The role of polymorphism of redox-sensitive genes in the mechanisms of oxidative stress in obesity and metabolic diseases
Mikhail A. Shkurat , Elena V. Mashkina , Natalya P. Milyutina , Tatiana P. Shkurat
Ecological Genetics ›› 2023, Vol. 21 ›› Issue (3) : 261 -287.
The role of polymorphism of redox-sensitive genes in the mechanisms of oxidative stress in obesity and metabolic diseases
The review summarizes ideas about the role of polymorphic variants of redox-sensitive genes that regulate the development of oxidative stress in obesity and associated metabolic diseases. The concept of oxidative stress, activated oxygen metabolites (AOM), which include reactive forms of oxygen, nitrogen, and chlorine, is considered, and an idea of the antioxidant system and its enzymatic link is given. The important role of gene polymorphism of AOM-producing enzymes — CYBA, CYBB, MT-ND1/2/4L, MT-CO1/3, XOR, CYP, NOS2/3, MPO — in the induction of oxidative stress in obesity has been shown. The dualism of AOM in obesity is emphasized: on the one hand, they are necessary for normal adipogenesis and signaling, and, on the other hand, they play a trigger role in the development of oxidative stress. It has been demonstrated that an imbalance in antioxidant system in obesity and metabolic disorders may be associated with variability in the genes of key antioxidant enzymes and proteins — SOD1/2/3, CAT, GPX1-8, GSR, GSTP1, GSTM1, GSTT1, PRDX3, TXNIP, HMOX1, NQO1, NFE2L2, KEAP1. The critical role of polymorphism in the Nrf2 transcription factor gene, the main regulator of redox homeostasis under physiological conditions and in obesity, has been demonstrated. It has been demonstrated that disruption of redox homeostasis due to genetic variability of the prooxidant-antioxidant system contributes to the development of the pathological obesity phenotype. Understanding the genetic mechanisms underlying oxidative stress in obesity and metabolic diseases is necessary to expand knowledge about the mechanisms of pathogenesis of these diseases and to develop effective methods for their correction.
obesity / metabolic diseases / oxidative stress / gene polymorphism
| [1] |
Loos RJF, Yeo GSH. The genetics of obesity: from discovery to biology. Nat Rev Genet. 2022;23(2):120–133. DOI: 10.1038/s41576-021-00414- z |
| [2] |
Loos R.J.F., Yeo G.S.H. The genetics of obesity: from discovery to biology // Nat Rev Genet. 2022. Vol. 23, No 2. P. 120–133. DOI: 10.1038/s41576-021-00414-z |
| [3] |
Lin X, Li H. Obesity: epidemiology, pathophysiology, and therapeutics. Front Endocrinol. 2021;12:706978. DOI: 10.3389/fendo.2021.706978 |
| [4] |
Lin X., Li H. Obesity: epidemiology, pathophysiology, and therapeutics // Front Endocrinol. 2021. Vol. 12. ID 706978. DOI: 10.3389/fendo.2021.706978 |
| [5] |
Elks CE, den Hoed M, Zhao JH, et al. Variability in the heritability of body mass index: A systematic review and meta-regression. Front Endocrinol. 2012;3:29. DOI: 10.3389/fendo.2012.00029 |
| [6] |
Elks C.E., den Hoed M., Zhao J.H., et al. Variability in the heritability of body mass index: A systematic review and meta-regression // Front Endocrinol. 2012. Vol. 3. ID 29. DOI: 10.3389/fendo.2012.00029 |
| [7] |
Hecker J, Freijer K, Hiligsmann M, Evers SMAA. Burden of disease study of overweight and obesity; the societal impact in terms of cost-of-illness and health-related quality of life. BMC Public Health. 2022;22:46. DOI: 10.1186/s12889-021-12449-2 |
| [8] |
Hecker J., Freijer K., Hiligsmann M., Evers S.M.A.A. Burden of disease study of overweight and obesity; the societal impact in terms of cost-of-illness and health-related quality of life // BMC Public Health. 2022. Vol. 22. ID 46. DOI: 10.1186/s12889-021-12449-2 |
