Assessment of mutagenic activity of phlorotannin-enriched extracts of three brown algal species
Elena R. Tarakhovskaya , Renata T. Islamova , Elizaveta B. Zamyatkina , Elena I. Stepchenkova
Ecological Genetics ›› 2023, Vol. 21 ›› Issue (3) : 249 -260.
Assessment of mutagenic activity of phlorotannin-enriched extracts of three brown algal species
BACKGROUND: Phlorotannins are unique phenolic compounds produced by brown algae. Due to their considerable biological activity these metabolites are extensively studied in the context of medicinal applications. However, to date, no studies addressed potential genotoxicity of phlorotannins.
AIM: The objective of this research is an assessment of mutagenic activity of intracellular and cell wall (CW) bound phlorotannins of three brown algal species.
MATERIALS AND METHODS: Mutagenicity of phlorotannin extracts of Desmarestia aculeata, Fucus serratus, and Ectocarpus siliculosus was assessed by the Ames test, carried out using three tester strains of Salmonella typhimurium (TA97, TA98, and TA100) with and without metabolic activation.
RESULTS: Intracellular phlorotannin extracts of all tested algae showed relatively low values of minimum inhibitory concentration against S. typhimurium (20–30 μg/ml), with extract of D. aculeata being the most toxic. Intracellular phlorotannins of F. serratus and CW-bound polyphenols of E. siliculosus demonstrated moderate mutagenic activity in the Ames test inducing frameshift mutations with the number of His+ revertants more than twice higher compared to the control. The phlorotannin extracts of D. aculeata showed no mutagenic activity.
CONCLUSIONS: The brown alga D. aculeata may be regarded as a promising source of phlorotannins for medical applications, as its phlorotannin-enriched extracts have high antibiotic activity and are not mutagenic.
phlorotannins / brown algae / mutagenicity / Ames test / antibiotic activity / Fucus / Desmarestia / Ectocarpus
| [1] |
Shannon E, Abu-Ghannam N. Antibacterial derivatives of marine algae: An overview of pharmacological mechanisms and applications. Marine Drugs. 2016;14(8):81. DOI: 10.3390/md14040081 |
| [2] |
Shannon E., Abu-Ghannam N. Antibacterial derivatives of marine algae: An overview of pharmacological mechanisms and applications // Marine Drugs. 2016. Vol. 14, No. 8. ID 81. DOI: 10.3390/md14040081 |
| [3] |
Papon N, Copp BR, Courdavault V. Marine drugs: Biology, pipelines, current and future prospects for production. Biotechnol Adv. 2022;54:107871. DOI: 10.1016/j.biotechadv.2021.107871 |
| [4] |
Papon N., Copp B.R., Courdavault V. Marine drugs: Biology, pipelines, current and future prospects for production // Biotechnol Adv. 2022. Vol. 54. ID 107871. DOI: 10.1016/j.biotechadv.2021.107871 |
| [5] |
Isaza Martinez JH, Torres Castaneda HG. Preparation and chromatographic analysis of phlorotannins. J Chromatogr Sci. 2013;51(8):825–838. DOI: 10.1093/chromsci/bmt045 |
| [6] |
Isaza Martinez J.H., Torres Castaneda H.G. Preparation and chromatographic analysis of phlorotannins // J Chromatogr Sci. 2013. Vol. 51, No. 8. P. 825–838. DOI: 10.1093/chromsci/bmt045 |
