Bacterial genera associated with nitrogen cycle in microbial communities of chernozems
Konstantin S. Boyarshin , Valeria V. Adamova , Wentao Zheng , Ekaterina V. Nikitinskaya , Olga Y. Obukhova , Marina V. Kolkova , Olga S. Bespalova , Violetta V. Klyueva , Kristina A. Degtyareva , Lubov V. Nesteruk , Yulia N. Kurkina , Olesya A. Makanina , Elena S. Ivanova , Irina V. Batlutskaya
Ecological Genetics ›› 2024, Vol. 22 ›› Issue (2) : 191 -204.
Bacterial genera associated with nitrogen cycle in microbial communities of chernozems
BACKGROUND: Reactions associated with the geochemical nitrogen cycle occurring in the soil have a decisive effect on the level of nitrogen availability for green plants. Microorganisms that catalyze them are of interest from the point of view of developing mechanisms for managing soil fertility. In this paper, we focused on bacterial genera associated with nitrogen cycle processes in chernozem soils of the Belgorod Region of Russia.
AIM: To determine the list and quantitative ratios of bacterial genera whose representatives are able to participate in the fixation of atmospheric nitrogen, nitrification and denitrification in the chernozems of the forest-steppe zone of the European part of Russia.
MATERIALS AND METHODS: Samples of arable and non-arable chernozems of three subtypes were collected in June and August 2022. Microbiological profiling based on high-throughput sequencing of amplicons of V3 and V4 region of the 16S rRNA gene with subsequent computational processing of the results was used in the work.
RESULTS: 6 genera of nitrogen-fixing bacteria were found, as well as a group undifferentiated by means of the method used, including genus Rhizobium. 8 genera involved in the first and 5 genera involved in the second stage of nitrification were also found. 7 genera have been found whose representatives are capable of denitrification, without taking into account nitrogen-fixing bacteria, which are also capable of carrying out this process.
CONCLUSIONS: Among the bacteria capable of fixing atmospheric nitrogen in the chernozems of the Belgorod region, the genus Bradyrhizobium dominates. Among the nitrifiers performing the first stage of nitrification, Ellin6067 and MND1 from the family Nitrosomonadaceae predominate. The second stage of nitrification is carried out mainly by bacteria of the genus Nitrospira. Of the potential denitrifies, along with nitrogen-fixing genera possessing this ability, representatives of the genera Rubrobacter and Pseudomonas are the most numerous. The study does not claim to give a complete list of organisms that carry out key chemical transformations of nitrogen compounds in chernozems, however, it allows us to name their important participants.
microbiota / chernozems / diazotrophy / nitrification / denitrification
| [1] |
Osipov AI. Biological cycling of atmospheric nitrogen. News of the St. Petersburg State Agrarian University. 2016;(42):97–103. EDN: WCIIWH |
| [2] |
Осипов А.И. Биологический круговорот азота атмосферы // Известия Санкт-Петербургского государственного аграрного университета. 2016. № 42. С. 97–103. EDN: WCIIWH |
| [3] |