| [9] |
Taherkhani S, Suzuki K, Ruhee RT. A brief overview of oxidative stress in adipose tissue with a therapeutic approach to taking antioxidant supplements. Antioxidants. 2021;10(4):594. DOI: 10.3390/antiox10040594 |
| [10] |
Taherkhani S., Suzuki K., Ruhee R.T. A brief overview of oxidative stress in adipose tissue with a therapeutic approach to taking antioxidant supplements // Antioxidants. 2021. Vol. 10, No. 4. ID 594. DOI: 10.3390/antiox10040594 |
| [11] |
Lechuga-Sancho AM, Gallego-Andujar D, Ruiz-Ocaña P, et al. Obesity induced alterations in redox homeostasis and oxidative stress are present from an early age. PLoS ONE. 2018;13:e0191547. DOI: 10.1371/journal.pone.0191547 |
| [12] |
Lechuga-Sancho A.M., Gallego-Andujar D., Ruiz-Ocaña P., et al. Obesity induced alterations in redox homeostasis and oxidative stress are present from an early age // PLoS ONE. 2018. Vol. 13. ID e0191547. DOI: 10.1371/journal.pone.0191547 |
| [13] |
Forman HJ, Zhang H. Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nat Rev Drug Discov. 2021;20(9):689–709. DOI: 10.1038/s41573-021-00267-5 |
| [14] |
Forman H.J., Zhang H. Targeting oxidative stress in disease: promise and limitations of antioxidant therapy // Nat Rev Drug Discov. 2021. Vol. 20, No 9. P. 689–709. DOI: 10.1038/s41573-021-00267-5 |
| [15] |
Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol. 2020;21(3): 363–383. DOI: 10.1038/s41580-020-0230-3 |
| [16] |
Sies H., Jones D.P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents // Nat Rev Mol Cell Biol. 2020. Vol. 21, No 3. P. 363–383. DOI: 10.1038/s41580-020-0230-3 |
| [17] |
Men’shchikova EB, Lankin VZ, Zenkov NK, et al. Okislitel’nyi stress. Prooksidanty i antioksidanty. Moscow: Slovo, 2006. 556 p. (In Russ.) |
| [18] |
Меньщикова Е.Б., Ланкин В.З., Зенков Н.К., и др. Окислительный стресс. Прооксиданты и антиоксиданты. Москва: Слово, 2006. 556 с. |
| [19] |
Moldogazieva NT, Mokhosoev IM, Mel’nikova TI, et al. Dvoistvennaya priroda aktivnykh form kisloroda, azota i galogenov: ikh ehndogennye istochniki, vzaimoprevrashcheniya i sposoby neitralizatsii. Uspekhi Biologicheskoi Khimii. 2020;60(1):123–172. (In Russ.) |
| [20] |
Молдогазиева Н.Т., Мохосоев И.М., Мельникова Т.И., и др. Двойственная природа активных форм кислорода, азота и галогенов: их эндогенные источники, взаимопревращения и способы нейтрализации // Успехи биологической химии. 2020. Т. 60, № 1. С. 123–172. |
| [21] |
Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. 4th edition. New York: Oxford University Press, 2007. 704 p. |
| [22] |
Halliwell B., Gutteridge J.M.C. Free radicals in biology and medicine. 4th edition. New York: Oxford University Press, 2007. 704 p. |
| [23] |
Rupérez AI, Gil A, Aguilera CM. Genetics of oxidative stress in obesity. Int J Mol Sci. 2014;15(2):3118–3144. DOI: 10.3390/ijms15023118 |
| [24] |
Rupérez A.I., Gil A., Aguilera C.M. Genetics of oxidative stress in obesity // Int J Mol Sci. 2014. Vol. 15, No. 2. P. 3118–3144. DOI: 10.3390/ijms15023118 |
| [25] |
Kalinina EV, Ivanova-Radkevich VI, Chernov NN. Role of microRNAS in the regulation of redox-dependent processes. Biochemistry (Moscow). 2019;84(11):1538–1552. (In Russ.) DOI: 10.1134/S0320972519110022 |
| [26] |
Калинина Е.В., Иванова-Радкевич В.И., Чернов Н.Н. Роль микроРНК в регуляции редокс-зависимых процессов // Биохимия. 2019. Т. 84, № 11. С. 1538–1552. DOI: 10.1134/S0320972519110022 |
| [27] |
McMurray F, Patte DA, Harper ME. Reactive oxygen species and oxidative stress in obesity — recent findings and empirical approaches. Obesity. 2016;24(11):2301–2310. DOI: 10.1002/oby.21654 |
| [28] |