| [7] |
Shrestha S, Zhang W, Smid SD. Phlorotannins: A review on biosynthesis, chemistry and bioactivity. Food Biosci. 2021;39:100832. DOI: 10.1016/j.fbio.2020.100832 |
| [8] |
Shrestha S., Zhang W., Smid S.D. Phlorotannins: A review on biosynthesis, chemistry and bioactivity // Food Biosci. 2021. Vol. 39. ID 100832. DOI: 10.1016/j.fbio.2020.100832 |
| [9] |
Steevensz AJ, Mackinnon SL, Hankinson R, et al. Profiling phlorotannins in brown macroalgae by liquid chromatography-high resolution mass spectrometry. Phytochem Anal. 2012;23(5):547–553. DOI: 10.1002/pca.2354 |
| [10] |
Steevensz A.J., Mackinnon S.L., Hankinson R., et al. Profiling phlorotannins in brown macroalgae by liquid chromatography-high resolution mass spectrometry // Phytochem Anal. 2012. Vol. 23, No. 5. P. 547–553. DOI: 10.1002/pca.2354 |
| [11] |
Birkemeyer C, Lemesheva V, Billig S, et al. Composition of intracellular and cell wall-bound phlorotannin fractions in fucoid algae indicates specific functions of these metabolites dependent on the chemical structure. Metabolites. 2020;10(9):369. DOI: 10.3390/metabo10090369 |
| [12] |
Birkemeyer C., Lemesheva V., Billig S., et al. Composition of intracellular and cell wall-bound phlorotannin fractions in fucoid algae indicates specific functions of these metabolites dependent on the chemical structure // Metabolites. 2020. Vol. 10, No. 9. ID 369. DOI: 10.3390/metabo10090369 |
| [13] |
Generalić Mekinić I, Skroza D, Šimat V, et al. Phenolic content of brown algae (Pheophyceae) species: Extraction, identification, and quantification. Biomolecules. 2019;9(6):244. DOI: 10.3390/biom9060244 |
| [14] |
Generalić Mekinić I., Skroza D., Šimat V., et al. Phenolic content of brown algae (Pheophyceae) species: Extraction, identification, and quantification // Biomolecules. 2019. Vol. 9, No. 6. ID 244. DOI: 10.3390/biom9060244 |
| [15] |
Lemesheva V, Islamova R, Stepchenkova E, et al. Antibacterial, antifungal and algicidal activity of phlorotannins, as principal biologically active components of ten species of brown algae. Plants. 2023;12(4):821. DOI: 10.3390/plants12040821 |
| [16] |
Lemesheva V., Islamova R., Stepchenkova E., et al. Antibacterial, antifungal and algicidal activity of phlorotannins, as principal biologically active components of ten species of brown algae // Plants. 2023. Vol. 12, No. 4. ID 821. DOI: 10.3390/plants12040821 |
| [17] |
Schoenwaelder MEA, Clayton MN. The presence of phenolic compounds in isolated cell walls of brown algae. Phycologia. 1999;38(3):161–166. DOI: 10.2216/i0031-8884-38-3-161.1 |
| [18] |
Schoenwaelder M.E.A., Clayton M.N. The presence of phenolic compounds in isolated cell walls of brown algae // Phycologia. 1999. Vol. 38, No. 3. P. 161–166. DOI: 10.2216/i0031-8884-38-3-161.1 |
| [19] |
Schoenwaelder MEA. The occurrence and cellular significance of physodes in brown algae. Phycologia. 2002;41(2):125–139. DOI: 10.2216/i0031-8884-41-2-125.1 |
| [20] |
Schoenwaelder M.E.A. The occurrence and cellular significance of physodes in brown algae // Phycologia. 2002. Vol. 41, No. 2. P. 125–139. DOI: 10.2216/i0031-8884-41-2-125.1 |
