The homeodomain of the Raphanus sativus WOX4 binds to the promoter of the LOG3 cytokinin biosynthesis gene

Xenia A. Kuznetsova , Irina E. Dodueva , Lyudmila A. Lutova

Ecological Genetics ›› 2024, Vol. 22 ›› Issue (1) : 33 -46.

PDF (2423KB)
Ecological Genetics ›› 2024, Vol. 22 ›› Issue (1) : 33 -46. DOI: 10.17816/ecogen624893
Genetic basis of ecosystems evolution
research-article

The homeodomain of the Raphanus sativus WOX4 binds to the promoter of the LOG3 cytokinin biosynthesis gene

Author information +
History +
PDF (2423KB)

Abstract

BACKGROUND: The WOX4 transcription factor plays a crucial role in maintaining the organisation of cambium meristem during secondary growth, but its direct targets are unknown.

AIM: The aim of our work were to study the effect of WOX4 overexpression on the root development and gene expression in radish (Raphanus sativus L.), a root crop related to Arabidopsis thaliana, and to search for direct targets of the WOX4 in radish.

MATERIALS AND METHODS: Radish line 19 of the St. Petersburg State University radish genetic collection was used. Plants were grown on Murashige–Skoog medium and then in soil at 23оС and 16 h of daylight. Total DNA was extracted from radish seedlings using the CTAB method. The PCR-amplified full-length RsWOX4-2 gene, gene fragments or homeobox sequence were cloned into the vectors for overexpression (pB7WG2D), RNA interference (pH7GWIWG2) and yeast one-hybrid assay (pDEST22), respectively, using the Gateway system. The vectors for overexpression and RNA interference of RsWOX4-2 were transformed into Escherichia coli DH10B and then into Agrobacteium rhizogenes Arqua chemically competent cells. Radish seedlings were transformed with A. rhizogenes containing vectors for overexpression and RNA interference of RsWOX4-2, and GUS-overexpressing A. rhizogenes was used as a control. Total RNA from transgenic radish roots was extracted with Trizol reagent. RNA reverse transcription was performed using dT-18 primers and RevertAid reverse transcriptase. qPCR was performed using the Eva Green reagent kit on a CFX96 thermocycler with fluorescence detection system. Results were processed using the 2ΔΔCT method. Yeast transformation was performed using the competent Saccharomyces cerevisiae cells of Y2H Gold strain. For the yeast one-hybrid assay, the obtained yeast colonies transformed with plasmids containing TF homeodomain sequence and promoter regions of genes were grown on DDO and TDO selective media with different concentrations of 3-amino-1,2,4-triazole. Statistical processing based on Student’s t-test and graphing were performed using the ggplot2 package for the R programming language (v.4.0.2).

RESULTS: Overexpression of the RsWOX4-2 gene affects the structure of the radish root stele and alters the number of vessels and cambium cells. Overexpression and RNA interference of the RsWOX4-2 causes changes in the expression levels of putative target genes with the WOX family transcription factor conserved binding sites in their promoters. Using the yeast one-hybrid assay, we have shown that the DNA-binding homeodomain of RsWOX4-2 interacts with the TAATCC site in the promoter of the RsLOG3 gene, which encodes the enzyme for cytokinin biosynthesis.

CONCLUSIONS: We have demonstrated the effect of RsWOX4-2 overexpression on radish root stele and gene expression and identified the RsLOG3 as the putative direct target of the WOX4 transcription factor in radish.