McMurray F., Patte D.A., Harper M.E. Reactive oxygen species and oxidative stress in obesity — recent findings and empirical approaches // Obesity. 2016. Vol. 24, No. 11. P. 2301–2310. DOI: 10.1002/oby.21654 |
| [29] |
Marseglia L, Manti S, D’Angelo G, et al. Oxidative stress in obesity: A critical component in human diseases. Int J Mol Sci. 2015;16(1):379–400. DOI: 10.3390/ijms16010378 |
| [30] |
Marseglia L., Manti S., D’Angelo G., et al. Oxidative stress in obesity: A critical component in human diseases // Int J Mol Sci. 2015. Vol. 16, No. 1. P. 379–400. DOI: 10.3390/ijms16010378 |
| [31] |
Manna P, Jain SK. Obesity, oxidative stress, adipose tissue dysfunction, and the associated health risks: causes and therapeutic strategies. Menfbol Syndr Rel Disord. 2015;13(10):423–444. DOI: 10.1089/met.2015.0095 |
| [32] |
Manna P., Jain S.K. Obesity, oxidative stress, adipose tissue dysfunction, and the associated health risks: causes and therapeutic strategies // Menfbol Syndr Rel Disord. 2015. Vol. 13, No. 10. P. 423–444. DOI: 10.1089/met.2015.0095 |
| [33] |
Rohde K, Maria Keller M, la Cour Poulsenc L, et al. Genetics and epigenetics in obesity. Metabol Clin Experim. 2019;92:37–50. DOI: 10.1016/j.metabol.2018.10.007 |
| [34] |
Rohde K., Maria Keller M., la Cour Poulsenc L., et al. Genetics and epigenetics in obesity // Metabol Clin Experim. 2019. Vol. 92. P. 37–50. DOI: 10.1016/j.metabol.2018.10.007 |
| [35] |
Kuzmenko DI, Udintsev SN, Klimentyeva TK, Serebrov VYu. Oxidative stress in adipose tissue as a primary link in pathogenesis of insulin resistance. Biomeditsinskaya Khimiya. 2016;62(1):14–21. (In Russ.) DOI: 10.18097/PBMC20166201014 |
| [36] |
Кузьменко Д.И., Удинцев С.Н., Климентьева Т.К., Серебров В.Ю. Окислительный стресс жировой ткани как первичное звено патогенеза резистентности к инсулину // Биомедицинская химия. 2016. Т. 62, № 1. С. 14–21. DOI: 10.18097/PBMC20166201014 |
| [37] |
Furukawa S, Fujita T, Shimabukuro M, et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest. 2004;114(12):1752–1761. DOI: 10.1172/JCI21625 |
| [38] |
Furukawa S., Fujita T., Shimabukuro M., et al. Increased oxidative stress in obesity and its impact on metabolic syndrome // J Clin Invest. 2004. Vol. 114, No. 12. P. 1752–1761. DOI: 10.1172/JCI21625 |
| [39] |
Masschelin PM, Cox AR, Chernis N, Hartig SM. The impact of oxidative stress on adipose tissue energy balance. Front Physiol. 2020;10:1638. DOI: 10.3389/fphys.2019.01638 |
| [40] |
Masschelin P.M., Cox A.R., Chernis N., Hartig S.M. The impact of oxidative stress on adipose tissue energy balance // Front Physiol. 2020. Vol. 10. ID 1638. DOI: 10.3389/fphys.2019.01638 |
| [41] |
Ochoa MC, Razquin C, Zalba G, et al. G allele of the –930A>G polymorphism of the CYBA gene is associated with insulin resistance in obese subjects. J Physiol Biochem. 2008;64(2):127–134. DOI: 10.1007/BF03168240 |
| [42] |
Ochoa M.C., Razquin C., Zalba G., et al. G allele of the –930A>G polymorphism of the CYBA gene is associated with insulin resistance in obese subjects // J Physiol Biochem. 2008. Vol. 64, No. 2. P. 127–134. DOI: 10.1007/BF03168240 |
| [43] |
Lee H, Jose PA. Coordinated contribution of NADPH oxidase- and mitochondria-derived reactive oxygen species in metabolic syndrome and its implication in renal dysfunction. Front Pharmacol. 2021;12:670076. DOI: 10.3389/fphar.2021.670076 |
| [44] |
Lee H., Jose P.A. Coordinated contribution of NADPH oxidase- and mitochondria-derived reactive oxygen species in metabolic syndrome and its implication in renal dysfunction // Front Pharmacol. 2021. Vol. 12. ID 670076. DOI: 10.3389/fphar.2021.670076 |
| [45] |
Begum R, Thota S, Abdulkadir A, et al. NADPH oxidase family proteins: signaling dynamics to disease management. Cell Mol Immunol. 2022;19(5):660–686. DOI: 10.1038/s41423-022-00858-1 |