| [21] |
Catarino MD, Silva AMS, Cardoso SM. Fucaceae: a source of bioactive phlorotannins. Int J Mol Sci. 2017;18(6):1327. DOI: 10.3390/ijms18061327 |
| [22] |
Catarino M.D., Silva A.M.S., Cardoso S.M. Fucaceae: a source of bioactive phlorotannins // Int J Mol Sci. 2017. Vol. 18, No. 6. ID 1327. DOI: 10.3390/ijms18061327 |
| [23] |
Hagerman AE, Riedl KM, Jones GA, et al. High molecular weight plant polyphenolics (tannins) as biological antioxidants. J Agric Food Chem. 1998;46(5):1887–1892. DOI: 10.1021/jf970975b |
| [24] |
Hagerman A.E., Riedl K.M., Jones G.A., et al. High molecular weight plant polyphenolics (tannins) as biological antioxidants // J Agric Food Chem. 1998. Vol. 46, No. 5. P. 1887–1892. DOI: 10.1021/jf970975b |
| [25] |
Ferreres F, Lopes G, Gil-Izquierdo A, et al. Phlorotannin extracts from Fucales characterized by HPLC-DAD-ESI-MSn: approaches to hyaluronidase inhibitory capacity and antioxidant properties. Marine Drugs. 2012;10(12):2766–2781. DOI: 10.3390/md10122766 |
| [26] |
Ferreres F., Lopes G., Gil-Izquierdo A., et al. Phlorotannin extracts from Fucales characterized by HPLC-DAD-ESI-MSn: approaches to hyaluronidase inhibitory capacity and antioxidant properties // Marine Drugs. 2012. Vol. 10, No. 12. P. 2766–2781. DOI: 10.3390/md10122766 |
| [27] |
Wang T, Jónsdóttir R, Liu H, et al. Antioxidant capacities of phlorotannins extracted from the brown algae Fucus vesiculosus. J Agric Food Chem. 2012;60(23):5874–5883. DOI: 10.1021/jf3003653 |
| [28] |
Wang T., Jónsdóttir R., Liu H., et al. Antioxidant capacities of phlorotannins extracted from the brown algae Fucus vesiculosus // J Agric Food Chem. 2012. Vol. 60, No. 23. P. 5874–5883. DOI: 10.1021/jf3003653 |
| [29] |
Liu X, Yuan W, Sharma-Shivappa R, van Zanten J. Antioxidant activity of phlorotannins from brown algae. Int J Agric Biol Eng. 2017;10(6):184–191. DOI: 10.25165/j.ijabe.20171006.2854 |
| [30] |
Liu X., Yuan W., Sharma-Shivappa R., van Zanten J. Antioxidant activity of phlorotannins from brown algae // Int J Agric Biol Eng. 2017. Vol. 10, No. 6. P. 184–191. DOI: 10.25165/j.ijabe.20171006.2854 |
| [31] |
Kim A-R, Shin T-S, Lee M-S, et al. Isolation and identification of phlorotannins from Ecklonia stolonifera with antioxidant and anti-inflammatory properties. J Agric Food Chem. 2009;57(9):3483–3489. DOI: 10.1021/jf900820x |
| [32] |
Kim A.-R., Shin T.-S., Lee M.-S., et al. Isolation and identification of phlorotannins from Ecklonia stolonifera with antioxidant and anti-inflammatory properties // J Agric Food Chem. 2009. Vol. 57, No. 9. P. 3483–3489. DOI: 10.1021/jf900820x |
| [33] |
Quéguineur B, Goya L, Ramos S, et al. Effect of phlorotannin-rich extracts of Ascophyllum nodosum and Himanthalia elongata (Phaeophyceae) on cellular oxidative markers in human HepG2 cells. J Appl Phycol. 2013;25:1–11. DOI: 10.1007/s10811-012-9832-2 |
| [34] |
Quéguineur B., Goya L., Ramos S., et al. Effect of phlorotannin-rich extracts of Ascophyllum nodosum and Himanthalia elongata (Phaeophyceae) on cellular oxidative markers in human HepG2 cells // J Appl Phycol. 2013. Vol. 25. P. 1–11. DOI: 10.1007/s10811-012-9832-2 |
