, Belfer-Cohen A, et al. Dating the demise: neandertal extinction and the establishment of modern humans in the Southern Caucasus. J Hum Evol. 2008;55(5):817–833. doi: 10.1016/j.jhevol.2008.08.010 |
| [184] |
Adler D.S., Bar-Yosef O., Belfer-Cohen A., et al. Dating the demise: neandertal extinction and the establishment of modern humans in the Southern Caucasus // J Hum Evol. 2008. Vol. 55, N 5. P. 817–833. doi: 10.1016/j.jhevol.2008.08.010 |
| [185] |
Yeakel JD, Guimarães PR, Bocherens H, Koch PL. The impact of climate change on the structure of Pleistocene food webs across the mammoth steppe. Proc R Soc B. 2013;280(1762):20130239. doi: 10.1098/rspb.2013.0239 |
| [186] |
Yeakel J.D., Guimarães P.R., Bocherens H., Koch P.L. The impact of climate change on the structure of Pleistocene food webs across the mammoth steppe // Proc R Soc B. 2013. Vol. 280, N 1762. ID 20130239. doi: 10.1098/rspb.2013.0239 |
| [187] |
Tallavaara M, Luoto M, Korhonen N, et al. Human population dynamics in Europe over the Last Glacial Maximum. PNAS. 2015;112(27):8232–8237. doi: 10.1073/pnas.1503784112 |
| [188] |
Tallavaara M., Luoto M., Korhonen N., et al. Human population dynamics in Europe over the Last Glacial Maximum // PNAS. 2015. Vol. 112, N 27. P. 8232–8237. doi: 10.1073/pnas.1503784112 |
| [189] |
Mongait AL. Archaeology of Western Europe. Stone Age. Moscow: Nauka; 1973. 355 p. (In Russ.) |
| [190] |
Монгайт А.Л. Археология Западной Европы. Каменный век. Москва: Наука, 1973. 355 с. |
| [191] |
Stewart JR, Stringer CB. Human evolution out of Africa: The role of refugia and climate change. Science. 2012;335(6074):1317–1321. doi: 10.1126/science.1215627 |
| [192] |
Stewart J.R., Stringer C.B. Human evolution out of Africa: The role of refugia and climate change // Science. 2012. Vol. 335, N 6074. P. 1317–1321. doi: 10.1126/science.1215627 |
| [193] |
Yunusbayev B, Metspalu M, Jarve M, et al. The Caucasus as an asymmetric semipermeable barrier to ancient human migrations. Mol Biol Evol. 2012;29(1):359–365. doi: 10.1093/molbev/msr221 |
| [194] |
Yunusbayev B., Metspalu M., Jarve M., et al. The Caucasus as an asymmetric semipermeable barrier to ancient human migrations // Mol Biol Evol. 2012. Vol. 29, N 1. P. 359–365. doi: 10.1093/molbev/msr221 |
| [195] |
Platt DE, Haber M, Dagher-Kharrat MB, et al. Mapping post-glacial expansions: The peopling of Southwest Asia. Sci Rep. 2017;6(7):40338. doi: 10.1038/srep40338 |
| [196] |
Platt D.E., Haber M., Dagher-Kharrat M.B., et al. Mapping post-glacial expansions: The peopling of Southwest Asia // Sci Rep. 2017. Vol. 6, N 7. ID 40338. doi: 10.1038/srep40338 |
| [197] |
Burnley C, Lang D. The Ancient Caucasus. From the prehistoric settlements of Anatolia to the Christian Kingdoms of the Early Middle Ages. Saint Petersburg: Centerpoligraf; 2016. (In Russ.) |
| [198] |
Бернли Ч., Лэнг Д. Древний Кавказ. От доисторических поселений Анатолии до христианских царств раннего Средневековья. Санкт-Петербург: Центрполиграф, 2016. |
| [199] |
Miziev IM. History of Balkaria and Karachay from the most ancient times to the campaigns of Timur. Nalchik: El-Fa; 1996. (In Russ.) |
| [200] |
Мизиев И.М. История Балкарии и Карачая с древнейших времен до походов Тимура. Нальчик: Эль-Фа, 1996. |
| [201] |
Yanin VL, editor. Archaeology: Textbook. Moscow: MSU Publishing House; 2006. 608 p. (In Russ.) |
| [202] |
Археология: Учебник / под ред. В.Л. Янина. Москва: Издательство МГУ, 2006. 608 с. |
| [203] |
Martynov AI. Archaeology. Moscow: Vyshaya Shkola; 2005. 447 p. (In Russ.) |
| [204] |
Мартынов А.И. Археология. Москва: Высшая школа, 2005. 447 с. |
| [205] |
Ryndina NV, Ravich IG. On metal production of the Maikop tribes of the North Caucasus (on the data of chemical-technological studies). Vestnik arheologii, antropologii i etnografii. 2012;(2):4–20. (In Russ.) EDN: PBHERF |
| [206] |
Рындина Н.В., Равич И.Г. О металлопроизводстве майкопских племен Северного Кавказа (по данным химико-технологических исследований) // Вестник археологии, антропологии и этнографии. 2012. № 2. С. 4–20. EDN: PBHERF |
