Genetic diversity and autozygosity estimates in wild european boars and domesticated pigs

Sirozhdin Y. Bakoev , Timofei S. Romanets , Anna V. Korobeinikova , Arina I. Mishina , Mariya A. Kolosova , Elena A. Romanets , Anatolii Y. Kolosov , Lyubov V. Getmantseva

Ecological Genetics ›› 2023, Vol. 21 ›› Issue (4) : 343 -355.

PDF (2530KB)
Ecological Genetics ›› 2023, Vol. 21 ›› Issue (4) : 343 -355. DOI: 10.17816/ecogen569181
Genetic basis of ecosystems evolution
research-article

Genetic diversity and autozygosity estimates in wild european boars and domesticated pigs

Author information +
History +
PDF (2530KB)

Abstract

BACKGROUND: Pigs are one of the most widely distributed domestic animals. The study of their genetic diversity and selection loci is of great interest both in the field of genetics and animal breeding, and in the aspect of conservation and development of breeding resources and food security.

AIM: The aim of the presented work is to evaluate the autozygosity and the distribution of autozygosity segments (HBD) in wild boars and pigs of the main commercial breeds: Large White, Landrace and Duroc, and to search for selection loci related to adaptation to habitat conditions and selection pressure.

MATERIALS AND METHODS: The aim of the presented work is to evaluate the autozygosity and distribution of autozygosity segments (HBD) in wild boars and domestic pigs of the main commercial breeds: Large White, Landrace and Duroc, and to search for selection loci related to adaptation to habitat conditions and selection pressure.

RESULTS: Based on the results of the genome scan, the average autozygosity values in boars and pigs were in the range of 0.23–0.29, but in boars about 0.08 of the genome share is covered by HBD segments, presumably originating from ancestors who lived about 206 years ago; in pigs — originating from ancestors who lived about 64 years ago.

CONCLUSIONS: Only 3 segments met the criteria for top-HBD (frequency of at least 60% and at least 10 SNPs) in boars. In Large White, Landrace and Duroc pigs, 18, 9 and 35 segments were identified, respectively. In general, the analysis of HBD segments showed that they reflect the main breeding strategies aimed at developing commercial pigs.

Keywords

wild boar / domestic pig / autozygosity / adaptation / selection loci

Cite this article

Download citation ▾
Sirozhdin Y. Bakoev, Timofei S. Romanets, Anna V. Korobeinikova, Arina I. Mishina, Mariya A. Kolosova, Elena A. Romanets, Anatolii Y. Kolosov, Lyubov V. Getmantseva. Genetic diversity and autozygosity estimates in wild european boars and domesticated pigs. Ecological Genetics, 2023, 21(4): 343-355 DOI:10.17816/ecogen569181

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Larson G, Piperno DR, Allaby RG, et al. Current perspectives and the future of domestication studies. PNAS USA. 2014;111(17): 6139–6146. DOI: 10.1073/pnas.1323964111

[2]

Larson G., Piperno D.R., Allaby R.G., et al. Current perspectives and the future of domestication studies // PNAS USA. 2014. Vol. 111, No. 17. P. 6139–6146. DOI: 10.1073/pnas.1323964111

[3]

Zeder MA. The origins of agriculture in the near east. Curr Anthropol. 2011;52(S4):S221–S235. DOI: 10.1086/659307

[4]

Zeder M.A. The origins of agriculture in the near east // Curr Anthropol. 2011. Vol. 52, No. S4. P. S221–S235. DOI: 10.1086/659307

[5]

Frantz LA, Haile J, Lin T, et al. Ancient pigs reveal a near-complete genomic turnover following their introduction to Europe. PNAS USA. 2019;116(35):17231–17238. DOI: 10.1073/pnas.1901169116

[6]

Frantz L.A., Haile J., Lin T., et al. Ancient pigs reveal a near-complete genomic turnover following their introduction to Europe // PNAS USA. 2019. Vol. 116, No. 35. P. 17231–17238. DOI: 10.1073/pnas.1901169116

[7]

Larson G, Cucchi T, Fujita M, et al. Phylogeny and ancient DNA of Sus provides insights into neolithic expansion in Island Southeast Asia and Oceania. PNAS USA. 2007;104(12):4834–4839. DOI: 10.1073/pnas.0607753104

