Third International Conference “Genetically modified organism: the history, achievements, social and environmental risks”

Tatiana V. Matveeva

Ecological Genetics ›› 2024, Vol. 22 ›› Issue (1) : 5 -12.

PDF (530KB)
Ecological Genetics ›› 2024, Vol. 22 ›› Issue (1) : 5 -12. DOI: 10.17816/ecogen629595
From the Editorial Board
editorial

Third International Conference “Genetically modified organism: the history, achievements, social and environmental risks”

Author information +
History +
PDF (530KB)

Abstract

From October 3 to October 5, 2023, the Third International Conference “Genetically modified organism: the history, achievements, social and environmental risks” was held at St. Petersburg State University as part of the implementation of the Program for the creation and development of a world-class Scientific Center “Agricultural Technologies for the Future. ”This issue is dedicated to the 300th anniversary of St. Petersburg State University and presents materials from selected conference reports.

Keywords

GMO / agriculture / medicine / basic research

Cite this article

Download citation ▾
Tatiana V. Matveeva. Third International Conference “Genetically modified organism: the history, achievements, social and environmental risks”. Ecological Genetics, 2024, 22(1): 5-12 DOI:10.17816/ecogen629595

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Matveeva TV. Third International Conference “Genetically modified organisms: the history, achievements, social and environmental risks”. Ecological genetics. 2023;21(S):4. EDN: NYXOTM doi: 10.17816/ecogen569179

[2]

Matveeva T.V. Third International Conference “Genetically modified organisms: the history, achievements, social and environmental risks” // Экологическая генетика. 2023. Т. 21, № S. С. 4. EDN: NYXOTM doi: 10.17816/ecogen569179

[3]

Lutova LA, Dodueva IE. Basic research in the developmental genetics on the model of tumor growth in higher plants. Ecological genetics. 2023;21(S):5–6. EDN: TEZPVU doi: 10.17816/ecogen568363

[4]

Lutova L.A., Dodueva I.E. Basic research in the developmental genetics on the model of tumor growth in higher plants // Экологическая генетика. 2023. Т. 21, № S. С. 5–6. EDN: TEZPVU doi: 10.17816/ecogen568363

[5]

Sidorchuk YV, Belavin PA, Zagorskaya AA, et al. Transplastomic plants — new approaches to solving “old” problems. Ecological genetics. 2023;21(S):7–8. EDN: GJHYSB doi: 10.17816/ecogen568520

[6]

Sidorchuk Yu.V., Belavin P.A., Zagorskaya A.A., et al. Transplastomic plants — new approaches to solving “old” problems // Экологическая генетика. 2023. Т. 21, № S. С. 7–8. EDN: GJHYSB doi: 10.17816/ecogen568520

[7]

Artemiuk AM, Tvorogova VE, Lutova LA. Development of a system for the formation of transgenic somatic embryos in the liquid medium in Medicago truncatula. Ecological genetics. 2023;21(S):9. EDN: IQLATQ doi: 10.17816/ecogen568297

[8]

Artemiuk A.M., Tvorogova V.E., Lutova L.A. Development of a system for the formation of transgenic somatic embryos in the liquid medium in Medicago truncatula // Экологическая генетика. 2023. Т. 21, № S. С. 9. EDN: IQLATQ doi: 10.17816/ecogen568297

[9]

Konstantinov ZS, Tvorogova VE, Potsenkovskaia EA, Lutova LA. The search for inhibitors of somatic embryogenesis in Medicago truncatula. Ecological genetics. 2023;21(S):10. EDN: LWJAOE doi: 10.17816/ecogen568377

[10]

Konstantinov Z.S., Tvorogova V.E., Potsenkovskaia E.A., Lutova L.A. The search for inhibitors of somatic embryogenesis in Medicago truncatula // Экологическая генетика. 2023. Т. 21, № S. С. 10. EDN: LWJAOE doi: 10.17816/ecogen568377

[11]

Efremova EP, Tvorogova VE, Lutova LA. The MtWOX genes in the regulation of Medicago truncatula somatic embryogenesis. Ecological genetics. 2023;21(S):11. EDN: CECSAJ doi: 10.17816/ecogen568389

