Telomere length in trophectoderm and inner cell mass of human blastocysts: comparative analysis and assessment of influencing factors

Andrey V. Tikhonov , Olga A. Efimova , Mikhail I. Krapivin , Olga V. Malysheva , Evgenia M. Komarova , Arina V. Golubeva , Anna A. Pendina

Ecological Genetics ›› 2024, Vol. 22 ›› Issue (4) : 369 -381.

PDF (1632KB)
Ecological Genetics ›› 2024, Vol. 22 ›› Issue (4) : 369 -381. DOI: 10.17816/ecogen630364
Human ecological genetics
research-article

Telomere length in trophectoderm and inner cell mass of human blastocysts: comparative analysis and assessment of influencing factors

Author information +
History +
PDF (1632KB)

Abstract

BACKGROUND: The study of telomere length and influencing factors in early human development has both fundamental and applied importance.

AIM: A comparative assessment of telomere length in the compartments of human blastocysts, and the analysis of the telomere length association with the quality of blastocysts, genetic imbalance and the maternal age.

MATERIALS AND METHODS: The study was performed on trophectoderm and inner cell mass samples of 41 human blastocysts, 26 of which were genetically imbalanced according to preimplantation genetic testing and verification of its results. The microscope slides were prepared for further telomere detection in interphase nuclei by quantitative fluorescence in situ hybridization (Q-FISH).

RESULTS: Telomeres in trophectoderm were longer than in inner cell mass, with their length varied from blastocyst to blastocyst. Telomere length in either trophectoderm or inner cell mass did not differ between genetically balanced and imbalanced blastocysts. There was a tendency towards a decrease in telomere length in the blastocyst compartments with increasing maternal age, however, a statistically significant correlation was not confirmed. The telomere length in the inner cell mass, but not in the trophectoderm, was associated with blasocysts’ quality based on the Gardner grade: medium quality blastocysts had longer telomeres than high quality blastocysts.

CONCLUSIONS: Long telomeres in trophectoderm may be necessary for implantation and subsequent placentation. Telomere length can be considered among modifiers of the effects of karyotype abnormalities and other negative factors: the inheritance by an embryo of long telomeres apparently gives it a developmental advantage even when genetically imbalanced or has poor morphology. Implantation seems to be an important checkpoint for negative selection of embryos with “unsuccessful” combinations of telomere length, karyotype, and morphology.

Keywords

telomere length / human blastocyst / aneuploidy / maternal age / trophectoderm / inner cell mass / assisted reproductive technologies

Cite this article

Download citation ▾
Andrey V. Tikhonov, Olga A. Efimova, Mikhail I. Krapivin, Olga V. Malysheva, Evgenia M. Komarova, Arina V. Golubeva, Anna A. Pendina. Telomere length in trophectoderm and inner cell mass of human blastocysts: comparative analysis and assessment of influencing factors. Ecological Genetics, 2024, 22(4): 369-381 DOI:10.17816/ecogen630364

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Schoeftner S, Blasco MA. Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase II. Nat Cell Biol. 2008;10(2):228–236. doi: 10.1038/ncb1685

[2]

Schoeftner S., Blasco M.A. Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase II // Nat Cell Biol. 2008. Vol. 10, N 2. P. 228–236. doi: 10.1038/ncb1685

[3]

Schmutz I, de Lange T. Shelterin. Curr Biol. 2016;26(10): R397–R399. doi: 10.1016/j.cub.2016.01.056

[4]

Schmutz I., de Lange T. Shelterin // Curr Biol. 2016. Vol. 26, N 10. P. R397–R399. doi: 10.1016/j.cub.2016.01.056

[5]

Smith EM, Pendlebury DF, Nandakumar J. Structural biology of telomeres and telomerase. Cell Mol Life Sci. 2020;77(1):61–79. doi: 10.1007/s00018-019-03369-x

[6]

Smith E.M., Pendlebury D.F., Nandakumar J. Structural biology of telomeres and telomerase // Cell Mol Life Sci. 2020. Vol. 77, N 1. P. 61–79. doi: 10.1007/s00018-019-03369-x

[7]

Olovnikov AM. A theory of marginotomy: the incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J Theor Biol. 1973;41(1): 181–190. doi: 10.1016/0022-5193(73)90198-7

[8]

