Third International Conference “Genetically modified organism: the history, achievements, social and environmental risks”
Tatiana V. Matveeva
Ecological Genetics ›› 2024, Vol. 22 ›› Issue (1) : 5 -12.
Third International Conference “Genetically modified organism: the history, achievements, social and environmental risks”
From October 3 to October 5, 2023, the Third International Conference “Genetically modified organism: the history, achievements, social and environmental risks” was held at St. Petersburg State University as part of the implementation of the Program for the creation and development of a world-class Scientific Center “Agricultural Technologies for the Future. ”This issue is dedicated to the 300th anniversary of St. Petersburg State University and presents materials from selected conference reports.
GMO / agriculture / medicine / basic research
| [1] |
Matveeva TV. Third International Conference “Genetically modified organisms: the history, achievements, social and environmental risks”. Ecological genetics. 2023;21(S):4. EDN: NYXOTM doi: 10.17816/ecogen569179 |
| [2] |
Matveeva T.V. Third International Conference “Genetically modified organisms: the history, achievements, social and environmental risks” // Экологическая генетика. 2023. Т. 21, № S. С. 4. EDN: NYXOTM doi: 10.17816/ecogen569179 |
| [3] |
Lutova LA, Dodueva IE. Basic research in the developmental genetics on the model of tumor growth in higher plants. Ecological genetics. 2023;21(S):5–6. EDN: TEZPVU doi: 10.17816/ecogen568363 |
| [4] |
Lutova L.A., Dodueva I.E. Basic research in the developmental genetics on the model of tumor growth in higher plants // Экологическая генетика. 2023. Т. 21, № S. С. 5–6. EDN: TEZPVU doi: 10.17816/ecogen568363 |
| [5] |
Sidorchuk YV, Belavin PA, Zagorskaya AA, et al. Transplastomic plants — new approaches to solving “old” problems. Ecological genetics. 2023;21(S):7–8. EDN: GJHYSB doi: 10.17816/ecogen568520 |
| [6] |
Sidorchuk Yu.V., Belavin P.A., Zagorskaya A.A., et al. Transplastomic plants — new approaches to solving “old” problems // Экологическая генетика. 2023. Т. 21, № S. С. 7–8. EDN: GJHYSB doi: 10.17816/ecogen568520 |
| [7] |
Artemiuk AM, Tvorogova VE, Lutova LA. Development of a system for the formation of transgenic somatic embryos in the liquid medium in Medicago truncatula. Ecological genetics. 2023;21(S):9. EDN: IQLATQ doi: 10.17816/ecogen568297 |
| [8] |
Artemiuk A.M., Tvorogova V.E., Lutova L.A. Development of a system for the formation of transgenic somatic embryos in the liquid medium in Medicago truncatula // Экологическая генетика. 2023. Т. 21, № S. С. 9. EDN: IQLATQ doi: 10.17816/ecogen568297 |
| [9] |
Konstantinov ZS, Tvorogova VE, Potsenkovskaia EA, Lutova LA. The search for inhibitors of somatic embryogenesis in Medicago truncatula. Ecological genetics. 2023;21(S):10. EDN: LWJAOE doi: 10.17816/ecogen568377 |
| [10] |
Konstantinov Z.S., Tvorogova V.E., Potsenkovskaia E.A., Lutova L.A. The search for inhibitors of somatic embryogenesis in Medicago truncatula // Экологическая генетика. 2023. Т. 21, № S. С. 10. EDN: LWJAOE doi: 10.17816/ecogen568377 |
| [11] |
Efremova EP, Tvorogova VE, Lutova LA. The MtWOX genes in the regulation of Medicago truncatula somatic embryogenesis. Ecological genetics. 2023;21(S):11. EDN: CECSAJ doi: 10.17816/ecogen568389 |