Kosolapova AV. The doctrine of biosphere. Part II. Biogeochemical cycles. Voronezh: VGPU; 2007. 48 p. (In Russ.) |
| [4] |
Косолапова А.В. Учение о биосфере. Часть II. Биогеохимические циклы. Воронеж: ВГПУ, 2007. 48 с. |
| [5] |
Ter-Gazaryan GG. Fixation of atmospheric nitrogen. Tiflis: Publication of the State Planning Committee of the ZSFSR; 1926. 159 p. (In Russ.) |
| [6] |
Тер-Газарян Г.Г. Фиксация атмосферного азота. Тифлис: Издание Госплана ЗСФСР, 1926. 159 с. |
| [7] |
Bray SM. Nitrogen metabolism in plants. Moscow: Agropromizdat, 1986. 199 p. (In Russ.) |
| [8] |
Брей С.М. Азотный обмен в растениях. Москва: Агропромиздат, 1986. 199 с. |
| [9] |
Kolosov AE, Zhdanova OB, Martusevich AK, Ashikhmin SP. Nitrogen compounds in biomedical sciences. Moscow: Academy of Natural Sciences; 2012. 87 p. (In Russ.) |
| [10] |
Колосов А.Е., Жданова О.Б., Мартусевич А.К., Ашихмин С.П. Соединения азота в биомедицинских науках. Москва: Академия естествознания, 2012. 87 с. |
| [11] |
Kidin VV. Agrochemistry. Moscow: Prospect; 2015. 1033 p. (In Russ.) |
| [12] |
Кидин В.В. Агрохимия. Москва: Проспект, 2015. 1033 с. |
| [13] |
Umarov MM, Kurakov AV, Stepanov AL. Microbiological transformation of nitrogen in soil. Moscow: GEOS, 2007. 138 p. (In Russ.) |
| [14] |
Умаров М.М., Кураков А.В., Степанов А.Л. Микробиологическая трансформация азота в почве. Москва: ГЕОС, 2007. 138 с. |
| [15] |
Alexander M. Denitrifying Bacteria. In: Norman AG, editor. Methods of soil analysis: Part 2 chemical and microbiological properties, 9.2. Madison: American Society of Agronomy, Inc.; 2016. P. 1484–1486. doi: 10.2134/agronmonogr9.2.c52 |
| [16] |
Alexander M. Denitrifying Bacteria. В кн.: Methods of soil analysis: Part 2 chemical and microbiological properties, 9.2 / A.G. Norman, editor. Madison: American Society of Agronomy, Inc., 2016. P. 1484–1486. doi: 10.2134/agronmonogr9.2.c52 |
| [17] |
Shtark OY, Borisov AU, Zhukov VA, et al. Multi-component symbiosis of Legumes with beneficial soil microbes: genetic and evolutionary basis of application in sustainable crop production. Ecological genetics. 2011;9(2):80–94. EDN: OFYTUR doi: 10.17816/ecogen9280-94 |
| [18] |
Штарк О.Ю., Борисов А.Ю., Жуков В.А., и др. Многокомпонентный симбиоз бобовых c полезными почвенными микроорганизмами: генетическое и эволюционное обоснование использования в адаптивном растениеводстве // Экологическая генетика. 2011. Т. 9, № 2. С. 80–94. EDN: OFYTUR doi: 10.17816/ecogen9280-94 |
| [19] |
Avdeenkov PP, Chistyakov NE. Denitrification mechanism. Science, technology and education. 2019;(4):19–22. EDN: OUNQAJ |
| [20] |
Авдеенков П.П., Чистяков Н.Е. Механизм денитрификации // Наука, техника и образование. 2019. № 4. С. 19–22. EDN: OUNQAJ |
| [21] |
Zavalin AA, Alferov AA, Chernova LS. Associative nitrogen fixation and the practice of application of biological products in agricultural crops. Agricultural Chemistry. 2019;(8):83–96. EDN: ELJRHR doi: 10.1134/S0002188119080143 |
| [22] |
Завалин А.А., Алферов А.А., Чернова Л.С. Ассоциативная азотфиксация и практика применения биопрепаратов в посевах сельскохозяйственных культур // Агрохимия. 2019. № 8. С. 83–96. EDN: ELJRHR doi: 10.1134/S0002188119080143 |
| [23] |