Olovnikov A.M. A theory of marginotomy: the incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon // J Theor Biol. 1973. Vol. 41, N 1. P. 181–190. doi: 10.1016/0022-5193(73)90198-7

[9]

Barnes RP, Fouquerel E, Opresko PL. The impact of oxidative DNA damage and stress on telomere homeostasis. Mech Ageing Dev. 2019;177:37–45. doi: 10.1016/j.mad.2018.03.013

[10]

Barnes R.P., Fouquerel E., Opresko P.L. The impact of oxidative DNA damage and stress on telomere homeostasis // Mech Ageing Dev. 2019. Vol. 177. P. 37–45. doi: 10.1016/j.mad.2018.03.013

[11]

Lustig A, Shterev I, Geyer S, et al. Long term effects of radiation exposure on telomere lengths of leukocytes and its associated biomarkers among atomic-bomb survivors. Oncotarget. 2016;7(26):38988–38998. doi: 10.18632/oncotarget.8801

[12]

Lustig A., Shterev I., Geyer S., et al. Long term effects of radiation exposure on telomere lengths of leukocytes and its associated biomarkers among atomic-bomb survivors // Oncotarget. 2016. Vol. 7, N 26. P. 38988–38998. doi: 10.18632/oncotarget.8801

[13]

de Souza MR, Kahl VFS, Rohr P, et al. Shorter telomere length and DNA hypermethylation in peripheral blood cells of coal workers. Mutat Res Genet Toxicol Environ Mutagen. 2018;836(B):36–41. doi: 10.1016/j.mrgentox.2018.03.009

[14]

de Souza M.R., Kahl V.F.S., Rohr P., et al. Shorter telomere length and DNA hypermethylation in peripheral blood cells of coal workers // Mutat Res Genet Toxicol Environ Mutagen. 2018. Vol. 836 (Part B). P. 36–41. doi: 10.1016/j.mrgentox.2018.03.009

[15]

Cesare AJ, Hayashi MT, Crabbe L, Karlseder J. The telomere deprotection response is functionally distinct from the genomic DNA damage response. Mol Cell. 2013;51(2):141–155. doi: 10.1016/j.molcel.2013.06.006

[16]

Cesare A.J., Hayashi M.T., Crabbe L., Karlseder J. The telomere deprotection response is functionally distinct from the genomic DNA damage response // Mol Cell. 2013. Vol. 51, N 2. P. 141–155. doi: 10.1016/j.molcel.2013.06.006

[17]

Cohen SB, Graham ME, Lovrecz GO, et al. Protein composition of catalytically active human telomerase from immortal cells. Science. 2007;315(5820):1850–1853. doi: 10.1126/science.1138596

[18]

Cohen S.B., Graham M.E., Lovrecz G.O., et al. Protein composition of catalytically active human telomerase from immortal cells // Science. 2007. Vol. 315, N 5820. P. 1850–1853. doi: 10.1126/science.1138596

[19]

Dunham MA, Neumann AA, Fasching CL, Reddel RR. Telomere maintenance by recombination in human cells. Nat Genet. 2000;26(4):447–450. doi: 10.1038/82586

[20]

Dunham M.A., Neumann A.A., Fasching C.L., Reddel R.R. Telomere maintenance by recombination in human cells // Nat Genet. 2000. Vol. 26, N 4. P. 447–450. doi: 10.1038/82586

[21]

Heidinger BJ, Blount JD, Boner W, et al. Telomere length in early life predicts lifespan. PNAS USA. 2012;109(5):1743–1748. doi: 10.1073/pnas.1113306109

[22]

Heidinger B.J., Blount J.D., Boner W., et al. Telomere length in early life predicts lifespan // PNAS USA. 2012. Vol. 109, N 5. P. 1743–1748. doi: 10.1073/pnas.1113306109

[23]

Ye Q, Apsley AT, Etzel L, et al. Telomere length and chronological age across the human lifespan: A systematic review and meta-analysis of 414 study samples including 743,019 individuals. Ageing Res Rev. 2023;90:102031. doi: 10.1016/j.arr.2023.102031

[24]

Ye Q., Apsley A.T., Etzel L., et al. Telomere length and chronological age across the human lifespan: A systematic review and meta-analysis of 414 study samples including 743,019 individuals // Ageing Res Rev. 2023. Vol. 90. ID102031. doi: 10.1016/j.arr.2023.102031