Keywords

Raphanus sativus / WOX4 / LOG3 / cytokinin / storage root

Cite this article

Download citation ▾
Xenia A. Kuznetsova, Irina E. Dodueva, Lyudmila A. Lutova. The homeodomain of the Raphanus sativus WOX4 binds to the promoter of the LOG3 cytokinin biosynthesis gene. Ecological Genetics, 2024, 22(1): 33-46 DOI:10.17816/ecogen624893

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ji J, Strable J, Shimizu R, et al. WOX4 promotes procambial development. Plant Physiol. 2010;152(3):1346–1356. doi: 10.1104/pp.109.149641

[2]

Ji J., Strable J., Shimizu R., et al. WOX4 promotes procambial development // Plant Physiol. 2010. Vol. 152, N. 3. P. 1346–1356. doi: 10.1104/pp.109.149641

[3]

Etchells JP, Provost CM, Mishra L, Turner SR. WOX4 and WOX14 act downstream of the PXY receptor kinase to regulate plant vascular proliferation independently of any role in vascular organization. Development. 2013;140(10): 2224–2234. doi: 10.1242/dev.091314

[4]

Etchells J.P., Provost C.M., Mishra L., Turner S.R. WOX4 and WOX14 act downstream of the PXY receptor kinase to regulate plant vascular proliferation independently of any role in vascular organisation // Development. 2013. Vol. 140, N. 10. P. 2224–2234. doi: 10.1242/dev.091314

[5]

Hirakawa Y, Kondo Y, Fukuda H. Regulation of vascular development by CLE peptide-receptor systems. J Integr Plant Biol. 2010;52(1):8–16. doi: 10.1111/j.1744-7909.2010.00904.x

[6]

Hirakawa Y., Kondo Y., Fukuda H. Regulation of vascular development by CLE peptide-receptor systems // J Integr Plant Biol. 2010. Vol. 52, N. 1. P. 8–16. doi: 10.1111/j.1744-7909.2010.00904.x

[7]

Kuznetsova K, Efremova E, Dodueva I, et al. Functional modules in the meristems: “Tinkering” in action. Plants (Basel). 2023;12(20):3661. doi: 10.3390/plants12203661

[8]

Kuznetsova K., Efremova E., Dodueva I., et al. Functional modules in the meristems: “Tinkering” in action // Plants (Basel). 2023. Vol. 12, N. 20. ID 3661. doi: 10.3390/plants12203661

[9]

Schoof H, Lenhard M, Haecker A, et al T. The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell. 2000;100(6):635–644. doi: 10.1016/s0092-8674(00)80700-x

[10]

Schoof H., Lenhard M., Haecker A., et al T. The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes // Cell. 2000. Vol. 100, N. 6. P. 635–644. doi: 10.1016/s0092-8674(00)80700-x

[11]

Stahl Y, Simon R. Is the Arabidopsis root niche protected by sequestration of the CLE40 signal by its putative receptor ACR4? Plant Signal Behav. 2009;4(7):634–635. doi: 10.4161/psb.4.7.8970

[12]

Stahl Y., Simon R. Is the Arabidopsis root niche protected by sequestration of the CLE40 signal by its putative receptor ACR4? // Plant Signal Behav. 2009. Vol. 4, N. 7. P. 634–635. doi: 10.4161/psb.4.7.8970

[13]

Tvorogova VE, Krasnoperova EY, Potsenkovskaya EA, et al. What does the WOX say? Review of regulators, targets, partners. Molecular Biology. 2021;55(3):362–391. EDN: XTKTTE doi: 10.31857/S0026898421030174

[14]

Творогова В.Е., Красноперова Е.Ю., Поценковская Э.А., и др. Что могут рассказать белки WOX? Обзор мишеней, регуляторов, партнеров // Молекулярная биология. 2021. T. 55, № 3. С. 362–391. EDN: XTKTTE doi: 10.31857/S0026898421030174

[15]

Lohmann JU, Hong RL, Hobe M, et al. A molecular link between stem cell regulation and floral patterning in Arabidopsis. Cell. 2001;105(6):793–803. doi: 10.1016/s0092-8674(01)00384-1

[16]

Lohmann J.U., Hong R.L., Hobe M., et al. A molecular link between stem cell regulation and floral patterning in Arabidopsis // Cell. 2001. Vol. 105, N. 6. P. 793–803. doi: 10.1016/s0092-8674(01)00384-1

[17]

Busch W, Miotk A, Ariel FD, et al. Transcriptional control of a plant stem cell niche. Dev Cell. 2010;18(5):849–861. doi: 10.1016/j.devcel.2010.03.012