Subbarao GV, Rao IM, Nakahara K, et al. Potential for biological nitrification inhibition to reduce nitrification and N2O emissions in pasture crop-livestock systems. Animal. 2013;7(S2):322–332. doi: 10.1017/S1751731113000761 |
| [24] |
Subbarao G.V., Rao I.M., Nakahara K., et al. Potential for biological nitrification inhibition to reduce nitrification and N2O emissions in pasture crop-livestock systems // Animal. 2013. Vol. 7, N. S2. P. 322–332. doi: 10.1017/S1751731113000761 |
| [25] |
Bozal-Leorri A, Corrochano-Monsalve M, Arregui LM, et al. Biological and synthetic approaches to inhibiting nitrification in non-tilled Mediterranean soils. Chem Biol Technol Agric. 2021;8:51. doi: 10.1186/s40538-021-00250-7 |
| [26] |
Bozal-Leorri A., Corrochano-Monsalve M., Arregui L.M., et al. Biological and synthetic approaches to inhibiting nitrification in non-tilled Mediterranean soils // Chem Biol Technol Agric. 2021. Vol. 8. ID 51. doi: 10.1186/s40538-021-00250-7 |
| [27] |
McCormic S. Rhizobial strain-dependent restriction of nitrogen fixation in a legume-Rhizobium symbiosis. Plant J. 2018;93(1):3–4. doi: 10.1111/tpj.13791 |
| [28] |
McCormic S. Rhizobial strain-dependent restriction of nitrogen fixation in a legume-Rhizobium symbiosis // Plant J. 2018. Vol. 93, N. 1. P. 3–4. doi: 10.1111/tpj.13791 |
| [29] |
Sheudzhen АKh, Koltsov SA, Gutorova ОА, et al. Microflora of chernozem leached at long application of fertilizers. International research journal. 2008;56(2):89–94. doi: 10.23670/IRJ.2017.56.067 |
| [30] |
Шеуджен А.Х., Кольцов С.А., Гуторова О.А., и др. Микрофлора чернозема выщелоченного при длительном применении минеральных удобрений // Международный научно-исследовательский журнал. 2008. Т. 56, № 2. C. 89–94. doi: 10.23670/IRJ.2017.56.067 |
| [31] |
Blagoveshchenskaya GG, Zavalin AA, Lukin SM. Nitrogen cycle microbocenosis in soil under application of a new form of nitrogen fertiliser. Plodorodie. 2009. № 1. С. 30. EDN: KYVBRB |
| [32] |
Благовещенская Г.Г., Завалин А.А., Лукин С.М. Микробоценоз азотного цикла в почве при применении новой формы азотного удобрения // Плодородие. 2009. № 1. С. 30. EDN: KYVBRB |
| [33] |
Krutylo DV, Zotov VS. Genotypic analysis of nodule bacteria nodulating soybean in Ukraine soils. Ecological genetics. 2013;11(4): 86–95. EDN: RXLUSP doi: 10.17816/ecogen11486-95 |
| [34] |
Крутило Д.В., Зотов В.С. Генотипический анализ клубеньковых бактерий, нодулирующих сою в почвах Украины // Экологическая генетика. 2013. Т. 11, № 4. С. 86–95. EDN: RXLUSP doi: 10.17816/ecogen11486-95 |
| [35] |
Semyonov MV. Biomass and taxonomic structure of archaea and bacteria in soils of natural and agricultural ecosystems [dissertation]. Moscow, 2016. (In Russ.) |
| [36] |
Семенов М.В. Биомасса и таксономическая структура архей и бактерий в почвах природных и сельскохозяйственных экосистем: дис. … канд. биол. наук. Москва, 2016. |
| [37] |
Artamonova VS, Bortnikova SB. The status of nitrogen-fixing bacteria in soils of urban forest. Bulletin of Perm University. Biology. 2016;(2):150–159. EDN: WEIAVT |
| [38] |
Артамонова В.С., Бортникова С.Б. О состоянии почвенных азотфиксирующих бактерий на территории городского леса // Вестник Пермского университета. Серия: Биология. 2016. № 2. С. 150–159. EDN: WEIAVT |