[12]

Efremova E.P., Tvorogova V.E., Lutova L.A. The MtWOX genes in the regulation of Medicago truncatula somatic embryogenesis // Экологическая генетика. 2023. Т. 21, № S. С. 11. EDN: CECSAJ doi: 10.17816/ecogen568389

[13]

Kiseleva AS, Matveenko AG, Tvorogova VE, Lutova LA. The screening vector system of morphogenic regulators in Fabaceae. Ecological genetics. 2023;21(S):12–13. EDN: CIJWMG doi: 10.17816/ecogen568518

[14]

Kiseleva A.S., Matveenko A.G., Tvorogova V.E., Lutova L.A. The screening vector system of morphogenic regulators in Fabaceae // Экологическая генетика. 2023. Т. 21, № S. С. 12–13. EDN: CIJWMG doi: 10.17816/ecogen568518

[15]

Makeeva AS, Sidorin AV, Ishtuganova VV, et al. Effect of biotin starvation on gene expression in industrially significant yeast Komagataella phaffii. Ecological genetics. 2023;21(S):14–15. EDN: PNRHNH doi: 10.17816/ecogen568379

[16]

Makeeva A.S., Sidorin A.V., Ishtuganova V.V., et al. Effect of biotin starvation on gene expression in industrially significant yeast Komagataella phaffii // Экологическая генетика. 2023. Т. 21, № S. С. 14–15. EDN: PNRHNH doi: 10.17816/ecogen568379

[17]

Kulichikhin KY, Sopova JV, Rubel AA. A set of Saccharomyces cerevisiae strains possessing [PSI+] prion formed by Sup35 protein with various deletions in prionogenic domain. Ecological genetics. 2023;21(S):16. EDN: HNSKKX doi: 10.17816/ecogen567848

[18]

Kulichikhin K.Y., Sopova J.V., Rubel A.A. A set of Saccharomyces cerevisiae strains possessing [PSI+] prion formed by Sup35 protein with various deletions in prionogenic domain // Экологическая генетика. 2023. Т. 21, № S. С. 16. EDN: HNSKKX doi: 10.17816/ecogen567848

[19]

Shumega AR, Stepchenkova EI, Inge-Vechtomov SG. Evaluation of non-specific CRISPR/Cas9 activity in a yeast model. Ecological genetics. 2023;21(S):17–18. EDN: ZLZALV doi: 10.17816/ecogen567918

[20]

Shumega A.R., Stepchenkova E.I., Inge-Vechtomov S.G. Evaluation of non-specific CRISPR/Cas9 activity in a yeast model // Экологическая генетика. 2023. Т. 21, № S. С. 17–18. EDN: ZLZALV doi: 10.17816/ecogen567918

[21]

Tsygankov MA, Rumyantsev AM, Padkina MV. Application of yeast display method in biotechnology and agriculture. Ecological genetics. 2023;21(S):19. EDN: CGMMZE doi: 10.17816/ecogen568181

[22]

Tsygankov M.A., Rumyantsev A.M., Padkina M.V. Application of yeast display method in biotechnology and agriculture // Экологическая генетика. 2023. Т. 21, № S. С. 19. EDN: CGMMZE doi: 10.17816/ecogen568181

[23]

Chirinskaite AV, Zelinsky AA, Sopova JV, Leonova EI. Development of the Cas12a-based microdeletion and microinsertion detection system. Ecological genetics. 2023;21(S):20–21. EDN: VDMNGW doi: 10.17816/ecogen568454

[24]

Chirinskaite A.V., Zelinsky A.A., Sopova J.V., Leonova E.I. Development of the Cas12a-based microdeletion and microinsertion detection system // Экологическая генетика. 2023. Т. 21, № S. С. 20–21. EDN: VDMNGW doi: 10.17816/ecogen568454

[25]

Deineko EV. Current state of research in the development of the genomic editing method: problems and prospects. Ecological genetics. 2023;21(S):22. EDN: BGIXTL doi: 10.17816/ecogen568610

[26]

Deineko E.V. Current state of research in the development of the genomic editing method: problems and prospects // Экологическая генетика. 2023. Т. 21, № S. С. 22. EDN: BGIXTL doi: 10.17816/ecogen568610