[18]

Busch W., Miotk A., Ariel F.D., et al. Transcriptional control of a plant stem cell niche // Dev Cell. 2010. Vol. 18, N. 5. P. 849–861. doi: 10.1016/j.devcel.2010.03.012

[19]

Yadav RK, Perales M, Gruel J, et al. WUSCHEL protein movement mediates stem cell homeostasis in the Arabidopsis shoot apex. Genes Dev. 2011;25(19):2025–2030. doi: 10.1101/gad.17258511

[20]

Yadav R.K., Perales M., Gruel J., et al. WUSCHEL protein movement mediates stem cell homeostasis in the Arabidopsis shoot apex // Genes Dev. 2011. Vol. 25, N. 19. P. 2025–2030. doi: 10.1101/gad.17258511

[21]

Perales M, Rodriguez K, Snipes S, et al. Threshold-dependent transcriptional discrimination underlies stem cell homeostasis. PNAS USA. 2016;113(41): E6298–E6306. doi: 10.1073/pnas.1607669113

[22]

Perales M., Rodriguez K., Snipes S., et al. Threshold-dependent transcriptional discrimination underlies stem cell homeostasis // PNAS USA. 2016. Vol. 113, N. 41. P. E6298–E6306. doi: 10.1073/pnas.1607669113

[23]

Hoang NV, Park C, Kamran M, Lee J-Y. Gene regulatory network guided investigations and engineering of storage root development in root crops. Front Plant Sci. 2020;11:762. doi: 10.3389/fpls.2020.00762

[24]

Hoang N.V., Park C., Kamran M., Lee J.-Y. Gene regulatory network guided investigations and engineering of storage root development in root crops // Front Plant Sci. 2020. Vol. 11. ID 762. doi: 10.3389/fpls.2020.00762

[25]

Kuznetsova K, Dodueva I, Gancheva M, Lutova L. Transcriptomic analysis of radish (Raphanus sativus L.) roots with CLE41 overexpression. Plants (Basel). 2022;11(16):2163. doi: 10.3390/plants11162163

[26]

Kuznetsova K., Dodueva I., Gancheva M., Lutova L. Transcriptomic analysis of radish (Raphanus sativus L.) roots with CLE41 overexpression // Plants (Basel). 2022. Vol. 11, N. 16. ID 2163. doi: 10.3390/plants11162163

[27]

Narbut SI. Genetic collection of inbred radish lines. Russian Journal of Genetics. 1966;2(5):89–100. (In Russ.)

[28]

Нарбут С.И. Генетическая коллекция инбредных линий редиса // Генетика. 1966. Т. 2, № 5. С. 89–100.

[29]

Buzovkina IS, Lutova LA. The genetic collection of radish inbred lines: history and prospects. Russian Journal of Genetics. 2007;43(10):1411–1423. (In Russ.) EDN: HGCCFX

[30]

Бузовкина И.С., Лутова Л.А. Генетическая коллекция инбредных линий редиса: история и перспективы // Генетика. 2007. Т. 43, № 10. С. 1411–1423. EDN: HGCCFX

[31]

Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum. 1962;15(3):473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x

[32]

Murashige T., Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures // Physiologia Plantarum. 1962. Vol. 15, N. 3. P. 473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x

[33]

Sazanova LV. Raphanus L. – radish, radicchio. In: Cultural flora of the USSR. Vol. XVIII. Root plants. Leningrad: Agropromizdat, 1985. (In Russ.)

[34]

Сазанова Л.В. Raphanus L. – редька, редис. В кн.: Культурная флора СССР. Т. XVIII. Корнеплодные растения. Ленинград: Агропромиздат, 1985.