| [12] |
Efremova E.P., Tvorogova V.E., Lutova L.A. The MtWOX genes in the regulation of Medicago truncatula somatic embryogenesis // Экологическая генетика. 2023. Т. 21, № S. С. 11. EDN: CECSAJ doi: 10.17816/ecogen568389 |
| [13] |
Kiseleva AS, Matveenko AG, Tvorogova VE, Lutova LA. The screening vector system of morphogenic regulators in Fabaceae. Ecological genetics. 2023;21(S):12–13. EDN: CIJWMG doi: 10.17816/ecogen568518 |
| [14] |
Kiseleva A.S., Matveenko A.G., Tvorogova V.E., Lutova L.A. The screening vector system of morphogenic regulators in Fabaceae // Экологическая генетика. 2023. Т. 21, № S. С. 12–13. EDN: CIJWMG doi: 10.17816/ecogen568518 |
| [15] |
Makeeva AS, Sidorin AV, Ishtuganova VV, et al. Effect of biotin starvation on gene expression in industrially significant yeast Komagataella phaffii. Ecological genetics. 2023;21(S):14–15. EDN: PNRHNH doi: 10.17816/ecogen568379 |
| [16] |
Makeeva A.S., Sidorin A.V., Ishtuganova V.V., et al. Effect of biotin starvation on gene expression in industrially significant yeast Komagataella phaffii // Экологическая генетика. 2023. Т. 21, № S. С. 14–15. EDN: PNRHNH doi: 10.17816/ecogen568379 |
| [17] |
Kulichikhin KY, Sopova JV, Rubel AA. A set of Saccharomyces cerevisiae strains possessing [PSI+] prion formed by Sup35 protein with various deletions in prionogenic domain. Ecological genetics. 2023;21(S):16. EDN: HNSKKX doi: 10.17816/ecogen567848 |
| [18] |
Kulichikhin K.Y., Sopova J.V., Rubel A.A. A set of Saccharomyces cerevisiae strains possessing [PSI+] prion formed by Sup35 protein with various deletions in prionogenic domain // Экологическая генетика. 2023. Т. 21, № S. С. 16. EDN: HNSKKX doi: 10.17816/ecogen567848 |
| [19] |
Shumega AR, Stepchenkova EI, Inge-Vechtomov SG. Evaluation of non-specific CRISPR/Cas9 activity in a yeast model. Ecological genetics. 2023;21(S):17–18. EDN: ZLZALV doi: 10.17816/ecogen567918 |
| [20] |
Shumega A.R., Stepchenkova E.I., Inge-Vechtomov S.G. Evaluation of non-specific CRISPR/Cas9 activity in a yeast model // Экологическая генетика. 2023. Т. 21, № S. С. 17–18. EDN: ZLZALV doi: 10.17816/ecogen567918 |
| [21] |
Tsygankov MA, Rumyantsev AM, Padkina MV. Application of yeast display method in biotechnology and agriculture. Ecological genetics. 2023;21(S):19. EDN: CGMMZE doi: 10.17816/ecogen568181 |
| [22] |
Tsygankov M.A., Rumyantsev A.M., Padkina M.V. Application of yeast display method in biotechnology and agriculture // Экологическая генетика. 2023. Т. 21, № S. С. 19. EDN: CGMMZE doi: 10.17816/ecogen568181 |
| [23] |
Chirinskaite AV, Zelinsky AA, Sopova JV, Leonova EI. Development of the Cas12a-based microdeletion and microinsertion detection system. Ecological genetics. 2023;21(S):20–21. EDN: VDMNGW doi: 10.17816/ecogen568454 |
| [24] |
Chirinskaite A.V., Zelinsky A.A., Sopova J.V., Leonova E.I. Development of the Cas12a-based microdeletion and microinsertion detection system // Экологическая генетика. 2023. Т. 21, № S. С. 20–21. EDN: VDMNGW doi: 10.17816/ecogen568454 |
| [25] |
Deineko EV. Current state of research in the development of the genomic editing method: problems and prospects. Ecological genetics. 2023;21(S):22. EDN: BGIXTL doi: 10.17816/ecogen568610 |
| [26] |