| [46] |
Begum R., Thota S., Abdulkadir A., et al. NADPH oxidase family proteins: signaling dynamics to disease management // Cell Mol Immunol. 2022. Vol. 19, No. 5. P. 660–686. DOI: 10.1038/s41423-022-00858-1 |
| [47] |
Touyz RM, Briones AM, Sedeek M, et al. NOX isoforms and reactive oxygen species in vascular health. Mol Interv. 2011;11(1):27–35. DOI: 10.1124/mi.11.1.5 |
| [48] |
Touyz R.M., Briones A.M., Sedeek M., et al. NOX isoforms and reactive oxygen species in vascular health // Mol Interv. 2011. Vol. 11, No. 1. P. 27–35. DOI: 10.1124/mi.11.1.5 |
| [49] |
DeVallance E, Li Y, Jurczak MJ, et al. The role of NADPH oxidases in the etiology of obesity and metabolic syndrome: contribution of individual isoforms and cell biology. Antioxid Redox Signal. 2019;31(10):687–709. DOI: 10.1089/ars.2018.7674 |
| [50] |
DeVallance E., Li Y., Jurczak M.J., et al. The role of NADPH oxidases in the etiology of obesity and metabolic syndrome: contribution of individual isoforms and cell biology // Antioxid Redox Signal. 2019. Vol. 31, No. 10. P. 687–709. DOI: 10.1089/ars.2018.7674 |
| [51] |
De Fano M, Bartolini D, Tortoioli C, et al. Adipose tissue plasticity in response to pathophysiological cues: A connecting link between obesity and its associated comorbidities. Int J Mol Sci. 2022;23(10):5511. DOI: 10.3390/ijms23105511 |
| [52] |
De Fano M., Bartolini D., Tortoioli C., et al. Adipose tissue plasticity in response to pathophysiological cues: A connecting link between obesity and its associated comorbidities // Int J Mol Sci. 2022. Vol. 23, No. 10. ID 5511. DOI: 10.3390/ijms23105511 |
| [53] |
Moreno MU, San Jose G, Orbe J, et al. Preliminary characterisation of the promoter of the human p22(phox) gene: identification of a new polymorphism associated with hypertension. FEBS Lett. 2003;542(1–3):27–31. DOI: 10.1016/S0014-5793(03)00331-4 |
| [54] |
Moreno M.U., San Jose G., Orbe J., et al. Preliminary characterisation of the promoter of the human p22(phox) gene: identification of a new polymorphism associated with hypertension // FEBS Lett. 2003. Vol. 542, No. 1–3. P. 27–31. DOI: 10.1016/S0014-5793(03)00331-4 |
| [55] |
San Jose G, Moreno MU, Olivan S, et al. Functional effect of the p22phox –930A/G polymorphism on p22phox expression and NADPH oxidase activity in hypertension. Hypertension. 2004;44(2):163–169. DOI: 10.1161/01.HYP.0000134790.02026.e4 |
| [56] |
San Jose G., Moreno M.U., Olivan S., et al. Functional effect of the p22phox –930A/G polymorphism on p22phox expression and NADPH oxidase activity in hypertension // Hypertension. 2004. Vol. 44, No. 2. P. 163–169. DOI: 10.1161/01.HYP.0000134790.02026.e4 |
| [57] |
Guzik TJ, West NE, Black E, et al. Functional effect of the C242T polymorphism in the NAD(P)H oxidase p22phox gene on vascular superoxide production in atherosclerosis. Circulation. 2000;102(15):1744–1747. DOI: 10.1161/01.CIR.102.15.1744 |
| [58] |
Guzik T.J., West N.E., Black E., et al. Functional effect of the C242T polymorphism in the NAD(P)H oxidase p22phox gene on vascular superoxide production in atherosclerosis // Circulation. 2000. Vol. 102, No. 15. P. 1744–1747. DOI: 10.1161/01.CIR.102.15.1744 |
| [59] |
Schreiber R, Ferreira-Sae MC, Tucunduva AC, et al. CYBA C242T polymorphism is associated with obesity and diabetes mellitus in Brazilian hypertensive patients. Diabet Med. 2012;29(7):e55–e61. DOI: 10.1111/j.1464-5491.2012.03594.x |
| [60] |
Schreiber R., Ferreira-Sae M.C., Tucunduva A.C., et al. CYBA C242T polymorphism is associated with obesity and diabetes mellitus in Brazilian hypertensive patients // Diabet Med. 2012. Vol. 29, No. 7. P. e55–e61. DOI: 10.1111/j.1464-5491.2012.03594.x |