| [207] |
Erdniev UE. The main results of the archaeological study of Southern Kalmykia. In: Erdniev UE, editor. Theses of reports of IX Krupnov readings on archeology of the Caucasus. Elista: Kalmyk State University; 1979. (In Russ.) |
| [208] |
Эрдниев У.Э. Основные итоги археологического изучения Южной Калмыкии. В кн.: Тезисы докладов IX Крупновских чтений по археологии Кавказа / под ред. У.Э. Эрдниева. Элиста: Калмыцкий государственный университет, 1979. |
| [209] |
Batchaev VM. Burial monuments near the villages of Lechinkai and Bylym. Archaeological research on new buildings in Kabardino-Balkaria. Nalchik; 1984. (In Russ.) |
| [210] |
Батчаев В.М. Погребальные памятники у селений Лечинкай и Былым. Археологические исследования на новостройках Кабардино-Балкарии. Нальчик, 1984. |
| [211] |
Markovin VI. Culture of the tribes of the North Caucasus in the Bronze Age (II millennium BC). Moscow: Publishing House of the Academy of Sciences of the USSR; 1960. 148 p. (In Russ.) |
| [212] |
Марковин В.И. Культура племен Северного Кавказа в эпоху бронзы (II тыс. до н. э.). Москва: Изд-во Академии наук СССР, 1960. 148 с. |
| [213] |
Ivanchik AI. Cimmerians. Ancient Eastern Civilizations and Steppe Nomads in the VIII–VII centuries B.C. Moscow: Institute of General History; 1996. 324 p. (In Russ.) |
| [214] |
Иванчик А.И. Киммерийцы. Древневосточные цивилизации и степные кочевники в VIII–VII вв. до н. э. Москва: Институт всеобщей истории, 1996. 324 с. |
| [215] |
Artamonov MI. History of the Khazars. Saint Petersburg: Faculty of Philosophy, SPbSU; 2002. 549 p. (In Russ.) |
| [216] |
Артамонов М.И. История хазар. Санкт-Петербург: Философский факультет СПбГУ, 2002. 549 с. |
| [217] |
Brook KA. The jews of Khazaria. 2nd edit. Plymouth: Rowman and Littlefield Publishers; 2006. 315 p. |
| [218] |
Brook K.A. The jews of Khazaria. 2nd edit. Plymouth: Rowman and Littlefield Publishers, 2006. 315 p. |
| [219] |
Tishkov VA, editor. Socio-political history of the North Caucasus (before the collapse of the USSR). Moscow: IEA RAS; 2015. 89 p. (In Russ.) |
| [220] |
Социально-политическая история Северного Кавказа (до распада СССР) / под ред. В.А. Тишкова. Москва: ИЭА РАН, 2015. 89 с. |
| [221] |
Khit GL. Dermatoglyphics and the Rasogenesis of the Caucasian Population. Ancient Caucasus: retrospection of cultures. In: XXIV Krupnov Readings on the Archaeology of the North Caucasus. Moscow; 2004. P. 198–200. (In Russ.) |
| [222] |
Хить Г.Л. Дерматоглифика и расогенез населения Кавказа. Древний Кавказ: ретроспекция культур. В кн.: XXIV Крупновские чтения по археологии Северного Кавказа. Москва, 2004. С. 198–200. |
| [223] |
Dzhaubermezov MA, Ekomasova NV, Khusainova RI, et al. Genetic characterization of Balkars and Karachays according to the variability of the Y chromosome. Russian Journal of Genetics. 2017;53(10): 1224–1231. EDN: ZIDOIL doi: 10.7868/S0016675817100034 |
| [224] |
Джаубермезов М.A., Екомасова Н.В., Литвинов С.С., и др. Генетическая характеристика балкарцев и карачаевцев по данным об изменчивости Y-хромосомы // Генетика. 2017. Т. 53, № 10. С. 1224–1231. EDN: ZIDOIL doi: 10.7868/S0016675817100034 |
| [225] |
Dzhaubermezov MA, Ekomasova NV, Gabidullina LR, et al. Genetic characterization of Bbalkars and Karachays using MTDNA data. Russian Journal of Genetics. 2019;55(1):110–120. EDN: YUBAFF doi: 10.1134/S0016675819010053 |
| [226] |
Джаубермезов М.A., Екомасова Н.В., Рейдла М., и др. Генетическая характеристика балкарцев и карачаевцев по данным об изменчивости митохондриальной ДНК // Генетика. 2019. Т. 55, № 1. С. 110–120. EDN: YUBAFF doi: 10.1134/S0016675819010053 |
| [227] |
Kutuev IA, Khusnutdinova EK. Genetic structure and molecular phylogeography of the peoples of Eurasia. Ufa: Gilem; 2011. 240 p. (In Russ.) |
| [228] |
Кутуев И.А., Хуснутдинова Э.К. Генетическая структура и молекулярная филогеография народов Евразии. Уфа: Гилем, 2011. 240 с. |
Eco-Vector
/
| 〈 |
|
〉 |