| [39] |
Ilinova MI. Change of properties of chernozems and solonts of Stavropol upland under agricultural use [dissertation]. Krasnodar, 2016. (In Russ.) |
| [40] |
Ильинова М.И. Изменение свойств черноземов и солонцов Ставропольской возвышенности при сельскохозяйственном использовании: дис. … канд. биол. наук. Краснодар, 2016. |
| [41] |
Panchishkina MB. Dynamics of different bacterial populations in soils [dissertation abstract]. Moscow, 1987. (In Russ.) |
| [42] |
Панчишкина М.Б. Динамика различных бактериальных популяций в почвах: автореф. дис. ... канд. биол. наук. Москва, 1987. |
| [43] |
Wei W, Isobe K, Nishizawa T, et al. Higher diversity and abundance of denitrifying microorganisms in environments than considered previously. ISME J. 2015;9(9):1954–1965. doi: 10.1038/ismej.2015.9 |
| [44] |
Wei W., Isobe K., Nishizawa T., et al. Higher diversity and abundance of denitrifying microorganisms in environments than considered previously // ISME J. 2015. Vol. 9, N. 9. P. 1954–1965. doi: 10.1038/ismej.2015.9 |
| [45] |
Rosch C, Mergel A, Bothe H. Biodiversity of denitrifying and dinitrogen-fixing bacteria in anacid forest soil. Appl Environ Microbiol. 2002;68:3818–3829. doi: 10.1128/AEM.68.8.3818 |
| [46] |
Rosch C., Mergel A., Bothe H. Biodiversity of denitrifying and dinitrogen-fixing bacteria in anacid forest soil // Appl Environ Microbiol. 2002. Vol. 68. P. 3818–3829. doi: 10.1128/AEM.68.8.3818 |
| [47] |
Shaw LJ, Nicol GW, Smith Z, et al. Nitrosospira spp. can produce nitrous oxide via a nitrifier denitrification pathway. Environ Microbiol. 2006;8(2):214–222. doi: 10.1111/j.1462-2920.2005.00882.x |
| [48] |
Shaw L.J., Nicol G.W., Smith Z., et al. Nitrosospira spp. can produce nitrous oxide via a nitrifier denitrification pathway // Environ Microbiol. 2006. Vol. 8, N. 2. P. 214–222. doi: 10.1111/j.1462-2920.2005.00882.x |
| [49] |
Boyarshin KS, Adamova VV, Zheng W, et al. The effect of long-term agricultural use on the bacterial microbiota of chernozems of the forest-steppe zone. Diversity. 2023;15(2):191. doi: 10.3390/d15020191 |
| [50] |
Boyarshin K.S., Adamova V.V., Zheng W., et al. The effect of long-term agricultural use on the bacterial microbiota of chernozems of the forest-steppe zone // Diversity. 2023. Vol. 15, No. 2. 191. doi: 10.3390/d15020191 |
| [51] |
Kruskal WH, Wallis WA. Use of ranks in one-criterion variance analysis. J Am Stat Assoc. 1952;47(260):583–621. doi: 10.2307/2280779 |
| [52] |
Kruskal W.H., Wallis W.A. Use of ranks in one-criterion variance analysis // J Am Stat Assoc. 1952. Vol. 47, N. 260. P. 583–621. doi: 10.2307/2280779 |
| [53] |
Jordan DC. Transfer of rhizobium japonicum buchanan 1980 to Bradyrhizobium gen. nov., a genus of slow-growing, root nodule bacteria from leguminous plants. Int J Syst Bacteriol. 1982;32(1): 136–139. doi: 10.1099/00207713-32-1-136 |
| [54] |
Jordan D.C. Transfer of rhizobium Japonicum buchanan 1980 to Bradyrhizobium gen. nov., a genus of slow-growing, root nodule bacteria from leguminous plants // Int J Syst Bacteriol. 1982. Vol. 32, N. 1. P. 136–139. doi: 10.1099/00207713-32-1-136 |