| [61] |
Wyche KE, Wang SS, Griendling KK, et al. C242T CYBA polymorphism of the NADPH oxidase is associated with reduced respiratory burst in human neutrophils. Hypertension. 2004;43(6):1246–1251. DOI: 10.1161/01.HYP.0000126579.50711.62 |
| [62] |
Wyche K.E., Wang S.S., Griendling K.K., et al. C242T CYBA polymorphism of the NADPH oxidase is associated with reduced respiratory burst in human neutrophils // Hypertension. 2004. Vol. 43, No. 6. P. 1246–1251. DOI: 10.1161/01.HYP.0000126579.50711.62 |
| [63] |
Azarova IE, Klyosova EYu, Samgina TA, et al. Role of cyba gene polymorphisms in pathogenesis of type 2 diabetes mellitus. Medical Genetics. 2019;18(8):37–48. (In Russ.) DOI: 10.25557/2073-7998.2019.08.37-48 |
| [64] |
Азарова Ю.Э., Клёсова Е.Ю., Самгина Т.А., и др. Роль полиморфных вариантов гена CYBA в патогенезе сахарного диабета 2 типа // Медицинская генетика. 2019. Т. 18, № 8. С. 37–48. DOI: 10.25557/2073-7998.2019.08.37-48 |
| [65] |
Pourgholi L, Pourgholi F, Ziaee S, et al. The association between CYBA gene C242T variant and risk of metabolic syndrome. Eur J Clin Invest. 2020;50(9):e13275. DOI: 10.1111/eci.13275 |
| [66] |
Pourgholi L., Pourgholi F., Ziaee S., et al. The association between CYBA gene C242T variant and risk of metabolic syndrome // Eur J Clin Invest. 2020. Vol. 50, No. 9. ID e13275. DOI: 10.1111/eci.13275 |
| [67] |
Osmenda G, Matusik PT, Sliwa T, et al. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase p22phox subunit polymorphisms, systemic oxidative stress, endothelial dysfunction, and atherosclerosis in type 2 diabetes mellitus. Pol Arch Intern Med. 2021;131(5):447–454. DOI: 10.20452/pamw.15937 |
| [68] |
Osmenda G., Matusik P.T., Sliwa T., et al. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase p22phox subunit polymorphisms, systemic oxidative stress, endothelial dysfunction, and atherosclerosis in type 2 diabetes mellitus // Pol Arch Intern Med. 2021. Vol. 131, No. 5. P. 447–454. DOI: 10.20452/pamw.15937 |
| [69] |
Hayaishi-Okano R, Yamasaki Y, Kajimoto Y, et al. Association of NAD(P)H oxidase p22phox gene variation with advanced carotid atherosclerosis in Japanese type 2 diabetes. Diabetes Care. 2003;26(2):458–463. DOI: 10.2337/diacare.26.2.458 |
| [70] |
Hayaishi-Okano R., Yamasaki Y., Kajimoto Y., et al. Association of NAD(P)H oxidase p22phox gene variation with advanced carotid atherosclerosis in Japanese type 2 diabetes // Diabetes Care. 2003. Vol. 26, No. 2. P. 458–463. DOI: 10.2337/diacare.26.2.458 |
| [71] |
Bushueva OYu. Genetic variants rs1049255 CYBA and rs2333227 MPO are associated with susceptibility to coronary artery disease in Russian residents of Central Russia. Kardiologiia. 2020;60(10):47–54. (In Russ.) DOI: 10.18087/cardio.2020.10.n1229 |
| [72] |
Бушуева О.Ю. Генетические варианты rs1049255 CYBA и rs2333227 MPO ассоциированы с предрасположенностью к ишемической болезни сердца русских жителей Центральной России // Кардиология. 2020. Т. 60, № 10. С. 47–54. DOI: 10.18087/cardio.2020.10.n1229 |
| [73] |
Schirmer M, Hoffmann M, Kaya E, et al. Genetic polymorphisms of NAD(P)H oxidase: variation in subunit expression and enzyme activity. Pharmacogenomics J. 2008;8(4):297–304. DOI: 10.1038/sj.tpj.6500467 |
| [74] |
Schirmer M., Hoffmann M., Kaya E., et al. Genetic polymorphisms of NAD(P)H oxidase: variation in subunit expression and enzyme activity // Pharmacogenomics J. 2008. Vol. 8, No. 4. P. 297–304. DOI: 10.1038/sj.tpj.6500467 |
| [75] |
Azarova IE, Klyosova EY, Kolomoets II, et al. Polymorphisms of the gene encoding cytochrome b-245 beta chain of nadph oxidase: relationship with redox homeostasis markers and risk of type 2 diabetes mellitus. Russian Journal of Genetics. 2020;56(7):834–841. (In Russ.) DOI: 10.31857/S0016675820070012 |