[27]

Lebedeva MA, Razhina OL, Nikanorkina VV, Taranov VV. The strong base for using base editing in plants. Ecological genetics. 2023;21(S):23. EDN: XLZQPV doi: 10.17816/ecogen567885

[28]

Lebedeva M.A., Razhina O.L., Nikanorkina V.V., Taranov V.V. The strong base for using base editing in plants // Экологическая генетика. 2023. Т. 21, № S. С. 23. EDN: XLZQPV doi: 10.17816/ecogen567885

[29]

Timonova EM, Kiseleva AA, Berezhnaia AA, et al. Modification of agricultural traits in cultivated varieties of barley and wheat. Ecological genetics. 2023;21(S):24–25. EDN: PODECI doi: 10.17816/ecogen568184

[30]

Timonova E.M., Kiseleva A.A., Berezhnaia A.A., et al. Modification of agricultural traits in cultivated varieties of barley and wheat // Экологическая генетика. 2023. Т. 21, № S. С. 24–25. EDN: PODECI doi: 10.17816/ecogen568184

[31]

Miroshnichenko DN, Timerbaev VR, Divashuk MG, et al. Advancing gene editing: multiplex mutagenesis in hexaploid triticale Ecological genetics. 2023;21(S):26–27. EDN: XZHALT doi: 10.17816/ecogen568624

[32]

Miroshnichenko D.N., Timerbaev V.R., Divashuk M.G., et al. Advancing gene editing: multiplex mutagenesis in hexaploid triticale // Экологическая генетика. 2023. Т. 21, № S. С. 26–27. EDN: XZHALT doi: 10.17816/ecogen568624

[33]

Kiryushkin AS, Ilina EL, Demchenko KN. Study of functional features of plant root systems using CRISPR/Cas-mediated genome editing. Ecological genetics. 2023;21(S):28–29. EDN: ELXALM doi: 10.17816/ecogen568351

[34]

Kiryushkin A.S., Ilina E.L., Demchenko K.N. Study of functional features of plant root systems using CRISPR/Cas-mediated genome editing // Экологическая генетика. 2023. Т. 21, № S. С. 28–29. EDN: ELXALM doi: 10.17816/ecogen568351

[35]

Virolainen PA, Chekunova EM. CRISPR/Cas based genome editing in microalgae. Ecological genetics. 2023;21(S):30–31. EDN: NRMKRS doi: 10.17816/ecogen568609

[36]

Virolainen P.A., Chekunova E.M. CRISPR/Cas based genome editing in microalgae // Экологическая генетика. 2023. Т. 21, № S. С. 30–31. EDN: NRMKRS doi: 10.17816/ecogen568609

[37]

Tvorogova VE, Potsenkovskaia EA, Efremova EP, et al. The transformation and genome editing of Pisum sativum: protocols and their modifications. Ecological genetics. 2023;21(S):32–33. EDN: DRBNUT doi: 10.17816/ecogen567891

[38]

Tvorogova V.E., Potsenkovskaia E.A., Efremova E.P., et al. The transformation and genome editing of Pisum sativum: protocols and their modifications // Экологическая генетика. 2023. Т. 21, № S. С. 32–33. EDN: DRBNUT doi: 10.17816/ecogen567891

[39]

Chekunova EM, Virolainen PA. Microalgae as production systems of bioactive compounds. Bioengineering approaches. Ecological genetics. 2023;21(S):38–39. EDN: NSFEFN doi: 10.17816/ecogen568627

[40]

Chekunova E.M., Virolainen P.A. Microalgae as production systems of bioactive compounds. Bioengineering approaches // Экологическая генетика. 2023. Т. 21, № S. С. 38–39. EDN: NSFEFN doi: 10.17816/ecogen568627

[41]

Timina O, Timin O, Stepanova A. Some biochemical characteristics of the hairy roots of Pisum sativum L. mutants. Ecological genetics. 2023;21(S):40. EDN: YVXKIW doi: 10.17816/ecogen568310

[42]