| [55] |
Frank B. Ueber die pilzsymbiose der leguminosen. Ber Deut Bot Ges. 1889;7(8):332–346. doi: 10.1111/j.1438-8677.1889.tb05711.x |
| [56] |
Frank B. Ueber die pilzsymbiose der leguminosen // Ber Deut Bot Ges. 1889. Vol. 7, N. 8. P. 332–346. doi: 10.1111/j.1438-8677.1889.tb05711.x |
| [57] |
Jarvis BDW, Van Berkum P, Chen WX, et al. Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen. nov. Int J Syst Bacteriol. 1997;47(3):895–898. doi: 10.1099/00207713-47-3-895 |
| [58] |
Jarvis B.D.W., Van Berkum P., Chen W.X., et al. Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen. nov. // Int J Syst Bacteriol. 1997. Vol. 47, N. 3. P. 895–898. doi: 10.1099/00207713-47-3-895 |
| [59] |
Mousavi SA, Österman J, Wahlberg N, et al. Phylogeny of the Rhizobium–Allorhizobium–Agrobacterium clade supports the delineation of Neorhizobium gen. nov. Syst Appl Microbiol. 2014;37(3):208–215. doi: 10.1016/j.syapm.2013.12.007 |
| [60] |
Mousavi S.A., Österman J., Wahlberg N., et al. Phylogeny of the Rhizobium–Allorhizobium–Agrobacterium clade supports the delineation of Neorhizobium gen. nov. // Syst Appl Microbiol. 2014. Vol. 37, N. 3. P. 208–215. doi: 10.1016/j.syapm.2013.12.007 |
| [61] |
Beijerinck MW. Über oligonitrophile Mikroben. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene. 1901;7:561–582. |
| [62] |
Beijerinck M.W. Über oligonitrophile Mikroben // Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene. 1901. Vol. 7. P. 561–582. |
| [63] |
Xie C-H, Yokota A. Reclassification of Alcaligenes latus strains IAM 12599T and IAM 12664 and Pseudomonas saccharophila as Azohydromonas lata gen. nov., comb. nov., Azohydromonas australica sp. nov. and Pelomonas saccharophila gen. nov., comb. nov., respectively. Int J Syst Evol Microbiol. 2005;55(6):2419–2425. doi: 10.1099/ijs.0.63733-0 |
| [64] |
Xie C.-H., Yokota A. Reclassification of Alcaligenes latus strains IAM 12599T and IAM 12664 and Pseudomonas saccharophila as Azohydromonas lata gen. nov., comb. nov., Azohydromonas australica sp. nov. and Pelomonas saccharophila gen. nov., comb. nov., respectively // Int J Syst Evol Microbiol. 2005. Vol. 55, N. 6. P. 2419–2425. doi: 10.1099/ijs.0.63733-0 |
| [65] |
Hippe H. Leptospirillum gen. nov. (ex Markosyan 1972), nom. rev., including Leptospirillum ferrooxidans sp. nov. (ex Markosyan 1972), nom. rev. and Leptospirillum thermoferrooxidans sp. nov. (Golovacheva et al. 1992). Int J Syst Evol Microbiol. 2000;50(2): 501–503. doi: 10.1099/00207713-50-2-501 |
| [66] |
Hippe H. Leptospirillum gen. nov. (ex Markosyan 1972), nom. rev., including Leptospirillum ferrooxidans sp. nov. (ex Markosyan 1972), nom. rev. and Leptospirillum thermoferrooxidans sp. nov. (Golovacheva et al. 1992) // Int J Syst Evol Microbiol. 2000. Vol. 50, N. 2. P. 501–503. doi: 10.1099/00207713-50-2-501 |
| [67] |
Prosser J, Head IM, Stein LY. The Family Nitrosomonadaceae. In: Rosenberg E, DeLong EF, Lory S, et al editors. The prokaryotes: Alphaproteobacteria and Betaproteobacteria. Berlin, Heidelberg: Springer Berlin/Heidelberg, 2013. P. 901–918. doi: 10.1007/978-3-642-30197-1_372 |
| [68] |