[8]

Larson G., Cucchi T., Fujita M., et al. Phylogeny and ancient DNA of Sus provides insights into neolithic expansion in Island Southeast Asia and Oceania // PNAS USA. 2007. Vol. 104, No. 12. P. 4834–4839. DOI: 10.1073/pnas.0607753104

[9]

Larson G, Dobney K, Albarella U, et al. Worldwide phylogeography of wild boar reveals multiple centers of pig domestication. Science. 2005;307(5715):1618–1621. DOI: 10.1126/science.1106927

[10]

Larson G., Dobney K., Albarella U., et al. Worldwide phylogeography of wild boar reveals multiple centers of pig domestication // Science. 2005. Vol. 307, No. 5715. P. 1618–1621. DOI: 10.1126/science.1106927

[11]

Scandura M, Iacolina L, Crestanello B, et al. Ancient vs. recent processes as factors shaping the genetic variation of the European wild boar: are the effects of the last glaciation still detectable? Mol Ecol. 2008;17(7):1745–1762. DOI: 10.1111/j.1365-294X.2008.03703.x

[12]

Scandura M., Iacolina L., Crestanello B., et al. Ancient vs. recent processes as factors shaping the genetic variation of the European wild boar: are the effects of the last glaciation still detectable? // Mol Ecol. 2008. Vol. 17, No. 7. P. 1745–1762. DOI: 10.1111/j.1365-294X.2008.03703.x

[13]

Danilkin AA. On the inadmissibility of the total depopulation of the boar (Sus scrofa L.) in connection with the African swine fever. The herald of game management. 2019;16(2):123–131.

[14]

Данилкин А.А. О недопустимости тотальной депопуляции кабана (Sus scrofa L.) в связи с африканской чумой свиней // Вестник охотоведения. 2019. Т. 16, № 2. С. 123–131.

[15]

Wilkinson S, Lu ZH, Megens H-J, et al. Signatures of diversifying selection in European pig breeds. PloS Genet. 2013;9:e1003453. DOI: 10.1371/journal.pgen.1003453

[16]

Wilkinson S., Lu Z.H., Megens H.-J., et al. Signatures of diversifying selection in European pig breeds // PloS Genet. 2013. Vol. 9. ID e1003453. DOI: 10.1371/journal.pgen.1003453

[17]

Bakoev S, Getmantseva L, Kostyunina O, et al. Genome-wide analysis of genetic diversity and artificial selection in Large White pigs in Russia. PeerJ. 2021;9:e11595. DOI: 10.7717/peerj.11595

[18]

Bakoev S., Getmantseva L., Kostyunina O., et al. Genome-wide analysis of genetic diversity and artificial selection in Large White pigs in Russia // PeerJ. 2021. Vol. 9. ID e11595. DOI: 10.7717/peerj.11595

[19]

Ceballos FC, Joshi PK, Clark DW, et al. Runs of homozygosity: windows into population history and trait architecture. Nat Rev Genet. 2018;19:220–234. DOI: 10.1038/nrg.2017.109

[20]

Ceballos F.C., Joshi P.K., Clark D.W., et al. Runs of homozygosity: windows into population history and trait architecture // Nat Rev Genet. 2018. Vol. 19. P. 220–234. DOI: 10.1038/nrg.2017.109

[21]

Peripolli E, Stafuzza NB, Munari DP, et al. Assessment of runs of homozygosity islands and estimates of genomic inbreeding in Gyr (Bos indicus) dairy cattle. BMC genomics. 2018;19:34. DOI: 10.1186/s12864-017-4365-3

[22]

Peripolli E., Stafuzza N.B., Munari D.P., et al. Assessment of runs of homozygosity islands and estimates of genomic inbreeding in Gyr (Bos indicus) dairy cattle // BMC genomics. 2018. Vol. 19. ID 34. DOI: 10.1186/s12864-017-4365-3

[23]

Mastrangelo S, Tolone M, Sardina MT, et al. Genome-wide scan for runs of homozygosity identifies potential candidate genes associated with local adaptation in Valle del Belice sheep. Genet Sel Evol. 2017;49:84. DOI: 10.1186/s12711-017-0360-z

[24]