Timina O., Timin O., Stepanova A. Some biochemical characteristics of the hairy roots of Pisum sativum L. mutants // Экологическая генетика. 2023. Т. 21, № S. С. 40. EDN: YVXKIW doi: 10.17816/ecogen568310

[43]

Cheryatova YSu, Yembaturova EYu. Transgenic medicinal plants as producers of bioactive substances. Ecological genetics. 2023;21(S):41–42. EDN: CKLJNH doi: 10.17816/ecogen567947

[44]

Cheryatova Yu.S., Yembaturova E.Yu. Transgenic medicinal plants as producers of bioactive substances // Экологическая генетика. 2023. Т. 21, № S. С. 41–42. EDN: CKLJNH doi: 10.17816/ecogen567947

[45]

Okulova ES, Burlakovskiy MS, Padkina MV, Lutova LA. Obtaining of transgenic barrelclover plants (Medicago truncatula) producing chicken interferon gamma for veterinary use. Ecological genetics. 2023;21(S):43–44. EDN: CQQYIO doi: 10.17816/ecogen567940

[46]

Okulova E.S., Burlakovskiy M.S., Padkina M.V., Lutova L.A. Obtaining of transgenic barrelclover plants (Medicago truncatula) producing chicken interferon gamma for veterinary use // Экологическая генетика. 2023. Т. 21, № S. С. 43–44. EDN: CQQYIO doi: 10.17816/ecogen567940

[47]

Zelinsky AA, Rubel AA, Ryabinina MV. Identifying novel amyloid candidates using bioinformatics algorithms and a yeast model approach. Ecological genetics. 2023;21(S):45. EDN: TOHHXF doi: 10.17816/ecogen568129

[48]

Zelinsky A.A., Rubel A.A., Ryabinina M.V. Identifying novel amyloid candidates using bioinformatics algorithms and a yeast model approach // Экологическая генетика. 2023. Т. 21, № S. С. 45. EDN: TOHHXF doi: 10.17816/ecogen568129

[49]

Kaushik P, Meenakshi S, Anil K. Bioengineering eggplants: a deep dive into SmHQT and phenolic acid biosynthesis. Ecological genetics. 2023;21(S):34–35. EDN: HXFVOF doi: 10.17816/ecogen568585

[50]

Kaushik P., Meenakshi S., Anil K. Bioengineering eggplants: a deep dive into SmHQT and phenolic acid biosynthesis // Экологическая генетика. 2023. Т. 21, № S. С. 34–35. EDN: HXFVOF doi: 10.17816/ecogen568585

[51]

Meenakshi S, Delta A, Kaushik P. Genetic enhancement of Datura metel for optimized silver nanoparticle synthesis. Ecological genetics. 2023;21(S):36–37. EDN: FZTMAB doi: 10.17816/ecogen568587

[52]

Meenakshi S., Delta A., Kaushik P. Genetic enhancement of Datura metel for optimized silver nanoparticle synthesis // Экологическая генетика. 2023. Т. 21, № S. С. 36–37. EDN: FZTMAB doi: 10.17816/ecogen568587

[53]

Dolgov SV. Bioengineering of horticultural crops in Russia and in the world. Ecological genetics. 2023;21(S):46. EDN: IKDROI doi: 10.17816/ecogen568614

[54]

Dolgov S.V. Bioengineering of horticultural crops in Russia and in the world // Экологическая генетика. 2023. Т. 21, № S. С. 46. EDN: IKDROI doi: 10.17816/ecogen568614

[55]

Baranov DY, Dolgov SV, Timerbaev VR. Knockout of the tomato translational elongation factor using CRISPR-Cas9 technology. Ecological genetics. 2023;21(S):47. EDN: ZKPLVT doi: 10.17816/ecogen568327

[56]

Baranov D.Yu., Dolgov S.V., Timerbaev V.R. Knockout of the tomato translational elongation factor using CRISPR-Cas9 technology // Экологическая генетика. 2023. Т. 21, № S. С. 47. EDN: ZKPLVT doi: 10.17816/ecogen568327

[57]

Elkonin LA, Gerashchenkov GA, Borisenko NV, et al. SITE-directed mutagenesis for producing grain sorgum mutants with improved kafirine digestibility. Ecological genetics. 2023;21(S):48–49. EDN: ROHKMO doi: 10.17816/ecogen567897