| [76] |
Азарова Ю.Э., Клёсова Е.Ю., Коломоец И.И., и др. Полиморфные варианты гена бета-цепи цитохрома b-245 НАДФН-оксидазы: связь с показателями редокс-гомеостаза и риском развития сахарного диабета 2-го типа // Генетика. 2020. Т. 56, № 7. С. 834–841. DOI: 10.31857/S0016675820070012 |
| [77] |
Das M, Sauceda C, Webster NJG. Mitochondrial dysfunction in obesity and reproduction. Endocrinology. 2021;162(1):bqaa158. DOI: 10.1210/endocr/bqaa158 |
| [78] |
Das M., Sauceda C., Webster N.J.G. Mitochondrial dysfunction in obesity and reproduction // Endocrinology. 2021. Vol. 162, No. 1. ID bqaa158. DOI: 10.1210/endocr/bqaa158 |
| [79] |
Ritov VB, Menshikova EV, Azuma K, et al. Deficiency of electron transport chain in human skeletal muscle mitochondria in type 2 diabetes mellitus and obesity. Am J Physiol Endocrinol Metab. 2010;298(1):E49–E58. DOI: 10.1152/ajpendo.00317.2009 |
| [80] |
Ritov V.B., Menshikova E.V., Azuma K., et al. Deficiency of electron transport chain in human skeletal muscle mitochondria in type 2 diabetes mellitus and obesity // Am J Physiol Endocrinol Metab. 2010. Vol. 298, No. 1. P. E49–E58. DOI: 10.1152/ajpendo.00317.2009 |
| [81] |
Guo L-J, Oshida Y, Fuku N, et al. Mitochondrial genome polymorphisms associated with type-2 diabetes or obesity. Mitochondrion. 2005;5(1):15–33. DOI: 10.1016/j.mito.2004.09.001 |
| [82] |
Guo L.-J., Oshida Y., Fuku N., et al. Mitochondrial genome polymorphisms associated with type-2 diabetes or obesity // Mitochondrion. 2005. Vol. 5, No. 1. P. 15–33. DOI: 10.1016/j.mito.2004.09.001 |
| [83] |
Flaquer A, Baumbach C, Kriebel J, et al. Mitochondrial genetic variants identified to be associated with BMI in adults. PLoS ONE. 2014;9(8):e105116. DOI: 10.1371/journal.pone.0105116 |
| [84] |
Flaquer A., Baumbach C., Kriebel J., et al. Mitochondrial genetic variants identified to be associated with bmi in adults // PLoS ONE. 2014. Vol. 9, No. 8. ID e105116. DOI: 10.1371/journal.pone.0105116 |
| [85] |
de Marco G, Garcia-Garcia AB, Real JT, et al. Respiratory chain polymorphisms and obesity in the Spanish population, a cross-sectional study. BMJ Open. 2019;9(2):e027004. DOI: 10.1136/bmjopen-2018-027004 |
| [86] |
de Marco G., Garcia-Garcia A.B., Real J.T., et al. Respiratory chain polymorphisms and obesity in the Spanish population, a cross-sectional study // BMJ Open. 2019. Vol. 9, No. 2. ID e027004. DOI: 10.1136/bmjopen-2018-027004 |
| [87] |
Andreyev AY, Kushnareva YE, Murphy AN, Starkov AA. Mitochondrial ROS metabolism: 10 years later. Biochemistry (Moscow). 2015;80(5):612–630. (In Russ.) DOI: 10.1134/S0006297915050028 |
| [88] |
Андреев А.Ю., Кушнарева Ю.Е., Мерфи А.Н., Старков А.А. Митохондриальный метаболизм активных форм кислорода: десять лет спустя // Биохимия. 2015. Т. 80, № 5. С. 612–630. DOI: 10.1134/S0006297915050028 |
| [89] |
Bortolotti M, Polito L, Battelli MG, Bolognesi A. Xanthine oxidoreductase: One enzyme for multiple physiological tasks. Redox Biology. 2021;41(5):101882. DOI: 10.1016/j.redox.2021.101882 |
| [90] |
Bortolotti M., Polito L., Battelli M.G., Bolognesi A. Xanthine oxidoreductase: One enzyme for multiple physiological tasks // Redox Biology. 2021. Vol. 41, No. 5. ID 101882. DOI: 10.1016/j.redox.2021.101882 |
| [91] |
Kudo M, Moteki T, Sasaki T, et al. Functional characterization of human xanthine oxidase allelic variants. Pharmacogen Genom. 2008;18(3):243–251. DOI: 10.1097/FPC.0b013e3282f55e2e |
| [92] |
Kudo M., Moteki T., Sasaki T., et al. Functional characterization of human xanthine oxidase allelic variants // Pharmacogen Genom. 2008. Vol. 18, No. 3. P. 243–251. DOI: 10.1097/FPC.0b013e3282f55e2e |