Deineko E.V. Current state of research in the development of the genomic editing method: problems and prospects // Экологическая генетика. 2023. Т. 21, № S. С. 22. EDN: BGIXTL doi: 10.17816/ecogen568610 |
| [27] |
Lebedeva MA, Razhina OL, Nikanorkina VV, Taranov VV. The strong base for using base editing in plants. Ecological genetics. 2023;21(S):23. EDN: XLZQPV doi: 10.17816/ecogen567885 |
| [28] |
Lebedeva M.A., Razhina O.L., Nikanorkina V.V., Taranov V.V. The strong base for using base editing in plants // Экологическая генетика. 2023. Т. 21, № S. С. 23. EDN: XLZQPV doi: 10.17816/ecogen567885 |
| [29] |
Timonova EM, Kiseleva AA, Berezhnaia AA, et al. Modification of agricultural traits in cultivated varieties of barley and wheat. Ecological genetics. 2023;21(S):24–25. EDN: PODECI doi: 10.17816/ecogen568184 |
| [30] |
Timonova E.M., Kiseleva A.A., Berezhnaia A.A., et al. Modification of agricultural traits in cultivated varieties of barley and wheat // Экологическая генетика. 2023. Т. 21, № S. С. 24–25. EDN: PODECI doi: 10.17816/ecogen568184 |
| [31] |
Miroshnichenko DN, Timerbaev VR, Divashuk MG, et al. Advancing gene editing: multiplex mutagenesis in hexaploid triticale Ecological genetics. 2023;21(S):26–27. EDN: XZHALT doi: 10.17816/ecogen568624 |
| [32] |
Miroshnichenko D.N., Timerbaev V.R., Divashuk M.G., et al. Advancing gene editing: multiplex mutagenesis in hexaploid triticale // Экологическая генетика. 2023. Т. 21, № S. С. 26–27. EDN: XZHALT doi: 10.17816/ecogen568624 |
| [33] |
Kiryushkin AS, Ilina EL, Demchenko KN. Study of functional features of plant root systems using CRISPR/Cas-mediated genome editing. Ecological genetics. 2023;21(S):28–29. EDN: ELXALM doi: 10.17816/ecogen568351 |
| [34] |
Kiryushkin A.S., Ilina E.L., Demchenko K.N. Study of functional features of plant root systems using CRISPR/Cas-mediated genome editing // Экологическая генетика. 2023. Т. 21, № S. С. 28–29. EDN: ELXALM doi: 10.17816/ecogen568351 |
| [35] |
Virolainen PA, Chekunova EM. CRISPR/Cas based genome editing in microalgae. Ecological genetics. 2023;21(S):30–31. EDN: NRMKRS doi: 10.17816/ecogen568609 |
| [36] |
Virolainen P.A., Chekunova E.M. CRISPR/Cas based genome editing in microalgae // Экологическая генетика. 2023. Т. 21, № S. С. 30–31. EDN: NRMKRS doi: 10.17816/ecogen568609 |
| [37] |
Tvorogova VE, Potsenkovskaia EA, Efremova EP, et al. The transformation and genome editing of Pisum sativum: protocols and their modifications. Ecological genetics. 2023;21(S):32–33. EDN: DRBNUT doi: 10.17816/ecogen567891 |
| [38] |
Tvorogova V.E., Potsenkovskaia E.A., Efremova E.P., et al. The transformation and genome editing of Pisum sativum: protocols and their modifications // Экологическая генетика. 2023. Т. 21, № S. С. 32–33. EDN: DRBNUT doi: 10.17816/ecogen567891 |
| [39] |
Chekunova EM, Virolainen PA. Microalgae as production systems of bioactive compounds. Bioengineering approaches. Ecological genetics. 2023;21(S):38–39. EDN: NSFEFN doi: 10.17816/ecogen568627 |
| [40] |
Chekunova E.M., Virolainen P.A. Microalgae as production systems of bioactive compounds. Bioengineering approaches // Экологическая генетика. 2023. Т. 21, № S. С. 38–39. EDN: NSFEFN doi: 10.17816/ecogen568627 |
| [41] |
Timina O, Timin O, Stepanova A. Some biochemical characteristics of the hairy roots of Pisum sativum L. mutants. Ecological genetics. 2023;21(S):40. EDN: YVXKIW doi: 10.17816/ecogen568310 |