[58]

Elkonin L.A., Gerashchenkov G.A., Borisenko N.V., et al. SITE-directed mutagenesis for producing grain sorgum mutants with improved kafirine digestibility // Экологическая генетика. 2023. Т. 21, № S. С. 48–49. EDN: ROHKMO doi: 10.17816/ecogen567897

[59]

Lebedeva MA, Dobychkina DA, Kochetkova LA, Lutova LA. Overexpression of the MtCLE35 gene in transgenic Medicago truncatula plants inhibits nodulation at early stages of symbiosis development. Ecological genetics. 2023;21(S):50–51. EDN: UKVFAZ doi: 10.17816/ecogen568451

[60]

Lebedeva M.A., Dobychkina D.A., Kochetkova L.A., Lutova L.A. Overexpression of the MtCLE35 gene in transgenic Medicago truncatula plants inhibits nodulation at early stages of symbiosis development // Экологическая генетика. 2023. Т. 21, № S. С. 50–51. EDN: UKVFAZ doi: 10.17816/ecogen568451

[61]

Ivanov AA, Burlakov AV, Golubeva TS. Approaches for the protection of Solanum tuberosum from late blight through the regulation of inf1 and inf4 elicitin genes. Ecological genetics. 2023;21(S):52. EDN: HIEKXI doi: 10.17816/ecogen568381

[62]

Ivanov A.A., Burlakov A.V., Golubeva T.S. Approaches for the protection of Solanum tuberosum from late blight through the regulation of inf1 and inf4 elicitin genes // Экологическая генетика. 2023. Т. 21, № S. С. 52. EDN: HIEKXI doi: 10.17816/ecogen568381

[63]

Kochetkova LA, Lebedeva MA, Lutova LA. Putative molecular pathways of autoregulation of nodulation activated by CLE peptides in pea. Ecological genetics. 2023;21(S):53. EDN: EPMBLK doi: 10.17816/ecogen568446

[64]

Kochetkova L.A., Lebedeva M.A., Lutova L.A. Putative molecular pathways of autoregulation of nodulation activated by CLE peptides in pea // Экологическая генетика. 2023. Т. 21, № S. С. 53. EDN: EPMBLK doi: 10.17816/ecogen568446

[65]

Dolgikh EA, Kantsurova ES, Kozyulina PYu, et al. Genetically modified legume plants as a basis for studying the signal regulation of symbiosis with nodule bacteria. Ecological genetics. 2023;21(S):54–55. EDN: JROAHF doi: 10.17816/ecogen568623

[66]

Dolgikh E.A., Kantsurova E.S., Kozyulina P.Yu., et al. Genetically modified legume plants as a basis for studying the signal regulation of symbiosis with nodule bacteria // Экологическая генетика. 2023. Т. 21, № S. С. 54–55. EDN: JROAHF doi: 10.17816/ecogen568623

[67]

Matveeva TV. Prospects for the study of natural GMOs. Ecological genetics. 2023;21(S):56. EDN: NODEWF doi: 10.17816/ecogen487646

[68]

Matveeva T.V. Prospects for the study of natural GMOs // Экологическая генетика. 2023. Т. 21, № S. С. 56. EDN: NODEWF doi: 10.17816/ecogen487646

[69]

Chen K, Zhurbenko PM, Danilov LG, et al. Natural transformants of Camellia section Thea. Ecological genetics. 2023;21(S):57–58. EDN: ECFWBE doi: 10.17816/ecogen568588

[70]

Chen K., Zhurbenko P.M., Danilov L.G., et al. Natural transformants of Camellia section Thea // Экологическая генетика. 2023. Т. 21, № S. С. 57–58. EDN: ECFWBE doi: 10.17816/ecogen568588

[71]

Bogomaz OD, Bemova VD, Matveeva TV. Natural GMOs inside the genus Arachis L. Ecological genetics. 2023;21(S):59–60. EDN: XGMZOD doi: 10.17816/ecogen568618

[72]