[25]

Bau D-T, Lippman SM, Xu E, et al. Short telomere lengths in peripheral blood leukocytes are associated with an increased risk of oral premalignant lesion and oral squamous cell carcinoma. Cancer. 2013;119(24):4277–4283. doi: 10.1002/cncr.28367

[26]

Bau D.-T., Lippman S.M., Xu E., et al. Short telomere lengths in peripheral blood leukocytes are associated with an increased risk of oral premalignant lesion and oral squamous cell carcinoma // Cancer. 2013. Vol. 119, N 24. P. 4277–4283. doi: 10.1002/cncr.28367

[27]

Jang JS, Choi YY, Lee WK, et al. Telomere length and the risk of lung cancer. Cancer Sci. 2008;99(7):1385–1389. doi: 10.1111/j.1349-7006.2008.00831.x

[28]

Jang J.S., Choi Y.Y., Lee W.K., et al. Telomere length and the risk of lung cancer // Cancer Sci. 2008. Vol. 99, N 7. P. 1385–1389. doi: 10.1111/j.1349-7006.2008.00831.x

[29]

Qin Q, Sun J, Yin J, et al. Telomere length in peripheral blood leukocytes is associated with risk of colorectal cancer in Chinese population. PLoS One. 2014;9(2):e88135. doi: 10.1371/journal.pone.0088135

[30]

Qin Q., Sun J., Yin J., et al. Telomere length in peripheral blood leukocytes is associated with risk of colorectal cancer in Chinese population // PLoS One. 2014. Vol. 9, N 2. ID e88135. doi: 10.1371/journal.pone.0088135

[31]

Berneau SC, Shackleton J, Nevin C, et al. Associations of sperm telomere length with semen parameters, clinical outcomes and lifestyle factors in human normozoospermic samples. Andrology. 2020;8(3):583–593. doi: 10.1111/andr.12734

[32]

Berneau S.C., Shackleton J., Nevin C., et al. Associations of sperm telomere length with semen parameters, clinical outcomes and lifestyle factors in human normozoospermic samples // Andrology. 2020. Vol. 8, N 3. P. 583–593. doi: 10.1111/andr.12734

[33]

Hanson BM, Tao X, Zhan Y, et al. Shorter telomere length of white blood cells is associated with higher rates of aneuploidy among infertile women undergoing in vitro fertilization. Fertil Steril. 2021;115(4):957–965. doi: 10.1016/j.fertnstert.2020.09.164

[34]

Hanson B.M., Tao X., Zhan Y., et al. Shorter telomere length of white blood cells is associated with higher rates of aneuploidy among infertile women undergoing in vitro fertilization // Fertil Steril. 2021. Vol. 115, N 4. P. 957–965. doi: 10.1016/j.fertnstert.2020.09.164

[35]

Shilenkova YV, Pendina AA, Fedorova EM, et al. Issues in reproductive health in chromosome translocation carriers. Journal of obstetrics and women’s diseases. 2022;71(5):85–96. EDN: YOTDWW doi: 10.17816/JOWD109329

[36]

Шиленкова Ю.В., Пендина А.А., Федорова Е.М., и др. Особенности реализации репродуктивной функции у носителей транслокаций хромосом // Журнал акушерства и женских болезней. 2022. Т. 71, № 5. C. 85–96. EDN: YOTDWW doi: 10.17816/JOWD109329

[37]

ESHRE Guideline Group on Good Practice in IVF Labs, De los Santos MJ, Apter S, et al. Revised guidelines for good practice in IVF laboratories (2015). Hum Reprod. 2016;31(4):685–686. doi: 10.1093/humrep/dew016

[38]

ESHRE Guideline Group on Good Practice in IVF Labs, De los Santos M.J., Apter S., et al. Revised guidelines for good practice in IVF laboratories (2015) // Hum Reprod. 2016. Vol. 31, N 4. P. 685–686. doi: 10.1093/humrep/dew016

[39]

Pendina AA, Krapivin MI., Efimova OA, et al. Telomere length in metaphase chromosomes of human triploid zygotes. Int J Mol Sci. 2021;22(11):5579. doi: 10.3390/ijms22115579

[40]

Pendina A.A., Krapivin M.I., Efimova O.A., et al. Telomere length in metaphase chromosomes of human triploid zygotes // Int J Mol Sci. 2021. Vol. 22, N 11. ID 5579. doi: 10.3390/ijms22115579

[41]

Gardner DK, Schoolcraft WB. In vitro culture of human blastocysts. In: Jansen R, Mortimer D, editors. Towards reproductive certainty: Fertility and genetics beyond. Camforth, UK: Parthenon Publishing; 1999. P. 378–388.