Prosser J., Head I.M., Stein L.Y. The Family Nitrosomonadaceae. In: The prokaryotes: Alphaproteobacteria and Betaproteobacteria / E. Rosenberg, E.F. DeLong, S. Lory, et al editors. Berlin, Heidelberg: Springer Berlin/Heidelberg, 2013. P. 901–918. doi: 10.1007/978-3-642-30197-1_372 |
| [69] |
Watson SW, Bock E, Valois FW, et al. Nitrospira marina gen. nov., sp. nov.: a chemolithotrophic nitrite-oxidizing bacterium. Arch Microbiol. 1986;144:1–7. doi: 10.1007/BF00454947 |
| [70] |
Watson S.W., Bock E., Valois F.W., et al. Nitrospira marina gen. nov., sp. nov.: a chemolithotrophic nitrite-oxidizing bacterium // Arch Microbiol. 1986. Vol. 144. P. 1–7. doi: 10.1007/BF00454947 |
| [71] |
Sly LI, Stackebrandt E. Description of Skermanella parooensis gen. nov., sp. nov. to accommodate Conglomeromonas largomobilis subsp. parooensis following the transfer of Conglomeromonas largomobilis subsp. largomobilis to the genus Azospirillum. Int J Syst Bacteriol. 1999;49(2):541–544. doi: 10.1099/00207713-49-2-541 |
| [72] |
Sly L.I., Stackebrandt E. Description of Skermanella parooensis gen. nov., sp. nov. to accommodate Conglomeromonas largomobilis subsp. parooensis following the transfer of Conglomeromonas largomobilis subsp. largomobilis to the genus Azospirillum // Int J Syst Bacteriol. 1999. Vol. 49, N. 2. P. 541–544. doi: 10.1099/00207713-49-2-541 |
| [73] |
Stieglmeier M, Klingl A, Alves RJE, et al. Nitrososphaera viennensis gen. nov., sp. nov., an aerobic and mesophilic, ammonia-oxidizing archaeon from soil and a member of the archaeal phylum Thaumarchaeota. Int J Syst Evol Microbiol. 2014;64(8):2738–2752. doi: 10.1099/ijs.0.063172-0 |
| [74] |
Stieglmeier M., Klingl A., Alves R.J.E., et al. Nitrososphaera viennensis gen. nov., sp. nov., an aerobic and mesophilic, ammonia-oxidizing archaeon from soil and a member of the archaeal phylum Thaumarchaeota // Int J Syst Evol Microbiol. 2014. Vol. 64, N. 8. P. 2738–2752. doi: 10.1099/ijs.0.063172-0 |
| [75] |
Wu F, Zhang Y, He D, et al. Community structures of bacteria and archaea associated with the biodeterioration of sandstone sculptures at the Beishiku Temple. Int Biodeterior Biodegr. 2021;164:105290. doi: 10.1016/j.ibiod.2021.105290 |
| [76] |
Wu F., Zhang Y., He D., et al. Community structures of bacteria and archaea associated with the biodeterioration of sandstone sculptures at the Beishiku Temple // Int Biodeterior Biodegr. 2021. Vol. 164. ID 105290. doi: 10.1016/j.ibiod.2021.105290 |
| [77] |
Holmes AJ, Tujula NA, Holley M, et al. Phylogenetic structure of unusual aquatic microbial formations in Nullarbor caves, Australia. Environ Microbiol. 2001;3(4):256–264. doi: 10.1046/j.1462-2920.2001.00187.x |
| [78] |
Holmes A.J., Tujula N.A., Holley M., et al. Phylogenetic structure of unusual aquatic microbial formations in Nullarbor caves, Australia // Environ Microbiol. 2001. Vol. 3, N. 4. P. 256–264. doi: 10.1046/j.1462-2920.2001.00187.x |
| [79] |
Sorokin DY, Vejmelkova D, Lucker S, et al. Nitrolancea hollandica gen. nov., sp. nov., a chemolithoautotrophic nitrite-oxidizing bacterium isolated from a bioreactor belonging to the phylum Chloroflexi. Int J Syst Evol Microbiol. 2014;64(6):1859–1865. doi: 10.1099/ijs.0.062232-0 |