Bogomaz O.D., Bemova V.D., Matveeva T.V. Natural GMOs inside the genus Arachis L. // Экологическая генетика. 2023. Т. 21, № S. С. 59–60. EDN: XGMZOD doi: 10.17816/ecogen568618

[73]

Zhidkin RR, Zhurbenko PM, Matveeva TV. Distribution of the rolB/C-like natural transgene in representatives of the genus Vaccinium L. Ecological genetics. 2023;21(S):61–62. EDN: CUDSSM doi: 10.17816/ecogen567934

[74]

Zhidkin R.R., Zhurbenko P.M., Matveeva T.V. Distribution of the rolB/C-like natural transgene in representatives of the genus Vaccinium L. // Экологическая генетика. 2023. Т. 21, № S. С. 61–62. EDN: CUDSSM doi: 10.17816/ecogen567934

[75]

Mikhaylova EV. Transgene-free genome editing of plants. Ecological genetics. 2023;21(S):63. EDN: DJHBID doi: 10.17816/ecogen567964

[76]

Mikhaylova E.V. Transgene-free genome editing of plants // Экологическая генетика. 2023. Т. 21, № S. С. 63. EDN: DJHBID doi: 10.17816/ecogen567964

[77]

Sokornova SV, Mandrik-Litvinkovich MN, Matveeva TV. Characteristics of root endophytic fungi communities associated with genetically modified plants. Ecological genetics. 2023;21(S):64–65. EDN: REYEMY doi: 10.17816/ecogen568501

[78]

Sokornova S.V., Mandrik-Litvinkovich M.N., Matveeva T.V. Characteristics of root endophytic fungi communities associated with genetically modified plants // Экологическая генетика. 2023. Т. 21, № S. С. 64–65. EDN: REYEMY doi: 10.17816/ecogen568501

[79]

Mitina GV, Choglokova AA, Cherepanova MA, et al. The application of the entomopathogenic fungus Akanthomyces muscarius modified GFP to study endophytization. Ecological genetics. 2023;21(S):66–67. EDN: TCEHTS doi: 10.17816/ecogen568650

[80]

Mitina G.V., Choglokova A.A., Cherepanova M.A., et al. The application of the entomopathogenic fungus Akanthomyces muscarius modified GFP to study endophytization // Экологическая генетика. 2023. Т. 21, № S. С. 66–67. EDN: TCEHTS doi: 10.17816/ecogen568650

[81]

Yakovleva IV, Gaidukova SE, Kamionskaya AM. Social and ethical component of genetic technologies. Ecological genetics. 2023;21(S):68–69. EDN: SOGWLL doi: 10.17816/ecogen567811

[82]

Yakovleva I.V., Gaidukova S.E., Kamionskaya A.M. Social and ethical component of genetic technologies // Экологическая генетика. 2023. Т. 21, № S. С. 68–69. EDN: SOGWLL doi: 10.17816/ecogen567811

[83]

Shaposhnikov AD, Matveeva TV. New naturally transgenic crops. Ecological genetics. 2023;21(S):70. EDN: WPHWAB doi: 10.17816/ecogen568608

[84]

Shaposhnikov A.D., Matveeva T.V. New naturally transgenic crops // Экологическая генетика. 2023. Т. 21, № S. С. 70. EDN: WPHWAB doi: 10.17816/ecogen568608

[85]

Himmel M, Malygina AA, Dukhinova MS. Teaching interdisciplinary courses on responsible conduct in the life sciences — implications for biorisk assessments of GMOs. Ecological genetics. 2023;21(S):71–72. EDN: BNYJMT doi: 10.17816/ecogen568584

[86]

Himmel M., Malygina A.A., Dukhinova M.S. Teaching interdisciplinary courses on responsible conduct in the life sciences — implications for biorisk assessments of GMOs // Экологическая генетика. 2023. Т. 21, № S. С. 71–72. EDN: BNYJMT doi: 10.17816/ecogen568584

[87]

Nasyrova FY, Barotov SS, Abdukholiqova FA. GMOs policy and research in Tajikistan. Ecological genetics. 2023;21(S):73–74. EDN: SJNXNA doi: 10.17816/ecogen568495

[88]