[42]

Gardner D.K., Schoolcraft W.B. In vitro culture of human blastocysts. В кн.: Towards reproductive certainty: Fertility and genetics beyond / R. Jansen, D. Mortimer, editors. Camforth, UK: Parthenon Publishing, 1999. P. 378–388.

[43]

Pendina AA, Efimova OA, Fedorova ID, et al. DNA methylation patterns of metaphase chromosomes in human preimplantation embryos. Cytogenet Genome Res. 2011;132(1–2):1–7. doi: 10.1159/000318673

[44]

Pendina A.A., Efimova O.A., Fedorova I.D., et al. DNA methylation patterns of metaphase chromosomes in human preimplantation embryos // Cytogenet Genome Res. 2011. Vol. 132, N 1–2. P. 1–7. doi: 10.1159/000318673

[45]

Efimova OA, Pendina AA, Tikhonov AV, et al. Chromosome hydroxymethylation patterns in human zygotes and cleavage-stage embryos. Reproduction. 2015;149(3):223–33. doi: 10.1530/REP-14-0343

[46]

Efimova O.A., Pendina A.A., Tikhonov A.V., et al. Chromosome hydroxymethylation patterns in human zygotes and cleavage-stage embryos // Reproduction. 2015. Vol. 149, N 3. P. 223–33. doi: 10.1530/REP-14-0343

[47]

Tikhonov AV, Krapivin MI, Malysheva OV, et al. Re-Examination of PGT-A detected genetic pathology in compartments of human blastocysts: A series of 23 cases. J Clin Med. 2024;13(11):3289. doi: 10.3390/jcm13113289

[48]

Tikhonov A.V., Krapivin M.I., Malysheva O.V., et al. Re-Examination of PGT-A detected genetic pathology in compartments of human blastocysts: A series of 23 cases // J Clin Med. 2024. Vol. 13, N 11. ID 3289. doi: 10.3390/jcm13113289

[49]

Efimova OA, Pendina AA, Tikhonov AV, et al. Genome-wide 5-hydroxymethylcytosine patterns in human spermatogenesis are associated with semen quality. Oncotarget. 2017;8(51):88294–88307. doi: 10.18632/oncotarget.18331

[50]

Efimova O.A., Pendina A.A., Tikhonov A.V., et al. Genome-wide 5-hydroxymethylcytosine patterns in human spermatogenesis are associated with semen quality // Oncotarget. 2017. Vol. 8, N 51. P. 88294–88307. doi: 10.18632/oncotarget.18331

[51]

Liehr T, Weise A. Background. In: Liehr T, editor. Fluorescence in situ hybridization (FISH). Springer, Berlin, Heidelberg; 2017. P. 337–346. doi: 10.1007/978-3-662-52959-1_1

[52]

Liehr T., Weise A. Background. В кн.: Fluorescence in situ hybridization (FISH) / T. Liehr, editor. Springer, Berlin, Heidelberg, 2017. P. 337–346. doi: 10.1007/978-3-662-52959-1_1

[53]

Canela A, Vera E, Klatt P, Blasco MA. High-throughput telomere length quantification by FISH and its application to human population studies. PNAS USA. 2007;104(13):5300–5305. doi: 10.1073/pnas.0609367104

[54]

Canela A., Vera E., Klatt P., Blasco M.A. High-throughput telomere length quantification by FISH and its application to human population studies // PNAS USA. 2007. Vol. 104, N 13. P. 5300–5305. doi: 10.1073/pnas.0609367104

[55]

Ourliac-Garnier I, Londoño-Vallejo A. Telomere length analysis by quantitative fluorescent in situ hybridization (Q-FISH). In: Songyang Z, editor. Telomeres and telomerase. Methods in molecular biology. Vol. 1587. New York: Humana Press; 2017. P. 29–39. doi: 10.1007/978-1-4939-6892-3_3

[56]

