Metabolic profiling of leaves of four Ranunculus species
Pavel D. Smirnov , Roman K. Puzanskiy , Sergey A. Vanisov , Maksim D. Dubrovskiy , Alexey L. Shavarda , Maria F. Shishova , Vladislav V. Yemelyanov
Ecological Genetics ›› 2023, Vol. 21 ›› Issue (4) : 369 -382.
Metabolic profiling of leaves of four Ranunculus species
BACKGROUND: Plant ability to survive oxygen deficiency is associated with the presence of various adaptations, majority of which are mediated by significant changes of metabolism. These alterations allow resistant wetland plants to grow even in an oxygen-depleted environment.
AIM: To compare metabolic profiles of the leaves of the wetland species Ranunculus lingua, R. repens and R. sceleratus, and the mesophyte species R. acris growing in their natural habitat in order to identify the most characteristic metabolic traits of hypoxia-resistant plants.
MATERIALS AND METHODS: Metabolite profiling was performed by GC-MS. Statistical analysis of metabolomics data was processed using R 4.3.1 Beagle Scouts.
RESULTS: The resulting profile included 360 compounds. 74 of these were identified and 114 compounds were determined to a class. Sugars (114) were the most widely represented in the obtained profiles. 10 amino and 23 carboxylic acids, lipids and phenolic compounds have been identified. Significant differences were revealed between the profiles of leaf metabolomes of all tested species, which were clustered according to phylogenetic relation. The hydrophytic R. sceleratus, growing under submergence, showed the most unique metabolome, in which the level of sugars was reduced and intermediates of anaerobic metabolism, nitrogen metabolism, and alternative pathways of NAD(P)H reoxidation were accumulated. The profile of mesophytic R. acris was markedly different by decreased levels of amino acids, fatty acids and sterols. The metabolite profiles of waterlogged hydrophytes R. lingua and R. repens occupied an intermediate position.
CONCLUSIONS: The identified differences of metabolomes of Ranunculus species are due to genetic determinants, ecological niche and direct impact of a stressor.
hypoxia / mesophyte / hydrophytes / metabolomics / GC-MS / Ranunculus acris / R. lingua / R. repens / R. sceleratus
| [1] |
Dalgliesh CE, Horning EC, Horning MG, et al. A gas-liquid-chromatographic procedure for separating a wide range of metabolites occurring in urine or tissue extracts. Biochem J. 1966;101(3):792–810. DOI: 10.1042/bj1010792 |
| [2] |
Dalgliesh C.E., Horning E.C., Horning M.G., et al. A gas-liquid-chromatographic procedure for separating a wide range of metabolites occurring in urine or tissue extracts // Biochem J. 1966. Vol. 101, No. 3. P. 792–810. DOI: 10.1042/bj1010792 |
| [3] |
Tweeddale H, Notley-McRobb L, Ferenci T. Effect of slow growth on metabolism of Escherichia coli, as revealed by global metabolite pool (“Metabolome”) analysis. J Bacteriol. 1998;180(19):5109–5116. DOI: 10.1128/jb.180.19.5109-5116.1998 |
| [4] |
Tweeddale H., Notley-McRobb L., Ferenci T. Effect of slow growth on metabolism of Escherichia coli, as revealed by global metabolite pool («Metabolome») analysis // J Bacteriol. 1998. Vol. 180, No. 19. P. 5109–5116. DOI: 10.1128/jb.180.19.5109-5116.1998 |
| [5] |
Holmes E, Wilson ID, Nicholson JK. Metabolic phenotyping in health and disease. Cell. 2008;134(5):714–717. DOI: 10.1016/j.cell.2008.08.026 |
| [6] |