[35]

Aboul-Maaty NA-F, Oraby HA-S. Extraction of high-quality genomic DNA from different plant orders applying a modified CTAB-based method. Bull Nat Res Cent. 2019;43:25. doi: 10.1186/s42269-019-0066-1

[36]

Aboul-Maaty N.A.-F., Oraby H.A.-S. Extraction of high-quality genomic DNA from different plant orders applying a modified CTAB-based method // Bull Nat Res Cent. 2019. Vol. 43. ID 25. doi: 10.1186/s42269-019-0066-1

[37]

Untergasser A, Cutcutache I, Koressaar T, et al. Primer3 – new capabilities and interfaces. Nucleic Acids Res. 2012;40(15):e115. doi: 10.1093/nar/gks596

[38]

Untergasser A., Cutcutache I., Koressaar T., et al. Primer3 – new capabilities and interfaces // Nucleic Acids Res. 2012. Vol. 40, N. 15. ID e115. doi: 10.1093/nar/gks596

[39]

Sambrook J, Russell DW. Preparation and transformation of competent E. coli using calcium chloride. Cold Spring Harbor Protocols. 2006;1: pdb.prot3932. doi: 10.1101/pdb.prot3932

[40]

Sambrook J., Russell D.W. Preparation and transformation of competent E. coli using calcium chloride // Cold Spring Harbor Protocols. 2006. V. 1. ID pdb.prot3932. doi: 10.1101/pdb.prot3932

[41]

Inoue H, Nojima H, Okayama H. High efficiency transformation of Escherichia coli with plasmids. Gene. 1990;96(1):23–28. doi: 10.1016/0378-1119(90)90336-p

[42]

Inoue H., Nojima H., Okayama H. High efficiency transformation of Escherichia coli with plasmids // Gene. 1990. Vol. 96, N. 1. P. 23–28. doi: 10.1016/0378-1119(90)90336-p

[43]

Lebedeva (Osipova) MA, Tvorogova VE, Vinogradova AP, et al. Initiation of spontaneous tumors in radish (Raphanus sativus): Cellular, molecular and physiological events. J Plant Physiol. 2015;173:97–104. doi: 10.1016/j.jplph.2014.07.030

[44]

Lebedeva (Osipova) M.A., Tvorogova V.E., Vinogradova A.P., et al. Initiation of spontaneous tumors in radish (Raphanus sativus): Cellular, molecular and physiological events // J Plant Physiol. 2015. Vol. 173. P. 97–104. doi: 10.1016/j.jplph.2014.07.030

[45]

Dodueva IE, Kiryushkin AS, Yurlova EV, et al. Effect of cytokinins on expression of radish CLE genes. Russian Journal of Plant Physiology. 2013;60(3):388–395. EDN: PXLFTB doi: 10.7868/S001533031302005X

[46]

Додуева И.Е., Кирюшкин А.С., Юрлова Е.В., и др. Влияние цитокининов на экспрессию генов CLE редиса // Физиология растений. 2013. Т. 60, № 3. С. 388–395. EDN: PXLFTB doi: 10.7868/S001533031302005X

[47]

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25(4):402–408. doi: 10.1006/meth.2001.1262

[48]

Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method // Methods. 2001. Vol. 25, N. 4. P. 402–408. doi: 10.1006/meth.2001.1262

[49]

Gietz RD, Schiestl RH. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nature Protoc. 2007;2(1):31–34. doi: 10.1038/nprot.2007.13

[50]

Gietz R.D., Schiestl R.H. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method // Nature Protoc. 2007. Vol. 2, N. 1. P. 31–34. doi: 10.1038/nprot.2007.13

[51]

Davies SEW. Transcription factor interactions at the promoter of the Arabidopsis circadian clock gene LHY [dissertation]. University of Warwick, 2013.

[52]

Davies S.E.W. Transcription factor interactions at the promoter of the Arabidopsis circadian clock gene LHY [dissertation]. University of Warwick, 2013.