| [42] |
Timina O., Timin O., Stepanova A. Some biochemical characteristics of the hairy roots of Pisum sativum L. mutants // Экологическая генетика. 2023. Т. 21, № S. С. 40. EDN: YVXKIW doi: 10.17816/ecogen568310 |
| [43] |
Cheryatova YSu, Yembaturova EYu. Transgenic medicinal plants as producers of bioactive substances. Ecological genetics. 2023;21(S):41–42. EDN: CKLJNH doi: 10.17816/ecogen567947 |
| [44] |
Cheryatova Yu.S., Yembaturova E.Yu. Transgenic medicinal plants as producers of bioactive substances // Экологическая генетика. 2023. Т. 21, № S. С. 41–42. EDN: CKLJNH doi: 10.17816/ecogen567947 |
| [45] |
Okulova ES, Burlakovskiy MS, Padkina MV, Lutova LA. Obtaining of transgenic barrelclover plants (Medicago truncatula) producing chicken interferon gamma for veterinary use. Ecological genetics. 2023;21(S):43–44. EDN: CQQYIO doi: 10.17816/ecogen567940 |
| [46] |
Okulova E.S., Burlakovskiy M.S., Padkina M.V., Lutova L.A. Obtaining of transgenic barrelclover plants (Medicago truncatula) producing chicken interferon gamma for veterinary use // Экологическая генетика. 2023. Т. 21, № S. С. 43–44. EDN: CQQYIO doi: 10.17816/ecogen567940 |
| [47] |
Zelinsky AA, Rubel AA, Ryabinina MV. Identifying novel amyloid candidates using bioinformatics algorithms and a yeast model approach. Ecological genetics. 2023;21(S):45. EDN: TOHHXF doi: 10.17816/ecogen568129 |
| [48] |
Zelinsky A.A., Rubel A.A., Ryabinina M.V. Identifying novel amyloid candidates using bioinformatics algorithms and a yeast model approach // Экологическая генетика. 2023. Т. 21, № S. С. 45. EDN: TOHHXF doi: 10.17816/ecogen568129 |
| [49] |
Kaushik P, Meenakshi S, Anil K. Bioengineering eggplants: a deep dive into SmHQT and phenolic acid biosynthesis. Ecological genetics. 2023;21(S):34–35. EDN: HXFVOF doi: 10.17816/ecogen568585 |
| [50] |
Kaushik P., Meenakshi S., Anil K. Bioengineering eggplants: a deep dive into SmHQT and phenolic acid biosynthesis // Экологическая генетика. 2023. Т. 21, № S. С. 34–35. EDN: HXFVOF doi: 10.17816/ecogen568585 |
| [51] |
Meenakshi S, Delta A, Kaushik P. Genetic enhancement of Datura metel for optimized silver nanoparticle synthesis. Ecological genetics. 2023;21(S):36–37. EDN: FZTMAB doi: 10.17816/ecogen568587 |
| [52] |
Meenakshi S., Delta A., Kaushik P. Genetic enhancement of Datura metel for optimized silver nanoparticle synthesis // Экологическая генетика. 2023. Т. 21, № S. С. 36–37. EDN: FZTMAB doi: 10.17816/ecogen568587 |
| [53] |
Dolgov SV. Bioengineering of horticultural crops in Russia and in the world. Ecological genetics. 2023;21(S):46. EDN: IKDROI doi: 10.17816/ecogen568614 |
| [54] |
Dolgov S.V. Bioengineering of horticultural crops in Russia and in the world // Экологическая генетика. 2023. Т. 21, № S. С. 46. EDN: IKDROI doi: 10.17816/ecogen568614 |
| [55] |
Baranov DY, Dolgov SV, Timerbaev VR. Knockout of the tomato translational elongation factor using CRISPR-Cas9 technology. Ecological genetics. 2023;21(S):47. EDN: ZKPLVT doi: 10.17816/ecogen568327 |
| [56] |
Baranov D.Yu., Dolgov S.V., Timerbaev V.R. Knockout of the tomato translational elongation factor using CRISPR-Cas9 technology // Экологическая генетика. 2023. Т. 21, № S. С. 47. EDN: ZKPLVT doi: 10.17816/ecogen568327 |
| [57] |