Holmes E., Wilson I.D., Nicholson J.K. Metabolic phenotyping in health and disease // Cell. 2008. Vol. 134, No. 5. P. 714–717. DOI: 10.1016/j.cell.2008.08.026 |
| [7] |
Sauter H, Lauer M, Fritsch H. Metabolic profiling of plants a new diagnostic technique. ACS Symp Ser. 1991;443:288–299. DOI: 10.1021/bk-1991-0443.ch024 |
| [8] |
Sauter H., Lauer M., Fritsch H. Metabolic profiling of plants a new diagnostic technique // ACS Symp Ser. 1991. Vol. 443. P. 288–299. DOI: 10.1021/bk-1991-0443.ch024 |
| [9] |
Ghatak A, Chaturvedi P, Weckwerth W. Metabolomics in plant stress physiology. Varshney R, Pandey M, Chitikineni A, editors. Plant genetics and molecular biology. Advances in biochemical engineering/biotechnology. Vol. 164. Springer, Cham, 2018. P. 187–236. DOI: 10.1007/10_2017_55 |
| [10] |
Ghatak A., Chaturvedi P., Weckwerth W. Metabolomics in plant stress physiology. In: Plant genetics and molecular biology. Advances in biochemical engineering/biotechnology. Vol. 164 / Varshney R., Pandey M., Chitikineni A., editors. Springer, Cham, 2018. P. 187–236. DOI: 10.1007/10_2017_55 |
| [11] |
Xu Y, Fu X. Reprogramming of plant central metabolism in response to abiotic stresses: A metabolomics view. Int J Mol Sci. 2022;23(10):5716. DOI: 10.3390/ijms23105716 |
| [12] |
Xu Y., Fu X. Reprogramming of plant central metabolism in response to abiotic stresses: A metabolomics view // Int J Mol Sci. 2022. Vol. 23, No. 10. ID 5716. DOI: 10.3390/ijms23105716 |
| [13] |
Chirkova T, Yemelyanov V. The study of plant adaptation to oxygen deficiency in Saint Petersburg University. Biol Commun. 2018;63(1):17–31. DOI: 10.21638/spbu03.2018.104 |
| [14] |
Chirkova T., Yemelyanov V. The study of plant adaptation to oxygen deficiency in Saint Petersburg University // Biol Commun. 2018. Vol. 63, No. 1. P. 17–31. DOI: 10.21638/spbu03.2018.104 |
| [15] |
Fukao T, Barrera-Figueroa BE, Juntawong P, Peña-Castro JM. Submergence and waterlogging stress in plants: A review highlighting research opportunities and understudied aspects. Front Plant Sci. 2019;10:340. DOI: 10.3389/fpls.2019.00340 |
| [16] |
Fukao T., Barrera-Figueroa B.E., Juntawong P., Peña-Castro J.M. Submergence and waterlogging stress in plants: A review highlighting research opportunities and understudied aspects // Front Plant Sci. 2019. Vol. 10. ID 340. DOI: 10.3389/fpls.2019.00340 |
| [17] |
Dennis ES, Dolferus R, Ellis M, et al. Molecular strategies for improving waterlogging tolerance in plants. J Exp Bot. 2000;51(342):89–97. DOI: 10.1093/jexbot/51.342.89 |
| [18] |
Dennis E.S., Dolferus R., Ellis M., et al. Molecular strategies for improving waterlogging tolerance in plants // J Exp Bot. 2000. Vol. 51, No. 342. P. 89–97. DOI: 10.1093/jexbot/51.342.89 |
| [19] |
Bailey-Serres J, Voesenek LACJ. Flooding stress: Acclimations and genetic diversity. Annu Rev Plant Biol. 2008;59:313–339. DOI: 10.1146/annurev.arplant.59.032607.092752 |
| [20] |
Bailey-Serres J., Voesenek L.A.C.J. Flooding stress: Acclimations and genetic diversity // Annu Rev Plant Biol. 2008. Vol. 59. P. 313–339. DOI: 10.1146/annurev.arplant.59.032607.092752 |
| [21] |
van Dongen JT, Frohlich A, Ramirez-Aguilar SJ, et al. Transcript and metabolite profiling of the adaptive response to mild decreases in oxygen concentration in the roots of Arabidopsis plants. Ann Bot. 2009;103(2):269–280. DOI: 10.1093/aob/mcn126 |
| [22] |
van Dongen J.T., Frohlich A., Ramirez-Aguilar S.J., et al. Transcript and metabolite profiling of the adaptive response to mild decreases in oxygen concentration in the roots of Arabidopsis plants // Ann Bot. 2009. Vol. 103, No. 2. P. 269–280. DOI: 10.1093/aob/mcn126 |