| [35] |
Kang M-C, Cha SH, Wijesinghe WAJP, et al. Protective effect of marine algae phlorotannins against AAPH-induced oxidative stress in zebrafish embryo. Food Chem. 2013;138(2–3):950–955. DOI: 10.1016/j.foodchem.2012.11.005 |
| [36] |
Kang M.-C., Cha S.H., Wijesinghe W.A.J.P., et al. Protective effect of marine algae phlorotannins against AAPH-induced oxidative stress in zebrafish embryo // Food Chem. 2013. Vol. 138, No. 2–3. P. 950–955. DOI: 10.1016/j.foodchem.2012.11.005 |
| [37] |
Eom S-H, Kim Y-M, Kim S-K. Antimicrobial effect of phlorotannins from marine brown algae. Food Chem Toxicol. 2012;50(9): 3251–3255. DOI: 10.1016/j.fct.2012.06.028 |
| [38] |
Eom S.-H., Kim Y.-M., Kim S.-K. Antimicrobial effect of phlorotannins from marine brown algae // Food Chem Toxicol. 2012. Vol. 50, No. 9. P. 3251–3255. DOI: 10.1016/j.fct.2012.06.028 |
| [39] |
Lopes G, Pinto E, Andrade PB, Valentaõ P. Antifungal activity of phlorotannins against dermatophytes and yeasts: Approaches to the mechanism of action and influence on Candida albicans virulence factor. PLoS ONE. 2013;8: e72203. DOI: 10.1371/journal.pone.0072203 |
| [40] |
Lopes G., Pinto E., Andrade P.B., Valentaõ P. Antifungal activity of phlorotannins against dermatophytes and yeasts: Approaches to the mechanism of action and influence on Candida albicans virulence factor // PLoS ONE. 2013. Vol. 8. ID e72203. DOI: 10.1371/journal.pone.0072203 |
| [41] |
Eom S-H, Kang M-S, Kim Y-M. Antibacterial activity of the Phaeophyta Ecklonia stolonifera on methicillin-resistant Staphylococcus aureus. Fish Aquatic Sci. 2008;11(1):1–6. DOI: 10.5657/FAS.2008.11.1.001 |
| [42] |
Eom S.-H., Kang M.-S., Kim Y.-M. Antibacterial activity of the Phaeophyta Ecklonia stolonifera on methicillin-resistant Staphylococcus aureus // Fish Aquatic Sci. 2008. Vol. 11, No. 1. P. 1–6. DOI: 10.5657/FAS.2008.11.1.001 |
| [43] |
Kim H-J, Dasagrandhi C, Kim S-H, et al. In vitro antibacterial activity of phlorotannins from edible brown algae, Eisenia bicyclis against streptomycin-resistant Listeria monocytogenes. Ind J Microbiol. 2018;58:105–108. DOI: 10.1007/s12088-017-0693-x |
| [44] |
Kim H.-J., Dasagrandhi C., Kim S.-H., et al. In vitro antibacterial activity of phlorotannins from edible brown algae, Eisenia bicyclis against streptomycin-resistant Listeria monocytogenes // Ind J Microbiol. 2018. Vol. 58. P. 105–108. DOI: 10.1007/s12088-017-0693-x |
| [45] |
Dutot M, Fagon R, Hemon M, Rat P. Antioxidant, anti-inflammatory, and anti-senescence activities of a phlorotannin-rich natural extract from brown seaweed Ascophyllum nodosum. Appl Biochem Biotechnol. 2012;167:2234–2240. DOI: 10.1007/s12010-012-9761-1 |
| [46] |
Dutot M., Fagon R., Hemon M., Rat P. Antioxidant, anti-inflammatory, and anti-senescence activities of a phlorotannin-rich natural extract from brown seaweed Ascophyllum nodosum // Appl Biochem Biotechnol. 2012. Vol. 167. P. 2234–2240. DOI: 10.1007/s12010-012-9761-1 |
| [47] |