| [80] |
Sorokin D.Y., Vejmelkova D., Lucker S., et al. Nitrolancea hollandica gen. nov., sp. nov., a chemolithoautotrophic nitrite-oxidizing bacterium isolated from a bioreactor belonging to the phylum Chloroflexi // Int J Syst Evol Microbiol. 2014. Vol. 64, N. 6. P. 1859–1865. doi: 10.1099/ijs.0.062232-0 |
| [81] |
Winogradsky S. Contributions à la morphologie des organismes de la nitrification. Arkhiv Biologicheskikh Nauk (St. Petersbourg). 1892;(1):87–137. |
| [82] |
Winogradsky S. Contributions à la morphologie des organismes de la nitrification // Arkhiv Biologicheskikh Nauk (St. Petersbourg). 1892. No. 1. P. 87–137. |
| [83] |
Pranamuda H, Tokiwa Y, Tanaka H. Polylactide degradation by an Amycolatopsis sp. Appl Environ Microbiol. 1997;63(4):1637–1640. doi: 10.1128/AEM.63.4.1637-1640.1997 |
| [84] |
Pranamuda H., Tokiwa Y., Tanaka H. Polylactide degradation by an Amycolatopsis sp. // Appl Environ Microbiol. 1997. Vol. 63, N. 4. P. 1637–1640. doi: 10.1128/AEM.63.4.1637-1640.1997 |
| [85] |
Horsley RW, Roscoe JV, Talling IB. Nitrate reduction by Pseudomonas spp.: antagonism by fermentative bacteria. J Appl Bacteriol. 1982;52(1):57–66. doi: 10.1111/j.1365-2672.1982.tb04373.x |
| [86] |
Horsley R.W., Roscoe J.V., Talling I.B. Nitrate reduction by Pseudomonas spp.: antagonism by fermentative bacteria // J Appl Bacteriol. 1982. Vol. 52, N. 1. P. 57–66. doi: 10.1111/j.1365-2672.1982.tb04373.x |
| [87] |
Mantelin S, Desbrosses G, Larcher M, et al. Nitrate-dependent control of root architecture and N nutrition are altered by a plant growth-promoting Phyllobacterium sp. Planta. 2006;223(3):591–603. doi: 10.1007/s00425-005-0106-y |
| [88] |
Mantelin S., Desbrosses G., Larcher M., et al. Nitrate-dependent control of root architecture and N nutrition are altered by a plant growth-promoting Phyllobacterium sp. // Planta. 2006. Vol. 223, N. 3. P. 591–603. doi: 10.1007/s00425-005-0106-y |
| [89] |
Cho Y, Lee I, Yang YY, et al. Aureimonas glaciistagni sp. nov., isolated from a melt pond on Arctic sea ice. Int J Syst Evol Microbiol. 2015;65(10):3564–3569. doi: 10.1099/ijsem.0.000453 |
| [90] |
Cho Y., Lee I., Yang Y.Y., et al. Aureimonas glaciistagni sp. nov., isolated from a melt pond on Arctic sea ice // Int J Syst Evol Microbiol. 2015. Vol. 65, N. 10. P. 3564–3569. doi: 10.1099/ijsem.0.000453 |
| [91] |
Torres MJ, Rubia MI, de la Peña TC, et al. Genetic basis for denitrification in Ensifer meliloti. BMC Microbiol. 2014;14:142. doi: 10.1186/1471-2180-14-142 |
| [92] |
Torres M.J., Rubia M.I., de la Peña T.C., et al. Genetic basis for denitrification in Ensifer meliloti // BMC Microbiol. 2014. Vol. 14. ID 142. doi: 10.1186/1471-2180-14-142 |
| [93] |
Bambauer A, Rainey FA, Stackebrandt E, Winter J. Characterization of Aquamicrobium defluvii gen. nov. sp. nov., a thiophene-2-carboxylate-metabolizing bacterium from activated sludge. Arch Microbiol. 1998;169(4):293–302. doi: 10.1007/s002030050575 |
| [94] |
Bambauer A., Rainey F.A., Stackebrandt E., Winter J. Characterization of Aquamicrobium defluvii gen. nov. sp. nov., a thiophene-2-carboxylate-metabolizing bacterium from activated sludge // Arch Microbiol. 1998. Vol. 169, N. 4. P. 293–302. doi: 10.1007/s002030050575 |