[53]

Wickham H. ggplot2: Elegant graphics for data analysis. Cham: Springer International Publishing, 2016. doi: 10.1007/978-3-319-24277-4

[54]

Kucukoglu M, Nilsson J, Zheng B, et al. WUSCHEL-RELATED HOMEOBOX4 (WOX4)-like genes regulate cambial cell division activity and secondary growth in Populus trees. New Phytologist. 2017;215(2):642–657. doi: 10.1111/nph.14631

[55]

Kucukoglu M., Nilsson J., Zheng B., et al. WUSCHEL-RELATED HOMEOBOX4 (WOX4)-like genes regulate cambial cell division activity and secondary growth in Populus trees // New Phytologist. 2017. Vol. 215, N. 2. P. 642–657. doi: 10.1111/nph.14631

[56]

Wang H, Xie Y, Liu W, et al. Transcription factor LkWOX4 is involved in adventitious root development in Larix kaempferi. Gene. 2020;758:144942. doi: 10.1016/j.gene.2020.144942

[57]

Wang H., Xie Y., Liu W., et al. Transcription factor LkWOX4 is involved in adventitious root development in Larix kaempferi // Gene. 2020. Vol. 758. ID 144942. doi: 10.1016/j.gene.2020.144942

[58]

Denis E, Kbiri N, Mary V, et al. WOX14 promotes bioactive gibberellin synthesis and vascular cell differentiation in Arabidopsis. Plant J. 2017;90(3):560–572. doi: 10.1111/tpj.13513

[59]

Denis E., Kbiri N., Mary V., et al. WOX14 promotes bioactive gibberellin synthesis and vascular cell differentiation in Arabidopsis // Plant J. 2017. Vol. 90, N. 3. P. 560–572. doi: 10.1111/tpj.13513

[60]

Ito Y, Nakanomyo I, Motose H, et al. Dodeca-CLE peptides as suppressors of plant stem cell differentiation. Science. 2006;313(5788):842–845. doi: 10.1126/science.1128436

[61]

Ito Y., Nakanomyo I., Motose H., et al. Dodeca-CLE peptides as suppressors of plant stem cell differentiation // Science. 2006. Vol. 313, N. 5788. P. 842–845. doi: 10.1126/science.1128436

[62]

Etchells JP, Turner SR. The PXY-CLE41 receptor ligand pair defines a multifunctional pathway that controls the rate and orientation of vascular cell division. Development. 2010;137(5):767–774. doi: 10.1242/dev.044941

[63]

Etchells J.P., Turner S.R. The PXY-CLE41 receptor ligand pair defines a multifunctional pathway that controls the rate and orientation of vascular cell division // Development. 2010. Vol. 137, N. 5. P. 767–774. doi: 10.1242/dev.044941

[64]

Fisher K, Turner S. PXY, a receptor-like kinase essential for maintaining polarity during plant vascular-tissue development. Curr Biol. 2007;17(12):1061–1066. doi: 10.1016/j.cub.2007.05.049

[65]

Fisher K., Turner S. PXY, a receptor-like kinase essential for maintaining polarity during plant vascular-tissue development // Curr Biol. 2007. Vol. 17, N. 12. P. 1061–1066. doi: 10.1016/j.cub.2007.05.049

[66]

Hirakawa Y, Shinohara H, Kondo Y, et al. Non-cell-autonomous control of vascular stem cell fate by a CLE peptide/receptor system. PNAS USA. 2008;105(39):15208–15213. doi: 10.1073/pnas.0808444105

[67]

Hirakawa Y., Shinohara H., Kondo Y., et al. Non-cell-autonomous control of vascular stem cell fate by a CLE peptide/receptor system // PNAS USA. 2008. Vol. 105, N. 39. P. 15208–15213. doi: 10.1073/pnas.0808444105

[68]

Yu Y, Song W, Zhai N, et al. PXL1 and SERKs act as receptor-coreceptor complexes for the CLE19 peptide to regulate pollen development. Nat Commun. 2023;14(1):3307. doi: 10.1038/s41467-023-39074-4

[69]

Yu Y., Song W., Zhai N., et al. PXL1 and SERKs act as receptor-coreceptor complexes for the CLE19 peptide to regulate pollen development // Nat Commun. 2023. Vol. 14, N. 1. ID 3307. doi: 10.1038/s41467-023-39074-4

[70]

Gursanscky NR, Jouannet V, Grünwald K, et al. MOL1 is required for cambium homeostasis in Arabidopsis. Plant J. 2016;86(3): 210–220. doi: 10.1111/tpj.13169