| [23] |
Rocha M, Licausi F, Araujo WL, et al. Glycolysis and the tricarboxylic acid cycle are linked by alanine aminotransferase during hypoxia induced by waterlogging of Lotus japonicas. Plant Physiol. 2010;152(3):1501–1513. DOI: 10.1104/pp.109.150045 |
| [24] |
Rocha M., Licausi F., Araujo W.L., et al. Glycolysis and the tricarboxylic acid cycle are linked by alanine aminotransferase during hypoxia induced by waterlogging of Lotus japonicus // Plant Physiol. 2010. Vol. 152, No. 3. P. 1501–1513. DOI: 10.1104/pp.109.150045 |
| [25] |
Shingaki-Wells RN, Huang S, Taylor NL, et al. Differential molecular responses of rice and wheat coleoptiles to anoxia reveal novel metabolic adaptations in amino acid metabolism for tissue tolerance. Plant Physiol. 2011;156(4):1706–1724. DOI: 10.1104/pp.111.175570 |
| [26] |
Shingaki-Wells R.N., Huang S., Taylor N.L., et al. Differential molecular responses of rice and wheat coleoptiles to anoxia reveal novel metabolic adaptations in amino acid metabolism for tissue tolerance // Plant Physiol. 2011. Vol. 156, No. 4. P. 1706–1724. DOI: 10.1104/pp.111.175570 |
| [27] |
Locke AM, Barding GA Jr, Sathnur S, et al. Rice SUB1A constrains remodelling of the transcriptome and metabolome during submergence to facilitate post-submergence recovery. Plant Cell Environ. 2018;41(4):721–736. DOI: 10.1111/pce.13094 |
| [28] |
Locke A.M., Barding G.A. Jr., Sathnur S., et al. Rice SUB1A constrains remodelling of the transcriptome and metabolome during submergence to facilitate post-submergence recovery // Plant Cell Environ. 2018. Vol. 41, No. 4. P. 721–736. DOI: 10.1111/pce.13094 |
| [29] |
Herzog M, Fukao T, Winkel A, et al. Physiology, gene expression, and metabolome of two wheat cultivars with contrasting submergence tolerance. Plant Cell Environ. 2018;41(7):1632–1644. DOI: 10.1111/pce.13211 |
| [30] |
Herzog M., Fukao T., Winkel A., et al. Physiology, gene expression, and metabolome of two wheat cultivars with contrasting submergence tolerance // Plant Cell Environ. 2018. Vol. 41, No. 7. P. 1632–1644. DOI: 10.1111/pce.13211 |
| [31] |
Andrzejczak OA, Havelund JF, Wang W-Q, et al. The hypoxic proteome and metabolome of barley (Hordeum vulgare L.) with and without phytoglobin priming. Int J Mol Sci. 2020;21(4):1546. DOI: 10.3390/ijms21041546 |
| [32] |
Andrzejczak O.A., Havelund J.F., Wang W.-Q., et al. The hypoxic proteome and metabolome of barley (Hordeum vulgare L.) with and without phytoglobin priming // Int J Mol Sci. 2020. Vol. 21, No. 4. ID 1546. DOI: 10.3390/ijms21041546 |
| [33] |
Antonio C, Päpke C, Rocha M, et al. Regulation of primary metabolism in response to low oxygen availability as revealed by carbon and nitrogen isotope redistribution. Plant Physiol. 2016;170(1):43–56. DOI: 10.1104/pp.15.00266 |
| [34] |
Antonio C., Päpke C., Rocha M., et al. Regulation of primary metabolism in response to low oxygen availability as revealed by carbon and nitrogen isotope redistribution // Plant Physiol. 2016. Vol. 170, No. 1. P. 43–56. DOI: 10.1104/pp.15.00266 |
| [35] |
Hasler-Sheetal H, Fragner L, Holmer M, Weckwerth W. Diurnal effects of anoxia on the metabolome of the seagrass Zostera marina. Metabolomics. 2015;11(5):1208–1218. DOI: 10.1007/s11306-015-0776-9 |
| [36] |