Ourliac-Garnier I., Londoño-Vallejo A. Telomere length analysis by quantitative fluorescent in situ hybridization (Q-FISH). В кн.: Telomeres and telomerase. Methods in molecular biology. Vol. 1587 / Z. Songyang, editor. New York: Humana Press, 2017. P. 29–39. doi: 10.1007/978-1-4939-6892-3_3

[57]

Iqbal K, Kues WA, Baulain U, et al. Species-specific telomere length differences between blastocyst cell compartments and ectopic telomere extension in early bovine embryos by human telomerase reverse transcriptase. Biol Reprod. 2011;84(4):723–733 doi: 10.1095/biolreprod.110.087205

[58]

Iqbal K., Kues W.A., Baulain U., et al. Species-specific telomere length differences between blastocyst cell compartments and ectopic telomere extension in early bovine embryos by human telomerase reverse transcriptase // Biol Reprod. 2011. Vol. 84, N 4. P. 723–733. doi: 10.1095/biolreprod.110.087205

[59]

Varela E, Schneider RP, Ortega S, Blasco MA. Different telomere-length dynamics at the inner cell mass versus established embryonic stem (ES) cells. PNAS USA. 2011;108(37):15207–15212. doi: 10.1073/pnas.1105414108

[60]

Varela E., Schneider R.P., Ortega S., Blasco M.A. Different telomere-length dynamics at the inner cell mass versus established embryonic stem (ES) cells // PNAS USA. 2011. Vol. 108, N 37. P. 15207–15212. doi: 10.1073/pnas.1105414108

[61]

Kar M, Ghosh D, Sengupta J. Histochemical and morphological examination of proliferation and apoptosis in human first trimester villous trophoblast. Hum Reprod. 2007;22(11):2814–2823. doi: 10.1093/humrep/dem284

[62]

Kar M., Ghosh D., Sengupta J. Histochemical and morphological examination of proliferation and apoptosis in human first trimester villous trophoblast // Hum Reprod. 2007. Vol. 22, N 11. P. 2814–2823. doi: 10.1093/humrep/dem284

[63]

Liu L, Bailey S, Okuka M, et al. Telomere lengthening early in development. Nat Cell Biol. 2007;9:1436–1441. doi: 10.1038/ncb1664

[64]

Liu L., Bailey S., Okuka M., et al. Telomere lengthening early in development // Nat Cell Biol. 2007. Vol. 9. P. 1436–1441. doi: 10.1038/ncb1664

[65]

Wright DL, Jones EL, Mayer JF, et al. Characterization of telomerase activity in the human oocyte and preimplantation embryo. Mol Hum Reprod. 2001;7(10):947–955. doi: 10.1093/molehr/7.10.947

[66]

Wright D.L., Jones E.L., Mayer J.F., et al. Characterization of telomerase activity in the human oocyte and preimplantation embryo // Mol Hum Reprod. 2001. Vol. 7, N 10. P. 947–955. doi: 10.1093/molehr/7.10.947

[67]

Polettini J, da Silva MG. Telomere-Related disorders in fetal membranes associated with birth and adverse pregnancy outcomes. Front Physiol. 2020;11:561771. doi: 10.3389/fphys.2020.561771

[68]

Polettini J., da Silva M.G. Telomere-Related disorders in fetal membranes associated with birth and adverse pregnancy outcomes // Front Physiol. 2020. Vol. 11. ID 561771. doi: 10.3389/fphys.2020.561771

[69]

Kyo S, Takakura M, Tanaka M, et al. Expression of telomerase activity in human chorion. Biochem Biophys Res Commun. 1997;241(2):498–503. doi:10.1006/bbrc.1997.7767

[70]

Kyo S., Takakura M., Tanaka M., et al. Expression of telomerase activity in human chorion // Biochem Biophys Res Commun. 1997. Vol. 241, N 2. P. 498–503. doi: 10.1006/bbrc.1997.7767

[71]

Chen RJ, Chu CT, Huang SC, et al. Telomerase activity in gestational trophoblastic disease and placental tissue from early and late human pregnancies. Hum Reprod. 2002;17(2):463–468. doi: 10.1093/humrep/17.2.463

[72]

Chen R.J., Chu C.T., Huang S.C., et al. Telomerase activity in gestational trophoblastic disease and placental tissue from early and late human pregnancies // Hum Reprod. 2002. Vol. 17, N 2. P. 463–468. doi: 10.1093/humrep/17.2.463