[71]

Gursanscky N.R., Jouannet V., Grünwald K., et al. MOL1 is required for cambium homeostasis in Arabidopsis // Plant J. 2016. Vol. 86, N. 3. P. 210–220. doi: 10.1111/tpj.13169

[72]

Smit ME, McGregor SR, Sun H, et al. A PXY-mediated transcriptional network integrates signaling mechanisms to control vascular development in Arabidopsis. Plant Cell. 2020;32(2):319–335. doi: 10.1105/tpc.19.00562

[73]

Smit M.E., McGregor S.R., Sun H., et al. A PXY-mediated transcriptional network integrates signaling mechanisms to control vascular development in Arabidopsis // Plant Cell. 2020. Vol. 32, N. 2. P. 319–335. doi: 10.1105/tpc.19.00562

[74]

Ye L, Wang X, Lyu M, et al. Cytokinins initiate secondary growth in the Arabidopsis root through a set of LBD genes. Curr Biol. 2021;31(15):3365–3373.e7. doi: 10.1016/j.cub.2021.05.036

[75]

Ye L., Wang X., Lyu M., et al. Cytokinins initiate secondary growth in the Arabidopsis root through a set of LBD genes // Curr Biol. 2021. Vol. 31, N. 15. P. 3365–3373.e7. doi: 10.1016/j.cub.2021.05.036

[76]

Krishna A, Gardiner J, Donner TJ, Scarpella E. Control of vein-forming, striped gene expression by auxin signaling. BMC Biology. 2021;19(1):213. doi: 10.1186/s12915-021-01143-9

[77]

Krishna A., Gardiner J., Donner T.J., Scarpella E. Control of vein-forming, striped gene expression by auxin signaling // BMC Biology. 2021. Vol. 19, N. 1. ID 213. doi: 10.1186/s12915-021-01143-9

[78]

Guo Y, Han L, Hymes M, et al. CLAVATA2 forms a distinct CLE-binding receptor complex regulating Arabidopsis stem cell specification. Plant J. 2010;63(6):889–900. doi: 10.1111/j.1365-313X.2010.04295.x

[79]

Guo Y., Han L., Hymes M., et al. CLAVATA2 forms a distinct CLE-binding receptor complex regulating Arabidopsis stem cell specification // Plant J. 2010. Vol. 63, N. 6. P. 889–900. doi: 10.1111/j.1365-313X.2010.04295.x

[80]

Tokunaga H, Kojima M, Kuroha T, et al. Arabidopsis lonely guy (LOG) multiple mutants reveal a central role of the LOG-dependent pathway in cytokinin activation. Plant J. 2012;69(2):355–365. doi: 10.1111/j.1365-313X.2011.04795.x

[81]

Tokunaga H., Kojima M., Kuroha T., et al. Arabidopsis lonely guy (LOG) multiple mutants reveal a central role of the LOG-dependent pathway in cytokinin activation // Plant J. 2012. Vol. 69, N. 2. P. 355–365. doi: 10.1111/j.1365-313X.2011.04795.x

[82]

Leibfried A, To JPC, Busch W, et al. WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature. 2005;438(7071):1172–1175. doi: 10.1038/nature04270

[83]

Leibfried A., To J.P.C., Busch W., et al. WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators // Nature. 2005. Vol. 438, N. 7071. P. 1172–1175. doi: 10.1038/nature04270

[84]

Randall RS, Miyashima S, Blomster T, et al. AINTEGUMENTA and the D-type cyclin CYCD3;1 regulate root secondary growth and respond to cytokinins. Biol Open. 2015;4(10):1229–1236. doi: 10.1242/bio.013128

[85]

Randall R.S., Miyashima S., Blomster T., et al. AINTEGUMENTA and the D-type cyclin CYCD3;1 regulate root secondary growth and respond to cytokinins // Biol Open. 2015. Vol. 4, N. 10. P. 1229–1236. doi: 10.1242/bio.013128

[86]