Hasler-Sheetal H., Fragner L., Holmer M., Weckwerth W. Diurnal effects of anoxia on the metabolome of the seagrass Zostera marina // Metabolomics. 2015. Vol. 11, No. 5. P. 1208–1218. DOI: 10.1007/s11306-015-0776-9 |
| [37] |
Parveen M, Miyagi A, Kawai-Yamada M, et al. Metabolic and biochemical responses of Potamogeton anguillanus Koidz. (Potamogetonaceae) to low oxygen conditions. J Plant Physiol. 2019;232:171–179. DOI: 10.1016/j.jplph.2018.11.023 |
| [38] |
Parveen M., Miyagi A., Kawai-Yamada M., et al. Metabolic and biochemical responses of Potamogeton anguillanus Koidz. (Potamogetonaceae) to low oxygen conditions // J Plant Physiol. 2019. Vol. 232. P. 171–179. DOI: 10.1016/j.jplph.2018.11.023 |
| [39] |
Yemelyanov VV, Puzanskiy RK, Shishova MF. Plant life with and without oxygen: A metabolomics approach. Int J Mol Sci. 2023;24(22):16222. DOI: 10.3390/ijms242216222 |
| [40] |
Yemelyanov V.V., Puzanskiy R.K., Shishova M.F. Plant life with and without oxygen: A metabolomics approach // Int J Mol Sci. 2023. Vol. 24, No. 22. ID 16222. DOI: 10.3390/ijms242216222 |
| [41] |
Jethva J, Schmidt RR, Sauter M, Selinski J. Try or die: Dynamics of plant respiration and how to survive low oxygen conditions. Plants. 2022;11(2):205. DOI: 10.3390/plants11020205 |
| [42] |
Jethva J., Schmidt R.R., Sauter M., Selinski J. Try or die: Dynamics of plant respiration and how to survive low oxygen conditions // Plants. 2022. Vol. 11, No. 2. ID 205. DOI: 10.3390/plants11020205 |
| [43] |
Puzanskiy RK, Smirnov PD, Vanisov SA, et al. Metabolite profiling of leaves of three Epilobium species. Ecological genetics. 2022;20(4):279–293. DOI: 10.17816/ecogen114743 |
| [44] |
Пузанский Р.К., Смирнов П.Д., Ванисов С.А., и др. Метаболическое профилирование листьев трех видов кипрея // Экологическая генетика. 2022. Т. 20, № 4. С. 279–293. DOI: 10.17816/ecogen114743 |
| [45] |
wfoplantlist.org [Internet]. The WFO Plant list [cited 2023 Nov 15]. Available at: https://wfoplantlist.org/plant-list/ |
| [46] |
wfoplantlist.org [Электронный ресурс]. The WFO Plant list. Режим доступа: https://wfoplantlist.org/plant-list/. Дата обращения: 15.11.2023 |
| [47] |
catalogueoflife.org [Internet]. The catalogue of life [cited 2023 Nov 15]. Available at: https://www.catalogueoflife.org/ |
| [48] |
catalogueoflife.org [Электронный ресурс]. The catalogue of life Режим доступа: https://www.catalogueoflife.org/. Дата обращения: 15.11.2023. |
| [49] |
Bobrov EG, Bulavkina AA, Komarov VL, et al. Flora of the USSR. Vol. 7. Moscow: Izdatel’stvo AN SSSR, 1937. 793 p. (In Russ.) |
| [50] |
Бобров Е.Г., Булавкина А.А., Комаров В.Л., и др. Флора СССР. Т. 7. Москва: Издательство АН СССР, 1937. 793 с. |
| [51] |
Averyanov LV, Budantsev AL, Geltman DV, et al. Illustrated identifier of plants of the Leningrad region. Budantsev AL, Yakovlev GP, editors. Moscow: Tovarishchestvo nauchnykh izdanii KМK, 2006. 799 p. (In Russ.) |
| [52] |
Аверьянов Л.В., Буданцев А.Л., Гельтман Д.В., и др. Иллюстрированный определитель растений Ленинградской области / под ред. А.Л. Буданцева, Г.П. Яковлева. Москва: Товарищество научных изданий КМК, 2006. 799 с. |
| [53] |
Emadzade K, Gehrke B, Linder HP, Hörandl E. The biogeographical history of the cosmopolitan genus Ranunculus L. (Ranunculaceae) in the temperate to meridional zones. Mol Phylogenet Evol. 2011;58(1):4–21. DOI: 10.1016/j.ympev.2010.11.002 |
| [54] |
Emadzade K., Gehrke B., Linder H.P., Hörandl E. The biogeographical history of the cosmopolitan genus Ranunculus L. (Ranunculaceae) in the temperate to meridional zones // Mol Phylogenet Evol. 2011. Vol. 58, No. 1. P. 4–21. DOI: 10.1016/j.ympev.2010.11.002 |