Elkonin LA, Gerashchenkov GA, Borisenko NV, et al. SITE-directed mutagenesis for producing grain sorgum mutants with improved kafirine digestibility. Ecological genetics. 2023;21(S):48–49. EDN: ROHKMO doi: 10.17816/ecogen567897 |
| [58] |
Elkonin L.A., Gerashchenkov G.A., Borisenko N.V., et al. SITE-directed mutagenesis for producing grain sorgum mutants with improved kafirine digestibility // Экологическая генетика. 2023. Т. 21, № S. С. 48–49. EDN: ROHKMO doi: 10.17816/ecogen567897 |
| [59] |
Lebedeva MA, Dobychkina DA, Kochetkova LA, Lutova LA. Overexpression of the MtCLE35 gene in transgenic Medicago truncatula plants inhibits nodulation at early stages of symbiosis development. Ecological genetics. 2023;21(S):50–51. EDN: UKVFAZ doi: 10.17816/ecogen568451 |
| [60] |
Lebedeva M.A., Dobychkina D.A., Kochetkova L.A., Lutova L.A. Overexpression of the MtCLE35 gene in transgenic Medicago truncatula plants inhibits nodulation at early stages of symbiosis development // Экологическая генетика. 2023. Т. 21, № S. С. 50–51. EDN: UKVFAZ doi: 10.17816/ecogen568451 |
| [61] |
Ivanov AA, Burlakov AV, Golubeva TS. Approaches for the protection of Solanum tuberosum from late blight through the regulation of inf1 and inf4 elicitin genes. Ecological genetics. 2023;21(S):52. EDN: HIEKXI doi: 10.17816/ecogen568381 |
| [62] |
Ivanov A.A., Burlakov A.V., Golubeva T.S. Approaches for the protection of Solanum tuberosum from late blight through the regulation of inf1 and inf4 elicitin genes // Экологическая генетика. 2023. Т. 21, № S. С. 52. EDN: HIEKXI doi: 10.17816/ecogen568381 |
| [63] |
Kochetkova LA, Lebedeva MA, Lutova LA. Putative molecular pathways of autoregulation of nodulation activated by CLE peptides in pea. Ecological genetics. 2023;21(S):53. EDN: EPMBLK doi: 10.17816/ecogen568446 |
| [64] |
Kochetkova L.A., Lebedeva M.A., Lutova L.A. Putative molecular pathways of autoregulation of nodulation activated by CLE peptides in pea // Экологическая генетика. 2023. Т. 21, № S. С. 53. EDN: EPMBLK doi: 10.17816/ecogen568446 |
| [65] |
Dolgikh EA, Kantsurova ES, Kozyulina PYu, et al. Genetically modified legume plants as a basis for studying the signal regulation of symbiosis with nodule bacteria. Ecological genetics. 2023;21(S):54–55. EDN: JROAHF doi: 10.17816/ecogen568623 |
| [66] |
Dolgikh E.A., Kantsurova E.S., Kozyulina P.Yu., et al. Genetically modified legume plants as a basis for studying the signal regulation of symbiosis with nodule bacteria // Экологическая генетика. 2023. Т. 21, № S. С. 54–55. EDN: JROAHF doi: 10.17816/ecogen568623 |
| [67] |
Matveeva TV. Prospects for the study of natural GMOs. Ecological genetics. 2023;21(S):56. EDN: NODEWF doi: 10.17816/ecogen487646 |
| [68] |
Matveeva T.V. Prospects for the study of natural GMOs // Экологическая генетика. 2023. Т. 21, № S. С. 56. EDN: NODEWF doi: 10.17816/ecogen487646 |
| [69] |
Chen K, Zhurbenko PM, Danilov LG, et al. Natural transformants of Camellia section Thea. Ecological genetics. 2023;21(S):57–58. EDN: ECFWBE doi: 10.17816/ecogen568588 |
| [70] |
Chen K., Zhurbenko P.M., Danilov L.G., et al. Natural transformants of Camellia section Thea // Экологическая генетика. 2023. Т. 21, № S. С. 57–58. EDN: ECFWBE doi: 10.17816/ecogen568588 |
| [71] |
Bogomaz OD, Bemova VD, Matveeva TV. Natural GMOs inside the genus Arachis L. Ecological genetics. 2023;21(S):59–60. EDN: XGMZOD doi: 10.17816/ecogen568618 |