Mastrangelo S., Tolone M., Sardina M.T., et al. Genome-wide scan for runs of homozygosity identifies potential candidate genes associated with local adaptation in Valle del Belice sheep // Genet Sel Evol. 2017. Vol. 49. ID 84. DOI: 10.1186/s12711-017-0360-z

[25]

Saura M, Fernández A, Varona L, et al. Detecting inbreeding depression for reproductive traits in Iberian pigs using genome-wide data. Genet Sel Evol. 2015;47:1. DOI: 10.1186/s12711-014-0081-5

[26]

Saura M., Fernández A., Varona L., et al. Detecting inbreeding depression for reproductive traits in Iberian pigs using genome-wide data // Genet Sel Evol. 2015. Vol. 47. ID 1. DOI: 10.1186/s12711-014-0081-5

[27]

Schiavo G, Bovo S, Bertolini F, et al. Runs of homozygosity islands in Italian cosmopolitan and autochthonous pig breeds identify selection signatures in the porcine genome. Livest Sci. 2020;240:104219. DOI: 10.1016/j.livsci.2020.104219

[28]

Schiavo G., Bovo S., Bertolini F., et al. Runs of homozygosity islands in Italian cosmopolitan and autochthonous pig breeds identify selection signatures in the porcine genome // Livest Sci. 2020. Vol. 240. ID 104219. DOI: 10.1016/j.livsci.2020.104219

[29]

Gorssen W, Meyermans R, Janssens S, Buys N. A publicly available repository of ROH islands reveals signatures of selection in different livestock and pet species. Genet Sel Evol. 2021;53:2. DOI: 10.1186/s12711-020-00599-7

[30]

Gorssen W., Meyermans R., Janssens S., Buys N. A publicly available repository of ROH islands reveals signatures of selection in different livestock and pet species // Genet Sel Evol. 2021. Vol. 53. ID 2. DOI: 10.1186/s12711-020-00599-7

[31]

Bakoev S, Kolosov A, Bakoev F, et al. Analysis of homozygous-by-descent (HBD) segments for purebred and crossbred pigs in Russia. Life (Basel). 2021;11(8):861. DOI: 10.3390/life11080861

[32]

Bakoev S., Kolosov A., Bakoev F., et al. Analysis of homozygous-by-descent (HBD) segments for purebred and crossbred pigs in Russia // Life (Basel). 2021. Vol. 11, No. 8. ID 861. DOI: 10.3390/life11080861

[33]

datadryad.org [Internet]. DRYAD [cited: 2023 Oct 21]. Available at: https://datadryad.org/

[34]

datadryad.org [Электронный ресурс]. DRYAD [дата обращения: 21.07.2023]. Режим доступа: https://datadryad.org/

[35]

Iacolina L, Scandura M, Goedbloe D, et al. Genomic diversity and differentiation of a managed island wild boar population. Heredity. 2016;116:60–67. DOI: 10.1038/hdy.2015.70

[36]

Iacolina L., Scandura M., Goedbloe D., et al. Genomic diversity and differentiation of a managed island wild boar population // Heredity. 2016. Vol. 116. P. 60–67. DOI: 10.1038/hdy.2015.70

[37]

Purcell S, Neale B, Todd-Brown K, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559–575. DOI: 10.1086/519795

[38]

Purcell S., Neale B., Todd-Brown K., et al. PLINK: a tool set for whole-genome association and population-based linkage analyses // Am J Hum Genet. 2007. Vol. 81, No. 3. P. 559–575. DOI: 10.1086/519795

[39]

Druet T, Gautier M. A model-based approach to characterize individual inbreeding at both global and local genomic scales. Mol Ecol. 2017;26(20):5820–5841. DOI: 10.1111/mec.14324

[40]

Druet T., Gautier M. A model-based approach to characterize individual inbreeding at both global and local genomic scales // Mol Ecol. 2017. Vol. 26, No. 20. P. 5820–5841. DOI: 10.1111/mec.14324

[41]

Bertrand AR, Kadri NK, Flori L, et al. RzooRoH: An R package to characterize individual genomic autozygosity and identify homozygous-by-descent segments. Methods Ecol Evol. 2019;10(6):860–866. DOI: 10.1111/2041-210X.13167

[42]