Geisen U, Zenthoefer M, Peipp M, et al. Molecular mechanisms by which a Fucus vesiculosus extract mediates cell cycle inhibition and cell death in pancreatic cancer cells. Marine Drugs. 2015;13(7): 4470–4491. DOI: 10.3390/md13074470 |
| [48] |
Geisen U., Zenthoefer M., Peipp M., et al. Molecular mechanisms by which a Fucus vesiculosus extract mediates cell cycle inhibition and cell death in pancreatic cancer cells // Marine Drugs. 2015. Vol. 13, No. 7. P. 4470–4491. DOI: 10.3390/md13074470 |
| [49] |
Zenthoefer M, Geisen U, Hofmann-Peiker K, et al. Isolation of polyphenols with anticancer activity from the Baltic Sea brown seaweed Fucus vesiculosus using bioassay-guided fractionation. J Appl Phycol. 2017;29:2021–2037. DOI: 10.1007/s10811-017-1080-z |
| [50] |
Zenthoefer M., Geisen U., Hofmann-Peiker K., et al. Isolation of polyphenols with anticancer activity from the Baltic Sea brown seaweed Fucus vesiculosus using bioassay-guided fractionation // J Appl Phycol. 2017. Vol. 29. P. 2021–2037. DOI: 10.1007/s10811-017-1080-z |
| [51] |
Liu H, Gu L. Phlorotannins from brown algae (Fucus vesiculosus) inhibited the formation of advanced glycation endproducts by scavenging reactive carbonyls. J Agric Food Chem. 2012;60(5):1326–1334. DOI: 10.1021/jf204112f |
| [52] |
Liu H., Gu L. Phlorotannins from brown algae (Fucus vesiculosus) inhibited the formation of advanced glycation endproducts by scavenging reactive carbonyls // J Agric Food Chem. 2012. Vol. 60, No. 5. P. 1326–1334. DOI: 10.1021/jf204112f |
| [53] |
Meshalkina D, Tsvetkova E, Orlova A, et al. First insight into the neuroprotective and antibacterial effects of phlorotannins isolated from the cell walls of brown algae Fucus vesiculosus and Pelvetia canaliculata. Antioxidants. 2023;12(3):696. DOI: 10.3390/antiox12030696 |
| [54] |
Meshalkina D., Tsvetkova E., Orlova A., et al. First insight into the neuroprotective and antibacterial effects of phlorotannins isolated from the cell walls of brown algae Fucus vesiculosus and Pelvetia canaliculata // Antioxidants. 2023. Vol. 12, No. 3. ID 696. DOI: 10.3390/antiox12030696 |
| [55] |
AlgaeBase [Internet]. World-wide electronic publication, National University of Ireland, Galway [cited 2023 Sep 20]. Available at: https://www.algaebase.org |
| [56] |
AlgaeBase [Электронный ресурс]. World-wide electronic publication, National University of Ireland, Galway [дата обращения: 20.09.2023]. Режим доступа: https://www.algaebase.org |
| [57] |
Koivikko R, Loponen J, Pihlaja K, Jormalainen V. High-performance liquid chromatographic analysis of phlorotannins from the brown alga Fucus vesiculosus. Phytochem Anal. 2007;18(4):326–332. DOI: 10.1002/pca.986 |
| [58] |
Koivikko R., Loponen J., Pihlaja K., Jormalainen V. High-performance liquid chromatographic analysis of phlorotannins from the brown alga Fucus vesiculosus // Phytochem Anal. 2007. Vol. 18, No. 4. P. 326–332. DOI: 10.1002/pca.986 |
| [59] |
Maron DM, Ames BN. Revised methods for the Salmonella mutagenicity test. Mutat Res Environ Mutagen Relat Subj. 1983;113(3–4): 173–215. DOI: 10.1016/0165-1161(83)90010-9 |
| [60] |