[73]

Colatto BN, de Souza IF, Schinke LAA, et al. Telomere length and telomerase activity in foetal membranes from term and spontaneous preterm births. Reprod Sci. 2020;27(1):411–417. doi: 10.1007/s43032-019-00054-z

[74]

Colatto B.N., de Souza I.F., Schinke L.A.A., et al. Telomere length and telomerase activity in foetal membranes from term and spontaneous preterm births // Reprod Sci. 2020. Vol. 27, N 1. P. 411–417. doi: 10.1007/s43032–019–00054-z

[75]

Nishi H, Yahata N, Ohyashiki K, et al. Comparison of telomerase activity in normal chorionic villi to trophoblastic diseases. Int J Oncol. 1998;12(1):81–85. doi: 10.3892/ijo.12.1.81

[76]

Nishi H., Yahata N., Ohyashiki K., et al. Comparison of telomerase activity in normal chorionic villi to trophoblastic diseases // Int J Oncol. 1998. Vol. 12, N 1. P. 81–85. doi: 10.3892/ijo.12.1.81

[77]

Treff NR, Su J, Taylor D, Scott RT Jr. Telomere DNA deficiency is associated with development of human embryonic aneuploidy. PLoS Genet. 2011;7(6):e1002161. doi: 10.1371/journal.pgen.1002161

[78]

Treff N.R., Su J., Taylor D., Scott R.T. Jr. Telomere DNA deficiency is associated with development of human embryonic aneuploidy // PLoS Genet. 2011. Vol. 7, N 6. ID e1002161. doi: 10.1371/journal.pgen.1002161

[79]

Mania A, Mantzouratou A, Delhanty JDA, et al. Telomere length in human blastocysts. Reprod Biomed Online. 2014;28(5):624–637. doi: 10.1016/j.rbmo.2013.12.010

[80]

Mania A., Mantzouratou A., Delhanty J.D.A., et al. Telomere length in human blastocysts // Reprod Biomed Online. 2014. Vol. 28, N 5. P. 624–637. doi: 10.1016/j.rbmo.2013.12.010

[81]

Wang F, McCulloh DH, Chan K, et al. The landscape of telomere length and telomerase in human embryos at blastocyst stage. Genes (Basel). 2023;14(6):1200. doi: 10.3390/genes14061200

[82]

Wang F., McCulloh D.H., Chan K., et al. The landscape of telomere length and telomerase in human embryos at blastocyst stage // Genes (Basel). 2023. Vol. 14, N 6. ID 1200. doi: 10.3390/genes14061200

[83]

Turner K, Lynch C, Rouse H, et al. Direct single-cell analysis of human polar bodies and cleavage-stage embryos reveals no evidence of the telomere theory of reproductive ageing in relation to aneuploidy generation. Cells. 2019;8(2):163. doi: 10.3390/cells8020163

[84]

Turner K., Lynch C., Rouse H., et al. Direct single-cell analysis of human polar bodies and cleavage-stage embryos reveals no evidence of the telomere theory of reproductive ageing in relation to aneuploidy generation // Cells. 2019. Vol. 8, N 2. ID 163. doi: 10.3390/cells8020163

[85]

Keefe DL. Telomeres and genomic instability during early development. Eur J Med Genet. 2020;63(2):103638. doi: 10.1016/j.ejmg.2019.03.002

[86]

Keefe D.L. Telomeres and genomic instability during early development // Eur J Med Genet. 2020. Vol. 63, N 2. ID 103638. doi: 10.1016/j.ejmg.2019.03.002

[87]

Anifandis G, Samara M, Simopoulou M, et al. Insights into the role of telomeres in human embryological parameters. Opinions regarding IVF. J Dev Biol. 2021;9(4):49. doi: 10.3390/jdb9040049

[88]

Anifandis G., Samara M., Simopoulou M., et al. Insights into the role of telomeres in human embryological parameters. Opinions regarding IVF // J Dev Biol. 2021. Vol. 9, N 4. ID 49. doi: 10.3390/jdb9040049

[89]

Epel ES. Can childhood adversity affect telomeres of the next generation? Possible mechanisms, implications, and next-generation research. Am J Psychiatry. 2020;177(1):7–9. doi: 10.1176/appi.ajp.2019.19111161