Bertrand A.R., Kadri N.K., Flori L., et al. RzooRoH: An R package to characterize individual genomic autozygosity and identify homozygous-by-descent segments // Methods Ecol Evol. 2019. Vol. 10, No. 6. P. 860–866. DOI: 10.1111/2041-210X.13167

[43]

Rabiner LR. A tutorial on hidden markov models and selected applications in speech recognition. Proceedings of the IEEE. 1989;77(2):257–284. DOI: 10.1109/5.18626

[44]

Rabiner L.R. A tutorial on hidden markov models and selected applications in speech recognition // Proceedings of the IEEE. 1989. Vol. 77, No. 2. P. 257–284. DOI: 10.1109/5.18626

[45]

Fonseca PAS, Suárez-Vega A, Marras G, Cánovas Á. GALLO: An R package for genomic annotation and integration of multiple data sources in livestock for positional candidate loci. GigaScience. 2020;9(12):giaa149. DOI: 10.1093/gigascience/giaa149

[46]

Fonseca P.A.S., Suárez-Vega A., Marras G., Cánovas Á. GALLO: An R package for genomic annotation and integration of multiple data sources in livestock for positional candidate loci // GigaScience. 2020. Vol. 9, No. 12. ID giaa149. DOI: 10.1093/gigascience/giaa149

[47]

Stringer OW, Li Y, Bossé JT, Langford PR. JMM Profile: Actinobacillus pleuropneumoniae: a major cause of lung disease in pigs but difficult to control and eradicate. J Med Microbiol. 2022;71(3):001483. DOI: 10.1099/jmm.0.001483

[48]

Stringer O.W., Li Y., Bossé J.T., Langford P.R. JMM Profile: Actinobacillus pleuropneumoniae: a major cause of lung disease in pigs but difficult to control and eradicate // J Med Microbiol. 2022. Vol. 71, No. 3. ID 001483. DOI: 10.1099/jmm.0.001483

[49]

Reiner G, Bertsch N, Hoeltig D, et al. Identification of QTL affecting resistance/susceptibility to acute Actinobacillus pleuropneumoniae infection in swine. Mamm Genome. 2014;25:180–191. DOI: 10.1007/s00335-013-9497-4

[50]

Reiner G., Bertsch N., Hoeltig D., et al. Identification of QTL affecting resistance/susceptibility to acute Actinobacillus pleuropneumoniae infection in swine // Mamm Genome. 2014. Vol. 25. P. 180–191. DOI: 10.1007/s00335-013-9497-4

[51]

Bovo S, Mazzoni G, Bertolini F, et al. Genome-wide association studies for 30 haematological and blood clinical-biochemical traits in Large White pigs reveal genomic regions affecting intermediate phenotypes. Sci Rep. 2019;9:7003. DOI: 10.1038/s41598-019-43297-1

[52]

Bovo S., Mazzoni G., Bertolini F., et al. Genome-wide association studies for 30 haematological and blood clinical-biochemical traits in Large White pigs reveal genomic regions affecting intermediate phenotypes // Sci Rep. 2019. Vol. 9. ID 7003. DOI: 10.1038/s41598-019-43297-1

[53]

Schielke A, Sachs K, Lierz M, et al. Detection of hepatitis E virus in wild boars of rural and urban regions in Germany and whole genome characterization of an endemic strain. Virol J. 2009;6:58. DOI: 10.1186/1743-422X-6-58

[54]

Schielke A., Sachs K., Lierz M., et al. Detection of hepatitis E virus in wild boars of rural and urban regions in Germany and whole genome characterization of an endemic strain // Virol J. 2009. Vol. 6. ID 58. DOI: 10.1186/1743-422X-6-58

[55]

Risalde MA, Rivero-Juárez A, Romero-Palomo F. Persistence of hepatitis E virus in the liver of non-viremic naturally infected wild boar. PloS ONE. 2017;12:e0186858. DOI: 10.1371/journal.pone.0186858

[56]

Risalde M.A., Rivero-Juárez A., Romero-Palomo F. Persistence of hepatitis E virus in the liver of non-viremic naturally infected wild boar // PloS ONE. 2017. Vol. 12. ID e0186858. DOI: 10.1371/journal.pone.0186858

Funding

Российский научный фондRussian Science Foundation(23-76-10009)

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF (2530KB)

51

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/