| [95] |
Beijerinck MW, Minkman DCJ. Bildung und verbrauch von stickoxydul durch bakterien. Zentbl Bakteriol Parasitenkd Infektionskr Hyg Abt. II. 1910;25:30–63. |
| [96] |
Beijerinck M.W., Minkman D.C.J. Bildung und verbrauch von stickoxydul durch bakterien // Zentbl Bakteriol Parasitenkd Infektionskr Hyg Abt. II. 1910. Vol. 25. P. 30–63. |
| [97] |
Reed SC, Townsend AR, Cleveland CC, Nemergut DR. Microbial community shifts influence patterns in tropical forest nitrogen fixation. Oecologia. 2010;164:521–531. doi: 10.1007/s00442-010-1649-6 |
| [98] |
Reed S.C., Townsend A.R., Cleveland C.C., Nemergut D.R. Microbial community shifts influence patterns in tropical forest nitrogen fixation // Oecologia. 2010. Vol. 164. P. 521–531. doi: 10.1007/s00442-010-1649-6 |
| [99] |
Mirza BS, Potisap C, Nüsslein K, et al. Response of free-living nitrogen-fixing microorganisms to land use change in the Amazon rainforest. Appl Environ Microbiol. 2014;80(1):281–288. doi: 10.1128/AEM.02362-13 |
| [100] |
Mirza B.S., Potisap C., Nüsslein K., et al. Response of free-living nitrogen-fixing microorganisms to land use change in the Amazon rainforest // Appl Environ Microbiol. 2014. Vol. 80, N. 1. P. 281–288. doi: 10.1128/AEM.02362-13 |
| [101] |
Sarkar A, Reinhold-Hurek B. Transcriptional profiling of nitrogen fixation and the role of NifA in the diazotrophic endophyte Azoarcus sp. Strain BH72. PLoS ONE. 2013;9:e86527. doi: 10.1371/journal.pone.0086527 |
| [102] |
Sarkar A., Reinhold-Hurek B. Transcriptional profiling of nitrogen fixation and the role of NifA in the diazotrophic endophyte Azoarcus sp. Strain BH72 // PLoS ONE. 2013. Vol. 9. ID e86527. doi: 10.1371/journal.pone.0086527 |
| [103] |
Dobrovolsky GV, Chernov IYu, Bobrov AA, et al. The role of soil in the formation and conservation of biological diversity. Moscow: Partnership of scientific publications KMK; 2011. 273 p. (In Russ.) |
| [104] |
Добровольский Г.В., Чернов И.Ю., Бобров А.А., и др. Роль почвы в формировании и сохранении биологического разнообразия. Москва: Товарищество научных изданий КМК, 2011. 273 с. |
| [105] |
Li Y, Zou N, Liang X, et al. Effects of nitrogen input on soil bacterial community structure and soil nitrogen cycling in the rhizosphere soil of Lycium barbarum L. Front Microbiol. 2023;13:1070817. doi: 10.3389/fmicb.2022.1070817 |
| [106] |
Li Y., Zou N., Liang X., et al. Effects of nitrogen input on soil bacterial community structure and soil nitrogen cycling in the rhizosphere soil of Lycium barbarum L. // Front Microbiol. 2023. Vol. 13. ID 1070817. doi: 10.3389/fmicb.2022.1070817 |
| [107] |
Hayatsu M, Tago K, Saito M. Various players in the nitrogen cycle: Diversity and functions of the microorganisms involved in nitrification and denitrification. Soil Sci Plant Nutrit. 2008;54(1):33–45. doi: 10.1111/j.1747-0765.2007.00195.x |
| [108] |
Hayatsu M., Tago K., Saito M. Various players in the nitrogen cycle: Diversity and functions of the microorganisms involved in nitrification and denitrification // Soil Sci Plant Nutrit. 2008. Vol. 54, N. 1. P. 33–45. doi: 10.1111/j.1747-0765.2007.00195.x |
Eco-Vector
/
| 〈 |
|
〉 |