| [55] |
Bakhmatova KA, Vasilieva VA, Vershinina OM, et al. Sergievka Park — a complex natural monument. Saint Petersburg: Tipografiya OOO SPb SRP “Pavel”, 2005. 144 p. (In Russ.) |
| [56] |
Бахматова К.А., Васильева В.А., Вершинина О.М., и др. Парк Сергиевка — комплексный памятник природы. Санкт-Петербург: Типография ООО СПб СРП «Павел», 2005. 144 с. |
| [57] |
Maevsky PF. Flora of the middle zone of the European part of Russia. 11th ed. Moscow: Tovarishchestvo nauchnykh izdanii KMK, 2014. 635 p. (In Russ.) |
| [58] |
Маевский П.Ф. Флора средней полосы европейской части России. 11-е изд. Москва: Товарищество научных изданий КМК, 2014. 635 с. |
| [59] |
Puzanskiy RK, Yemelyanov VV, Shavarda AL, et al. Age- and organ-specific differences of potato (Solanum phureja) plants metabolome. Russ J Plant Physiol. 2018;65(6):813–823. DOI: 10.1134/S1021443718060122 |
| [60] |
Puzanskiy R.K., Yemelyanov V.V., Shavarda A.L., et al. Age- and organ-specific differences of potato (Solanum phureja) plants metabolome // Russ J Plant Physiol. 2018. Vol. 65, No. 6. P. 813–823. DOI: 10.1134/S1021443718060122 |
| [61] |
Johnsen LG, Skou PB, Khakimov B, Bro R. Gas chromatography — Mass spectrometry data processing made easy. J Chromatogr A. 2017;1503:57–64. DOI: 10.1016/j.chroma.2017.04.052 |
| [62] |
Johnsen L.G., Skou P.B., Khakimov B., Bro R. Gas chromatography — Mass spectrometry data processing made easy // J Chromatogr A. 2017. Vol. 1503. P. 57–64. DOI: 10.1016/j.chroma.2017.04.052 |
| [63] |
Hummel J, Selbig J, Walther D, Kopka J. The golm metabolome database: a database for GC-MS based metabolite profiling. In: Nielsen J, Jewett MC, editors. Metabolomics. Topics in current genetics. Vol. 18. Springer, Berlin, Heidelberg, 2007. P. 75–95. DOI: 10.1007/4735_2007_0229 |
| [64] |
Hummel J., Selbig J., Walther D., Kopka J. The golm metabolome database: a database for GC-MS based metabolite profiling. In: Metabolomics. Topics in current genetics. Vol. 18 / Nielsen J., Jewett M.C., editors. Springer, Berlin, Heidelberg, 2007. P. 75–95. DOI: 10.1007/4735_2007_0229 |
| [65] |
r-project.org [Internrt]. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2023 [cited 2023 Nov 15]. Available at: https://www.r-project.org/ |
| [66] |
r-project.org [Электронный ресурс]. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2023. Режим доступа: https://www.r-project.org/. Дата обращения: 15.11.2023. |
| [67] |
Hastie T, Tibshirani R, Narasimhan B, Chu G. impute: Imputation for microarray data. R package version 1.70.0. 2022. DOI: 10.18129/B9.bioc.impute |
| [68] |
Hastie T., Tibshirani R., Narasimhan B., Chu G. impute: Imputation for microarray data. R package version 1.70.0. 2022. DOI: 10.18129/B9.bioc.impute |
| [69] |
Gu Z. Complex heatmap visualization. iMeta. 2022;1(3):e43. DOI: 10.1002/imt2.43 |
| [70] |
Gu Z. Complex heatmap visualization // iMeta. 2022. Vol. 1, No. 3. ID e43. DOI: 10.1002/imt2.43 |
| [71] |
Liaw A, Wiener M. Classification and regression by randomForest. R News. 2002;2(3):18–22. |
| [72] |
Liaw A., Wiener M. Classification and regression by randomForest // R News. 2002. Vol. 2, No. 3. P. 18–22. |
| [73] |
Stacklies W, Redestig H, Scholz M, et al. pcaMethods — a bioconductor package providing PCA methods for incomplete data. Bioinformatics. 2007;23(9):1164–1167. DOI: 10.1093/bioinformatics/btm069 |
| [74] |