Maron D.M., Ames B.N. Revised methods for the Salmonella mutagenicity test // Mutat Res Environ Mutagen Relat Subj. 1983. Vol. 113, No. 3–4. P. 173–215. DOI: 10.1016/0165-1161(83)90010-9 |
| [61] |
Andrews JM. Determination of minimum inhibitory concentrations. J Antimicrob Chemother. 2001;48(S1):5–16. DOI: 10.1093/jac/48.suppl_1.5 |
| [62] |
Andrews J.M. Determination of minimum inhibitory concentrations // J Antimicrob Chemother. 2001. Vol. 48, No. S1. P. 5–16. DOI: 10.1093/jac/48.suppl_1.5 |
| [63] |
Mortelmans K, Zeiger E. The Ames Salmonella/microsome mutagenicity assay. Mutat Res Fund Mol Mech Mutag. 2000;455(1–2): 29–60. DOI: 10.1016/s0027-5107(00)00064-6 |
| [64] |
Mortelmans K., Zeiger E. The Ames Salmonella/microsome mutagenicity assay // Mutat Res Fund Mol Mech Mutag. 2000. Vol. 455, No. 1–2. P. 29–60. DOI: 10.1016/s0027-5107(00)00064-6 |
| [65] |
Wang Y, Xu Z, Bach SJ, McAllister TA. Sensitivity of Escherichia coli to seaweed (Ascophyllum nodosum) phlorotannins and terrestrial tannins. Asian-Australas. J Anim Sci. 2009;22(2):238–245. DOI: 10.5713/ajas.2009.80213 |
| [66] |
Wang Y., Xu Z., Bach S.J., McAllister T.A. Sensitivity of Escherichia coli to seaweed (Ascophyllum nodosum) phlorotannins and terrestrial tannins. Asian-Australas // J Anim Sci. 2009. Vol. 22, No. 2. P. 238–245. DOI: 10.5713/ajas.2009.80213 |
| [67] |
Iken K, Amsler CD, Amsler MO, et al. Field studies on deterrent properties of phlorotannins in Antarctic brown algae. Bot Mar. 2009;52(6):547–557. DOI: 10.1515/BOT.2009.071 |
| [68] |
Iken K., Amsler C.D., Amsler M.O., et al. Field studies on deterrent properties of phlorotannins in Antarctic brown algae // Bot Mar. 2009. Vol. 52, No. 6. P. 547–557. DOI: 10.1515/BOT.2009.071 |
| [69] |
Deniaud-Bouët E, Kervarec N, Michel G, et al. Chemical and enzymatic fractionation of cell walls from Fucales: insights into the structure of the extracellular matrix of brown algae. Ann Bot. 2014;114(6):1203–1216. DOI: 10.1093/aob/mcu096 |
| [70] |
Deniaud-Bouët E., Kervarec N., Michel G., et al. Chemical and enzymatic fractionation of cell walls from Fucales: insights into the structure of the extracellular matrix of brown algae // Ann Bot. 2014. Vol. 114, No. 6. P. 1203–1216. DOI: 10.1093/aob/mcu096 |
| [71] |
Lemesheva V, Tarakhovskaya E. Physiological functions of phlorotannins. Biol Comm. 2018;63(1):70–76. DOI: 10.21638/spbu03.2018.108 |
| [72] |
Lemesheva V., Tarakhovskaya E. Physiological functions of phlorotannins // Biol Comm. 2018. Vol. 63, No. 1. P. 70–76. DOI: 10.21638/spbu03.2018.108 |
| [73] |
www.ema.europa.eu [Internet]. ICH guideline S2 (R1) on genotoxicity testing and data interpretation for pharmaceuticals intended for human use — Scientific guideline [cited 2023 Sep 20]. Available at: https://www.ema.europa.eu/en/ich-s2-r1-genotoxicity-testing-data-interpretation-pharmaceuticals-intended-human-use |
| [74] |
www.ema.europa.eu [Электронный ресурс]. ICH guideline S2 (R1) on genotoxicity testing and data interpretation for pharmaceuticals intended for human use — Scientific guideline [дата обращения: 20.09.2023]. Режим доступа: https://www.ema.europa.eu/en/ich-s2-r1-genotoxicity-testing-data-interpretation-pharmaceuticals-intended-human-use |