Savina MS, Pasternak T, Omelyanchuk NA, et al. Cell dynamics in WOX5-overexpressing root tips: The impact of local auxin biosynthesis. Front Plant Sci. 2020;11:560169. doi: 10.3389/fpls.2020.560169

[87]

Savina M.S., Pasternak T., Omelyanchuk N.A., et al. Cell dynamics in WOX5-overexpressing root tips: The impact of local auxin biosynthesis // Front Plant Sci. 2020. Vol. 11. ID 560169. doi: 10.3389/fpls.2020.560169

[88]

Schuetz M, Berleth T, Mattsson J. Multiple MONOPTEROS-dependent pathways are involved in leaf initiation. Plant Physiol. 2008;148(2):870–880. doi: 10.1104/pp.108.119396

[89]

Schuetz M., Berleth T., Mattsson J. Multiple MONOPTEROS-dependent pathways are involved in leaf initiation // Plant Physiol. 2008. Vol. 148, N. 2. P. 870–880. doi: 10.1104/pp.108.119396

[90]

Schlegel J, Denay G, Wink R, et al. Control of arabidopsis shoot stem cell homeostasis by two antagonistic CLE peptide signalling pathways. eLife. 2021;10: e70934. doi: 10.7554/eLife.70934

[91]

Schlegel J., Denay G., Wink R., et al. Control of Arabidopsis shoot stem cell homeostasis by two antagonistic CLE peptide signalling pathways // eLife. 2021. Vol. 10. ID e70934. doi: 10.7554/eLife.70934

[92]

Pi L, Aichinger E, van der Graaff E, et al. Organizer-derived WOX5 signal maintains root columella stem cells through chromatin-mediated repression of CDF4 expression. Dev Cell. 2015;33(5):576–588. doi: 10.1016/j.devcel.2015.04.024

[93]

Pi L., Aichinger E., van der Graaff E., et al. Organizer-derived WOX5 signal maintains root columella stem cells through chromatin-mediated repression of CDF4 expression // Dev Cell. 2015. Vol. 33, N. 5. P. 576–588. doi: 10.1016/j.devcel.2015.04.024

[94]

Kuroha T, Tokunaga H, Kojima M, et al. Functional analyses of LONELY GUY cytokinin-activating enzymes reveal the importance of the direct activation pathway in Arabidopsis. Plant Cell. 2009;21(10):3152–3169. doi: 10.1105/tpc.109.068676

[95]

Kuroha T., Tokunaga H., Kojima M., et al. Functional analyses of LONELY GUY cytokinin-activating enzymes reveal the importance of the direct activation pathway in Arabidopsis // Plant Cell. 2009. Vol. 21, N. 10. P. 3152–3169. doi: 10.1105/tpc.109.068676

[96]

Ohashi-Ito K, Oguchi M, Kojima M, et al. Auxin-associated initiation of vascular cell differentiation by LONESOME HIGHWAY. Development. 2013;140(4):765–769. doi: 10.1242/dev.087924

[97]

Ohashi-Ito K., Oguchi M., Kojima M., et al. Auxin-associated initiation of vascular cell differentiation by LONESOME HIGHWAY // Development. 2013. Vol. 140, N. 4. P. 765–769. doi: 10.1242/dev.087924

[98]

Brackmann K, Qi J, Gebert M, et al. Spatial specificity of auxin responses coordinates wood formation. Nat Commun. 2018;9(1):875. doi: 10.1038/s41467-018-03256-2

[99]

Brackmann K., Qi J., Gebert M., et al. Spatial specificity of auxin responses coordinates wood formation // Nat Commun. 2018. Vol. 9, N. 1. ID 875. doi: 10.1038/s41467-018-03256-2

[100]

Won C, Shen X, Mashiguchi K, et al. Conversion of tryptophan to indole-3-acetic acid by TRYPTOPHAN AMINOTRANSFERASES OF ARABIDOPSIS and YUCCAs in Arabidopsis. PNAS USA. 2011;108(45):18518–18523. doi: 10.1073/pnas.1108436108