Stacklies W., Redestig H., Scholz M., et al. pcaMethods — a bioconductor package providing PCA methods for incomplete data // Bioinformatics. 2007. Vol. 23, No. 9. P. 1164–1167. DOI: 10.1093/bioinformatics/btm069 |
| [75] |
Vaughan TG. IcyTree: Rapid browser-based visualization for phylogenetic trees and networks. Bioinformatics. 2017;33(15): 2392–2394. DOI: 10.1093/bioinformatics/btx155 |
| [76] |
Vaughan T.G. IcyTree: Rapid browser-based visualization for phylogenetic trees and networks // Bioinformatics. 2017. Vol. 33, No. 15. P. 2392–2394. DOI: 10.1093/bioinformatics/btx155 |
| [77] |
Thevenot EA, Roux A, Xu Y, et al. Analysis of the human adult urinary metabolome variations with age, body mass index and gender by implementing a comprehensive workflow for univariate and OPLS statistical analyses. J Proteome Res. 2015;14(8):3322–3335. DOI: 10.1021/acs.jproteome.5b00354 |
| [78] |
Thevenot E.A., Roux A., Xu Y., et al. Analysis of the human adult urinary metabolome variations with age, body mass index and gender by implementing a comprehensive workflow for univariate and OPLS statistical analyses // J Proteome Res. 2015. Vol. 14, No. 8. P. 3322–3335. DOI: 10.1021/acs.jproteome.5b00354 |
| [79] |
Zyla J, Marczyk M, Domaszewska T, et al. Gene set enrichment for reproducible science: Comparison of CERNO and eight other algorithms. Bioinformatics. 2019;35(24):5146–5154. DOI: 10.1093/bioinformatics/btz447 |
| [80] |
Zyla J., Marczyk M., Domaszewska T., et al. Gene set enrichment for reproducible science: Comparison of CERNO and eight other algorithms // Bioinformatics. 2019. Vol. 35, No. 24. P. 5146–5154. DOI: 10.1093/bioinformatics/btz447 |
| [81] |
Kanehisa M, Furumichi M, Sato Y, et al. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 2023;51(D1):gkac963. DOI: 10.1093/nar/gkac963 |
| [82] |
Kanehisa M., Furumichi M., Sato Y., et al. KEGG for taxonomy-based analysis of pathways and genomes // Nucleic Acids Res. 2023. Vol. 51, No. D1. ID gkac963. DOI: 10.1093/nar/gkac963 |
| [83] |
Tenenbaum D, Maintainer B. KEGGREST: Client-side REST access to the Kyoto Encyclopedia of Genes and Genomes (KEGG). 2022. R package version 1.36.2. DOI: 10.18129/B9.bioc.KEGGREST |
| [84] |
Tenenbaum D., Maintainer B. KEGGREST: Client-side REST access to the Kyoto Encyclopedia of Genes and Genomes (KEGG). 2022. R package version 1.36.2. DOI: 10.18129/B9.bioc.KEGGREST |
| [85] |
Michl J, Modarai M, Edwards S, Heinrich M. Metabolomic analysis of Ranunculus spp. as potential agents involved in the etiology of equine grass sickness. J Agric Food Chem. 2011;59(18): 10388–10393. DOI: 10.1021/jf201430k |
| [86] |
Michl J., Modarai M., Edwards S., Heinrich M. Metabolomic analysis of Ranunculus spp. as potential agents involved in the etiology of equine grass sickness // J Agric Food Chem. 2011. Vol. 59, No. 18. P. 10388–10393. DOI: 10.1021/jf201430k |
| [87] |
Labarrere B, Prinzing A, Dorey T, et al. Variations of secondary metabolites among natural populations of sub-Antarctic Ranunculus species suggest functional redundancy and versatility. Plants. 2019;8(7):234. DOI: 10.3390/plants8070234 |
| [88] |
Labarrere B., Prinzing A., Dorey T., et al. Variations of secondary metabolites among natural populations of sub-Antarctic Ranunculus species suggest functional redundancy and versatility // Plants. 2019. Vol. 8, No. 7. ID 234. DOI: 10.3390/plants8070234 |
| [89] |