| [93] |
Klisic А, Kocic G, Kavaric N, et al. Body mass index is independently associated with xanthine oxidase activity in overweight/obese population. Eat Weight Disord. 2020;25(1):9–15. DOI: 10.1007/s40519-018-0490-5 |
| [94] |
Klisic А., Kocic G., Kavaric N., et al. Body mass index is independently associated with xanthine oxidase activity in overweight/obese population // Eat Weight Disord. 2020. Vol. 25, No. 1. P. 9–15. DOI: 10.1007/s40519-018-0490-5 |
| [95] |
Furge LL, Guengerich FP. Cytochrome p450 enzymes in drug metabolism and chemical toxicology: An introduction. Biochem Mol Biol Educ. 2006;34(2):66–74. DOI: 10.1002/bmb.2006.49403402066 |
| [96] |
Furge L.L., Guengerich F.P. Cytochrome p450 enzymes in drug metabolism and chemical toxicology: An introduction // Biochem Mol Biol Educ. 2006. Vol. 34, No. 2. P. 66–74. DOI: 10.1002/bmb.2006.49403402066 |
| [97] |
Veith A, Moorthy B. Role cytochrome P450s in the generation and metabolism of reactive oxygen species. Curr Opin Toxicol. 2018;7(2):44–51. DOI: 10.1016/j.cotox.2017.10.003 |
| [98] |
Veith A., Moorthy B. Role cytochrome P450s in the generation and metabolism of reactive oxygen species // Curr Opin Toxicol. 2018. Vol. 7, No. 2. P. 44–51. DOI: 10.1016/j.cotox.2017.10.003 |
| [99] |
Arnold WR, Zelasko S, Meling DD, et al. Polymorphisms of CYP2C8 alter first-electron transfer kinetics and increase catalytic uncoupling. Int J Mol Sci. 2019;20(18):4626. DOI: 10.3390/ijms20184626 |
| [100] |
Arnold W.R., Zelasko S., Meling D.D., et al. Polymorphisms of CYP2C8 alter first-electron transfer kinetics and increase catalytic uncoupling // Int J Mol Sci. 2019. Vol. 20, No. 18. ID 4626. DOI: 10.3390/ijms20184626 |
| [101] |
Krogstad V, Peric A, Robertsen I, et al. Correlation of body weight and composition with hepatic activities of cytochrome P450. Enzymes. J Pharm Sci. 2021;110(1):432–437. DOI: 10.1016/j.xphs.2020.10.027 |
| [102] |
Krogstad V., Peric A., Robertsen I., et al. Correlation of body weight and composition with hepatic activities of cytochrome P450. Enzymes // J Pharm Sci. 2021. Vol. 110, No. 1. P. 432–437.DOI: 10.1016/j.xphs.2020.10.027 |
| [103] |
Polonikov A, Kharchenko A, Bykanova M, et al. Polymorphisms of CYP2C8, CYP2C9 and CYP2C19 and risk of coronary heart disease in Russian population. Gene. 2017;627:451–459. DOI: 10.1016/j.gene.2017.07.004 |
| [104] |
Polonikov A., Kharchenko A., Bykanova M., et al. Polymorphisms of CYP2C8, CYP2C9 and CYP2C19 and risk of coronary heart disease in Russian population // Gene. 2017. Vol. 627. P. 451–459. DOI: 10.1016/j.gene.2017.07.004 |
| [105] |
Wang Q, Xie Z, Zhang W, et al. Myeloperoxidase deletion prevents high-fat diet–induced obesity and insulin resistance. Diabetes. 2014;63(12):4172–4185. DOI: 10.2337/db14-0026 |
| [106] |
Wang Q., Xie Z., Zhang W., et al. Myeloperoxidase deletion prevents high-fat diet-induced obesity and insulin resistance // Diabetes. 2014. Vol. 63, No. 12. P. 4172–4185. DOI: 10.2337/db14-0026 |
| [107] |
Panasenko OM, Sergienko VI. Halogenizing stress and its biomarkers. Annals of the Russian academy of medical sciences. 2010;(1):27–39. (In Russ.) |
| [108] |
Панасенко О.М., Сергиенко В.И. Галогенирующий стресс и его биомаркеры // Вестник Российской академии медицинских наук. 2010. № 1. С. 27–39. |
| [109] |
Herishanu Y, Rogowski O, Polliack A, Marilus R. Leukocytosis in obese individuals: possible link in patients with unexplained persistent neutrophilia. Eur J Haematol. 2006;76(6):516–520. DOI: 10.1111/j.1600-0609.2006.00658.x |
| [110] |
Herishanu Y., Rogowski O., Polliack A., Marilus R. Leukocytosis in obese individuals: possible link in patients with unexplained persistent neutrophilia // Eur J Haematol. 2006. Vol. 76, No. 6. P. 516–520. DOI: 10.1111/j.1600-0609.2006.00658.x |