| [75] |
Patrineli A, Clifford MN, Ioannides C. Contribution of phenols, quinones and reactive oxygen species to the mutagenicity of white grape juice in the Ames test. Food Chem Toxicol. 1996;34(9):869–872. DOI: 10.1016/s0278-6915(96)00048-8 |
| [76] |
Patrineli A., Clifford M.N., Ioannides C. Contribution of phenols, quinones and reactive oxygen species to the mutagenicity of white grape juice in the Ames test // Food Chem Toxicol. 1996. Vol. 34, No. 9. P. 869–872. DOI: 10.1016/s0278-6915(96)00048-8 |
| [77] |
Calvo TR, Demarco D, Santos FV, et al. Phenolic compounds in leaves of Alchornea triplinervia: anatomical localization, mutagenicity, and antibacterial activity. Nat Prod Commun. 2010;5(8): 1225–1532. DOI: 10.1177/1934578X1000500816 |
| [78] |
Calvo T.R., Demarco D., Santos F.V., et al. Phenolic compounds in leaves of Alchornea triplinervia: anatomical localization, mutagenicity, and antibacterial activity // Nat Prod Commun. 2010. Vol. 5, No. 8. P. 1225–1532. DOI: 10.1177/1934578X1000500816 |
| [79] |
de Mejía EG, Castaño-Tostado E, Loarca-Piña G. Antimutagenic effects of natural phenolic compounds in beans. Mutat Res Genet Toxicol Environ Mutag. 1999;441(1):1–9. DOI: 10.1016/s1383-5718(99)00040-6 |
| [80] |
de Mejía E.G., Castaño-Tostado E., Loarca-Piña G. Antimutagenic effects of natural phenolic compounds in beans // Mutat Res Genet Toxicol Environ Mutag. 1999. Vol. 441, No. 1. P. 1–9. DOI: 10.1016/s1383-5718(99)00040-6 |
| [81] |
Bouguellid G, Russo C, Lavorgna M, et al. Antimutagenic, antigenotoxic and antiproliferative activities of Fraxinus angustifolia Vahl. leaves and stem bark extracts and their phytochemical composition. PLoS One. 2020;15: e0230690. DOI: 10.1371/journal.pone.0230690 |
| [82] |
Bouguellid G., Russo C., Lavorgna M., et al. Antimutagenic, antigenotoxic and antiproliferative activities of Fraxinus angustifolia Vahl. leaves and stem bark extracts and their phytochemical composition // PLoS One. 2020. Vol. 15. ID e0230690. DOI: 10.1371/journal.pone.0230690 |
| [83] |
Reid TM, Wang CY, King CM, Morton KC. Mutagenicity of some benzidine congeners and their N-acetylated and N, N’-diacetylated derivatives in different strains of Salmonella typhimurium. Environ Mutag. 1984;6(2):145–151. DOI: 10.1002/em.2860060205 |
| [84] |
Reid T.M., Wang C.Y., King C.M., Morton K.C. Mutagenicity of some benzidine congeners and their N-acetylated and N, N’-diacetylated derivatives in different strains of Salmonella typhimurium // Environ Mutag. 1984. Vol. 6, No. 2. P. 145–151. DOI: 10.1002/em.2860060205 |
| [85] |
Fragopoulou E, Nomikos T, Karantonis HC, et al. Biological activity of acetylated phenolic compounds. J Agric Food Chem. 2007;55(1):80–89. DOI: 10.1021/jf0627221 |
| [86] |
Fragopoulou E., Nomikos T., Karantonis H.C., et al. Biological activity of acetylated phenolic compounds // J Agric Food Chem. 2007. Vol. 55, No. 1. P. 80–89. DOI: 10.1021/jf0627221 |
Eco-Vector
/
| 〈 |
|
〉 |