Carillo P, Dell’Aversana E, Modarelli GC, et al. Metabolic profile and performance responses of Ranunculus asiaticus L. hybrids as affected by light quality of photoperiodic lighting. Front Plant Sci. 2020;11:597823. DOI: 10.3389/fpls.2020.597823 |
| [90] |
Carillo P., Dell’Aversana E., Modarelli G.C., et al. Metabolic profile and performance responses of Ranunculus asiaticus L. hybrids as affected by light quality of photoperiodic lighting // Front Plant Sci. 2020. Vol. 11. ID 597823. DOI: 10.3389/fpls.2020.597823 |
| [91] |
Modarelli GC, Arena C, Pesce G, et al. The role of light quality of photoperiodic lighting on photosynthesis, flowering and metabolic profiling in Ranunculus asiaticus L. Physiol Plant. 2020;170(2): 187–201. DOI: 10.1111/ppl.13122 |
| [92] |
Modarelli G.C., Arena C., Pesce G., et al. The role of light quality of photoperiodic lighting on photosynthesis, flowering and metabolic profiling in Ranunculus asiaticus L. // Physiol Plant. 2020. Vol. 170, No. 2. P. 187–201. DOI: 10.1111/ppl.13122 |
| [93] |
Fusco GM, Carillo P, Nicastro R, et al. Metabolic profiling in tuberous roots of Ranunculus asiaticus L. as influenced by vernalization procedure. Plants. 2023;12(18):3255. DOI: 10.3390/plants12183255 |
| [94] |
Fusco G.M., Carillo P., Nicastro R., et al. Metabolic profiling in tuberous roots of Ranunculus asiaticus L. as influenced by vernalization procedure // Plants. 2023. Vol. 12, No. 18. ID 3255. DOI: 10.3390/plants12183255 |
| [95] |
Gargallo-Garriga A, Ayala-Roque M, Sardans J, et al. Impact of soil warming on the plant metabolome of Icelandic grasslands. Metabolites. 2017;7(3):44. DOI: 10.3390/metabo7030044 |
| [96] |
Gargallo-Garriga A., Ayala-Roque M., Sardans J., et al. Impact of soil warming on the plant metabolome of Icelandic grasslands // Metabolites. 2017. Vol. 7, No. 3. ID 44. DOI: 10.3390/metabo7030044 |
| [97] |
Blokhina O, Virolainen E, Fagerstedt KV. Antioxidants, oxidative damage and oxygen deprivation stress: A review. Ann Bot. 2003;91(2):179–194. DOI: 10.1093/aob/mcf118 |
| [98] |
Blokhina O., Virolainen E., Fagerstedt K.V. Antioxidants, oxidative damage and oxygen deprivation stress: A review // Ann Bot. 2003. Vol. 91, No. 2. P. 179–194. DOI: 10.1093/aob/mcf118 |
| [99] |
Ohkama-Ohtsu N, Oikawa A, Zhao P, et al. A gamma-glutamyl transpeptidase-independent pathway of glutathione catabolism to glutamate via 5-oxoproline in Arabidopsis. Plant Physiol. 2008;148(3):1603–1613. DOI: 10.1104/pp.108.125716. |
| [100] |
Ohkama-Ohtsu N., Oikawa A., Zhao P., et al. A gamma-glutamyl transpeptidase-independent pathway of glutathione catabolism to glutamate via 5-oxoproline in Arabidopsis // Plant Physiol. 2008. Vol. 148, No. 3. P. 1603–1613. DOI: 10.1104/pp.108.125716. |
| [101] |
Shikov AE, Chirkova TV, Yemelyanov VV. Post-anoxia in plants: reasons, consequences, and possible mechanisms. Russ J Plant Physiol. 2020;67(1):45–59. DOI: 10.1134/S1021443720010203 |
| [102] |
Shikov A.E., Chirkova T.V., Yemelyanov V.V. Post-anoxia in plants: reasons, consequences, and possible mechanisms // Russ J Plant Physiol. 2020. Vol. 67, No. 1. P. 45–59. DOI: 10.1134/S1021443720010203 |
| [103] |
He JB, Bögemann GM, van de Steeg HM, et al. Survival tactics of Ranunculus species in river floodplains. Oecologia. 1999;118(1):1–8. DOI: 10.1007/s004420050696 |
| [104] |
He J.B., Bögemann G.M., van de Steeg H.M., et al. Survival tactics of Ranunculus species in river floodplains // Oecologia. 1999. Vol. 118, No. 1. P. 1–8. DOI: 10.1007/s004420050696 |
Eco-Vector
/
| 〈 |
|
〉 |