| [72] |
Bogomaz O.D., Bemova V.D., Matveeva T.V. Natural GMOs inside the genus Arachis L. // Экологическая генетика. 2023. Т. 21, № S. С. 59–60. EDN: XGMZOD doi: 10.17816/ecogen568618 |
| [73] |
Zhidkin RR, Zhurbenko PM, Matveeva TV. Distribution of the rolB/C-like natural transgene in representatives of the genus Vaccinium L. Ecological genetics. 2023;21(S):61–62. EDN: CUDSSM doi: 10.17816/ecogen567934 |
| [74] |
Zhidkin R.R., Zhurbenko P.M., Matveeva T.V. Distribution of the rolB/C-like natural transgene in representatives of the genus Vaccinium L. // Экологическая генетика. 2023. Т. 21, № S. С. 61–62. EDN: CUDSSM doi: 10.17816/ecogen567934 |
| [75] |
Mikhaylova EV. Transgene-free genome editing of plants. Ecological genetics. 2023;21(S):63. EDN: DJHBID doi: 10.17816/ecogen567964 |
| [76] |
Mikhaylova E.V. Transgene-free genome editing of plants // Экологическая генетика. 2023. Т. 21, № S. С. 63. EDN: DJHBID doi: 10.17816/ecogen567964 |
| [77] |
Sokornova SV, Mandrik-Litvinkovich MN, Matveeva TV. Characteristics of root endophytic fungi communities associated with genetically modified plants. Ecological genetics. 2023;21(S):64–65. EDN: REYEMY doi: 10.17816/ecogen568501 |
| [78] |
Sokornova S.V., Mandrik-Litvinkovich M.N., Matveeva T.V. Characteristics of root endophytic fungi communities associated with genetically modified plants // Экологическая генетика. 2023. Т. 21, № S. С. 64–65. EDN: REYEMY doi: 10.17816/ecogen568501 |
| [79] |
Mitina GV, Choglokova AA, Cherepanova MA, et al. The application of the entomopathogenic fungus Akanthomyces muscarius modified GFP to study endophytization. Ecological genetics. 2023;21(S):66–67. EDN: TCEHTS doi: 10.17816/ecogen568650 |
| [80] |
Mitina G.V., Choglokova A.A., Cherepanova M.A., et al. The application of the entomopathogenic fungus Akanthomyces muscarius modified GFP to study endophytization // Экологическая генетика. 2023. Т. 21, № S. С. 66–67. EDN: TCEHTS doi: 10.17816/ecogen568650 |
| [81] |
Yakovleva IV, Gaidukova SE, Kamionskaya AM. Social and ethical component of genetic technologies. Ecological genetics. 2023;21(S):68–69. EDN: SOGWLL doi: 10.17816/ecogen567811 |
| [82] |
Yakovleva I.V., Gaidukova S.E., Kamionskaya A.M. Social and ethical component of genetic technologies // Экологическая генетика. 2023. Т. 21, № S. С. 68–69. EDN: SOGWLL doi: 10.17816/ecogen567811 |
| [83] |
Shaposhnikov AD, Matveeva TV. New naturally transgenic crops. Ecological genetics. 2023;21(S):70. EDN: WPHWAB doi: 10.17816/ecogen568608 |
| [84] |
Shaposhnikov A.D., Matveeva T.V. New naturally transgenic crops // Экологическая генетика. 2023. Т. 21, № S. С. 70. EDN: WPHWAB doi: 10.17816/ecogen568608 |
| [85] |
Himmel M, Malygina AA, Dukhinova MS. Teaching interdisciplinary courses on responsible conduct in the life sciences — implications for biorisk assessments of GMOs. Ecological genetics. 2023;21(S):71–72. EDN: BNYJMT doi: 10.17816/ecogen568584 |
| [86] |
Himmel M., Malygina A.A., Dukhinova M.S. Teaching interdisciplinary courses on responsible conduct in the life sciences — implications for biorisk assessments of GMOs // Экологическая генетика. 2023. Т. 21, № S. С. 71–72. EDN: BNYJMT doi: 10.17816/ecogen568584 |
| [87] |