[101]

Won C., Shen X., Mashiguchi K., et al. Conversion of tryptophan to indole-3-acetic acid by TRYPTOPHAN AMINOTRANSFERASES OF ARABIDOPSIS and YUCCAs in Arabidopsis // PNAS USA. 2011. Vol. 108, N. 45. P. 18518–18523. doi: 10.1073/pnas.1108436108

[102]

Mason MG, Li J, Mathews DE, et al. Type-B response regulators display overlapping expression patterns in Arabidopsis. Plant Physiol. 2004;135(2):927–937. doi: 10.1104/pp.103.038109

[103]

Mason M.G., Li J., Mathews D.E., et al. Type-B response regulators display overlapping expression patterns in Arabidopsis // Plant Physiol. 2004. Vol. 135, N. 2. P. 927–937. doi: 10.1104/pp.103.038109

[104]

Bishopp A, Help H, El-Showk S, et al. A mutually inhibitory interaction between auxin and cytokinin specifies vascular pattern in roots. Curr Biol. 2011;21(11):917–926. doi: 10.1016/j.cub.2011.04.017

[105]

Bishopp A., Help H., El-Showk S., et al. A mutually inhibitory interaction between auxin and cytokinin specifies vascular pattern in roots // Curr Biol. 2011. Vol. 21, N. 11. P. 917–926. doi: 10.1016/j.cub.2011.04.017

[106]

Miyashima S, Roszak P, Sevilem I, et al. Mobile PEAR transcription factors integrate positional cues to prime cambial growth. Nature. 2019;565(7740):490–494. doi: 10.1038/s41586-018-0839-y

[107]

Miyashima S., Roszak P., Sevilem I., et al. Mobile PEAR transcription factors integrate positional cues to prime cambial growth // Nature. 2019. Vol. 565, N. 7740. P. 490–494. doi: 10.1038/s41586-018-0839-y

[108]

Matsumoto-Kitano M, Kusumoto T, Tarkowski P, et al. Cytokinins are central regulators of cambial activity. PNAS USA. 2008;105(50):20027–20031. doi: 10.1073/pnas.0805619105

[109]

Matsumoto-Kitano M., Kusumoto T., Tarkowski P., et al. Cytokinins are central regulators of cambial activity // PNAS USA. 2008. Vol. 105, N. 50. P. 20027–20031. doi: 10.1073/pnas.0805619105

[110]

Nieminen K, Blomster T, Helariutta Y, Mähönen AP. Vascular cambium development. Arabidopsis Book. 2015;13:e0177. doi: 10.1199/tab.0177

[111]

Nieminen K., Blomster T., Helariutta Y., Mähönen A.P. Vascular cambium development // Arabidopsis Book. 2015. Vol. 13. ID e0177. doi: 10.1199/tab.0177

[112]

Scheres B, Di Laurenzo L, Willemsen V, et al. Mutations affecting the radial organization of the Arabidopsis root display specific defects throughout the embryonic axis. Development. 1995;121(1):53–62. doi: 10.1242/dev.121.1.53

[113]

Scheres B., Di Laurenzo L., Willemsen V., et al. Mutations affecting the radial organization of the Arabidopsis root display specific defects throughout the embryonic axis // Development. 1995. Vol. 121, N. 1. P. 53–62. doi: 10.1242/dev.121.1.53

[114]

Mähönen AP, Bonke M, Kauppinen L, et al. A novel two-component hybrid molecule regulates vascular morphogenesis of the Arabidopsis root. Genes Dev. 2000;14(23):2938–2943. doi: 10.1101/gad.189200

[115]

Mähönen A.P., Bonke M., Kauppinen L., et al. A novel two-component hybrid molecule regulates vascular morphogenesis of the Arabidopsis root // Genes Dev. 2000. Vol. 14, N. 23. P. 2938–2943. doi: 10.1101/gad.189200

Funding

Ministry of Science and Higher Education of the Russian FederationМинистерство науки и высшего образования Российской Федерации(075-15-2022-322)

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF (2423KB)

60

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/