Nasyrova F.Y., Barotov S.S., Abdukholiqova F.A. GMOs policy and research in Tajikistan // Экологическая генетика. 2023. Т. 21, № S. С. 73–74. EDN: SJNXNA doi: 10.17816/ecogen568495

[89]

Barotov SS, Nasyrova FY, Abdukholiqova FA. Identification of genetically modified crops in Tajikistan. Ecological genetics. 2023;21(S):75–76. EDN: OFZNBC doi: 10.17816/ecogen568487

[90]

Barotov S.S., Nasyrova F.Y., Abdukholiqova F.A. Identification of genetically modified crops in Tajikistan // Экологическая генетика. 2023. Т. 21, № S. С. 75–76. EDN: OFZNBC doi: 10.17816/ecogen568487

[91]

Khusnutdinov EA, Panfilova MA, Terekhov MP, Mikhaylova EV. CRISPR/Cas editing of a CPC gene in Arabidopsis thaliana. Ecological genetics. 2024;22(1):13–21. doi: 10.17816/ecogen624373

[92]

Khusnutdinov E.A., Panfilova M.A., Terekhov M.P., Mikhaylova E.V. CRISPR/Cas editing of a CPC gene in Arabidopsis thaliana // Экологическая генетика. 2024. Т. 22, № 1. С. 13–21. doi: 10.17816/ecogen624373

[93]

Timina O, Timin O, Stepanova A. Biochemical characterisation of transformed roots of Pisum sativum L. subsp. sativum var. sativum with modified leaf morphotype. Ecological genetics. 2024; 22(1):23–32. doi: 10.17816/ecogen622926

[94]

Тимина О., Тимин О., Степанова А. Биохимическая характеристика трансформированных корней Pisum sativum L. subsp. sativum var. sativum с модифицированным морфотипом листа // Экологическая генетика. 2024. Т. 22, № 1. С. 23–32. doi: 0.17816/ecogen622926

[95]

Kantsurova E, Kozlov NV, Dolgikh ЕА Development of approaches for genome editing of pea plants using CRISPR/Cas9 prime-editing technique. Ecological genetics. 2024;22(1):63–73. doi: 10.17816/ecogen623140

[96]

Kantsurova E., Kozlov N.V., Dolgikh Е.А Development of approaches for genome editing of pea plants using CRISPR/Cas9 prime-editing technique // Экологическая генетика. 2024. Т. 22, № 1. С. 63–73. doi: 10.17816/ecogen623140

[97]

Okulova EC, Burlakovsky MS, Lutova LA. PCR-based “genome walk” methods. Ecological genetics. 2024;22(1):75–103. doi: 10.17816/ecogen624820

[98]

Окулова Е.С., Бурлаковский М.С., Лутова Л.А. Методы «прогулки по геному» на основе ПЦР // Экологическая генетика. 2024. Т. 22, № 1. С. 75–103. doi: 10.17816/ecogen624893

[99]

Kuznetsova KA, Dodueva IE, Lutova LA. The homeodomain of the Raphanus sativus transcription factor WOX4 binds to the promoter of the cytokinin biosynthesis gene LOG3. Ecological genetics. 2024;22(1):33–45. doi: 10.17816/ecogen624893

[100]

Кузнецова К.А., Додуева И.Е., Лутова Л.А. Гомеодомен транскрипционного фактора WOX4 Raphanus sativus связывается с промотором гена биосинтеза цитокининов LOG3 // Экологическая генетика. 2024. Т. 22, № 1. С. 33–46. doi: 10.17816/ecogen624893

[101]

Virolainen PA, Chekunova EM. Transgenesis of microalgae Chlamydomonas reinhardtii: current approaches. Ecological genetics. 2024;22(1):47–62. doi: 10.17816/ecogen624418

[102]

Виролайнен П.А., Чекунова Е.М. Трансгенез микроводоросли Chlamydomonas reinhardtii: актуальные подходы // Экологическая генетика. 2024. Т. 22, № 1. С. 47–62. doi: 10.17816/ecogen624418

Funding

Министерство образования и науки Российской ФедерацииМинистерство образования и науки Российской Федерации(075-15-2022-322)

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF (530KB)

109

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/