Nasyrova FY, Barotov SS, Abdukholiqova FA. GMOs policy and research in Tajikistan. Ecological genetics. 2023;21(S):73–74. EDN: SJNXNA doi: 10.17816/ecogen568495 |
| [88] |
Nasyrova F.Y., Barotov S.S., Abdukholiqova F.A. GMOs policy and research in Tajikistan // Экологическая генетика. 2023. Т. 21, № S. С. 73–74. EDN: SJNXNA doi: 10.17816/ecogen568495 |
| [89] |
Barotov SS, Nasyrova FY, Abdukholiqova FA. Identification of genetically modified crops in Tajikistan. Ecological genetics. 2023;21(S):75–76. EDN: OFZNBC doi: 10.17816/ecogen568487 |
| [90] |
Barotov S.S., Nasyrova F.Y., Abdukholiqova F.A. Identification of genetically modified crops in Tajikistan // Экологическая генетика. 2023. Т. 21, № S. С. 75–76. EDN: OFZNBC doi: 10.17816/ecogen568487 |
| [91] |
Khusnutdinov EA, Panfilova MA, Terekhov MP, Mikhaylova EV. CRISPR/Cas editing of a CPC gene in Arabidopsis thaliana. Ecological genetics. 2024;22(1):13–21. doi: 10.17816/ecogen624373 |
| [92] |
Khusnutdinov E.A., Panfilova M.A., Terekhov M.P., Mikhaylova E.V. CRISPR/Cas editing of a CPC gene in Arabidopsis thaliana // Экологическая генетика. 2024. Т. 22, № 1. С. 13–21. doi: 10.17816/ecogen624373 |
| [93] |
Timina O, Timin O, Stepanova A. Biochemical characterisation of transformed roots of Pisum sativum L. subsp. sativum var. sativum with modified leaf morphotype. Ecological genetics. 2024; 22(1):23–32. doi: 10.17816/ecogen622926 |
| [94] |
Тимина О., Тимин О., Степанова А. Биохимическая характеристика трансформированных корней Pisum sativum L. subsp. sativum var. sativum с модифицированным морфотипом листа // Экологическая генетика. 2024. Т. 22, № 1. С. 23–32. doi: 0.17816/ecogen622926 |
| [95] |
Kantsurova E, Kozlov NV, Dolgikh ЕА Development of approaches for genome editing of pea plants using CRISPR/Cas9 prime-editing technique. Ecological genetics. 2024;22(1):63–73. doi: 10.17816/ecogen623140 |
| [96] |
Kantsurova E., Kozlov N.V., Dolgikh Е.А Development of approaches for genome editing of pea plants using CRISPR/Cas9 prime-editing technique // Экологическая генетика. 2024. Т. 22, № 1. С. 63–73. doi: 10.17816/ecogen623140 |
| [97] |
Okulova EC, Burlakovsky MS, Lutova LA. PCR-based “genome walk” methods. Ecological genetics. 2024;22(1):75–103. doi: 10.17816/ecogen624820 |
| [98] |
Окулова Е.С., Бурлаковский М.С., Лутова Л.А. Методы «прогулки по геному» на основе ПЦР // Экологическая генетика. 2024. Т. 22, № 1. С. 75–103. doi: 10.17816/ecogen624893 |
| [99] |
Kuznetsova KA, Dodueva IE, Lutova LA. The homeodomain of the Raphanus sativus transcription factor WOX4 binds to the promoter of the cytokinin biosynthesis gene LOG3. Ecological genetics. 2024;22(1):33–45. doi: 10.17816/ecogen624893 |
| [100] |
Кузнецова К.А., Додуева И.Е., Лутова Л.А. Гомеодомен транскрипционного фактора WOX4 Raphanus sativus связывается с промотором гена биосинтеза цитокининов LOG3 // Экологическая генетика. 2024. Т. 22, № 1. С. 33–46. doi: 10.17816/ecogen624893 |
| [101] |
Virolainen PA, Chekunova EM. Transgenesis of microalgae Chlamydomonas reinhardtii: current approaches. Ecological genetics. 2024;22(1):47–62. doi: 10.17816/ecogen624418 |
| [102] |
Виролайнен П.А., Чекунова Е.М. Трансгенез микроводоросли Chlamydomonas reinhardtii: актуальные подходы // Экологическая генетика. 2024. Т. 22, № 1. С. 47–62. doi: 10.17816/ecogen624418 |
Eco-Vector
/
| 〈 |
|
〉 |