[90]

Epel E.S. Can childhood adversity affect telomeres of the next generation? Possible mechanisms, implications, and next-generation research // Am J Psychiatry. 2020. Vol. 177, N 1. P. 7–9. doi: 10.1176/appi.ajp.2019.19111161

[91]

Turner S, Wong HP, Rai J, Hartshorne GM. Telomere lengths in human oocytes, cleavage stage embryos and blastocysts. Mol Hum Reprod. 2010;16(9):685–694. doi: 10.1093/molehr/gaq048

[92]

Turner S., Wong H.P., Rai J., Hartshorne G.M. Telomere lengths in human oocytes, cleavage stage embryos and blastocysts // Mol Hum Reprod. 2010. Vol. 16, N 9. P. 685–694. doi: 10.1093/molehr/gaq048

[93]

Krapivin MI., Tikhonov AV, Efimova OA, et al. Telomere length in chromosomally normal and abnormal miscarriages and ongoing pregnancies and its association with 5-hydroxymethylcytosine patterns. Int J Mol Sci. 2021;22(12):6622. doi: 10.3390/ijms22126622

[94]

Krapivin M.I., Tikhonov A.V., Efimova O.A., et al. Telomere length in chromosomally normal and abnormal miscarriages and ongoing pregnancies and its association with 5-hydroxymethylcytosine patterns // Int J Mol Sci. 2021. Vol. 22, N 12. ID 6622. doi: 10.3390/ijms22126622

[95]

Huleyuk N, Tkach I, Zastavna D, Tyrka M. Can telomere shortening be the main indicator of non-viable fetus elimination? Mol Cytogenet. 2018;11:11. doi: 10.1186/s13039-018-0361-9

[96]

Huleyuk N., Tkach I., Zastavna D., Tyrka M. Can telomere shortening be the main indicator of non-viable fetus elimination? // Mol Cytogenet. 2018. Vol. 11. ID 11. doi: 10.1186/s13039-018-0361-9

[97]

Vaziri H, Schächter F, Uchida I, et al. Loss of telomeric DNA during aging of normal and trisomy 21 human lymphocytes. Am J Hum Genet. 1993;52(4):661–667.

[98]

Vaziri H., Schächter F., Uchida I., et al. Loss of telomeric DNA during aging of normal and trisomy 21 human lymphocytes // Am J Hum Genet. 1993. Vol. 52, N 4. P. 661–667.

[99]

Bhaumik P, Bhattacharya M, Ghosh P, et al. Telomere length analysis in Down syndrome birth. Mech Ageing Dev. 2017;164:20–26. doi: 10.1016/j.mad.2017.03.006

[100]

Bhaumik P., Bhattacharya M., Ghosh P., et al. Telomere length analysis in Down syndrome birth // Mech Ageing Dev. 2017. Vol. 164. P. 20–26. doi: 10.1016/j.mad.2017.03.006

[101]

Spivak I, Tkachuk N, Zhekalov A, Dolinina T. Role of genotype in maintaining telomere length at prolonged psychological stress. In: Chernyavskaya V, Kuße H, editors. Professional сulture of the specialist of the future, vol. 51. European proceedings of social and behavioural sciences. Future Academy; 2018. P. 515–527. doi: 10.15405/epsbs.2018.12.02.56

[102]

Spivak I., Tkachuk N., Zhekalov A., Dolinina T. Role of genotype in maintaining telomere length at prolonged psychological stress. В кн.: Professional сulture of the specialist of the future, vol. 51. European proceedings of social and behavioural sciences / V. Chernyavskaya, H. Kuße, editors. Future Academy, 2018. P. 515–527. doi: 10.15405/epsbs.2018.12.02.56

[103]

Garrett-Bakelman FE, Darshi M, Green SJ, et al. The NASA Twins Study: A multidimensional analysis of a year-long human spaceflight. Science. 2019;364(6436):eaau8650. doi: 10.1126/science.aau8650

[104]

Garrett-Bakelman F.E., Darshi M., Green S.J., et al. The NASA Twins Study: A multidimensional analysis of a year-long human spaceflight // Science. 2019. Vol. 364, N 6436. ID eaau8650. doi: 10.1126/science.aau8650

Funding

Russian Science FoundationРоссийский научный фонд(22-75-00125)

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF (1632KB)

115

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/