| [111] |
Piedrafita FJ, Molander RB, Vansant G, et al. An Alu element in the myeloperoxidase promoter contains a composite SP1-thyroid hormone-retinoic acid response element. J Biol Chem. 1996;271(24):14412–14420. DOI: 10.1074/jbc.271.24.14412 |
| [112] |
Piedrafita F.J., Molander R.B., Vansant G., et al. An Alu element in the myeloperoxidase promoter contains a composite SP1-thyroid hormone-retinoic acid response element // J Biol Chem. 1996. Vol. 271, No. 24. P. 14412–14420. DOI: 10.1074/jbc.271.24.14412 |
| [113] |
Kumar AP, Piedrafita FJ, Reynolds WF. Peroxisome proliferator-activated receptor gamma ligands regulate myeloperoxidase expression in macrophages by an estrogen-dependent mechanism involving the –463GA promoter polymorphism. J Biol Chem. 2004;279(9):8300–8315. DOI: 10.1074/jbc.M311625200 |
| [114] |
Kumar A.P., Piedrafita F.J., Reynolds W.F. Peroxisome proliferator-activated receptor gamma ligands regulate myeloperoxidase expression in macrophages by an estrogen-dependent mechanism involving the –463GA promoter polymorphism // J Biol Chem. 2004. Vol. 279, No. 9. P. 8300–8315. DOI: 10.1074/jbc.M311625200 |
| [115] |
Liu Y-C, Chung C-J, Shiue H-S, et al. Genetic polymorphisms of myeloperoxidase and their effect on hypertension. Blood Pressure. 2013;22(5):282–289. DOI: 10.3109/08037051.2012.759331 |
| [116] |
Liu Y.-C., Chung C.-J., Shiue H.-S., et al. Genetic polymorphisms of myeloperoxidase and their effect on hypertension // Blood Pressure. 2013. Vol. 22, No. 5. P. 282–289. DOI: 10.3109/08037051.2012.759331 |
| [117] |
Özgen IT, Torun E, Ergen A, et al. Myeloperoxidase 463 G>A and superoxide dismutase Ala16Val gene polymorphisms in obese children. Turk J Pediatr. 2014;56(5):511–517. |
| [118] |
Özgen I.T., Torun E., Ergen A., et al. Myeloperoxidase 463 G>A and superoxide dismutase Ala16Val gene polymorphisms in obese children // Turk J Pediatr. 2014. Vol. 56, No. 5. P. 511–517. |
| [119] |
Oliveira-Paula GH, Lacchini R, Tanus-Santos JE. Endothelial nitric oxide synthase: From biochemistry and gene structure to clinical implications of NOS3 polymorphisms. Gene. 2016;575(2Pt3):584–599. DOI: 10.1016/j.gene.2015.09.061 |
| [120] |
Oliveira-Paula G.H., Lacchini R., Tanus-Santos J.E. Endothelial nitric oxide synthase: From biochemistry and gene structure to clinical implications of NOS3 polymorphisms // Gene. 2016. Vol. 575, No. 2 Pt3. P. 584–599. DOI: 10.1016/j.gene.2015.09.061 |
| [121] |
Park HK, Kim SK, Kwon OY, et al. Analysis between nitric oxide synthase 1 (NOS1) and risk of obesity. Mol Cell Toxicol. 2016;12(6):217–222. DOI: 10.1007/s13273-016-0026-x |
| [122] |
Park H.K., Kim S.K., Kwon O.Y., et al. Analysis between nitric oxide synthase 1 (NOS1) and risk of obesity // Mol Cell Toxicol. 2016. Vol. 12, No. 6. P. 217–222. DOI: 10.1007/s13273-016-0026-x |
| [123] |
Sansbury BE, Hill BG. Anti-obesogenic role of endothelial nitric oxide synthase. Vitam Horm. 2014;96(4):323–346. DOI: 10.1016/B978-0-12-800254-4.00013-1 |
| [124] |
Sansbury B.E., Hill B.G. Anti-obesogenic role of endothelial nitric oxide synthase // Vitam Horm. 2014. Vol. 96, No. 4. P. 323–346. DOI: 10.1016/B978-0-12-800254-4.00013-1 |
| [125] |
Podolsky RH, Barbeau P, Kang H-S, et al. Candidate genes and growth curves for adiposity in African- and European-American youth. Int J Obes (Lond.). 2007;31(10):1491–1499. DOI: 10.1038/sj.ijo.0803673 |
| [126] |
Podolsky R.H., Barbeau P., Kang H.-S., et al. Candidate genes and growth curves for adiposity in African- and European-American youth // Int J Obes (Lond.). 2007. Vol. 31, No. 10. P. 1491–1499. DOI: 10.1038/sj.ijo.0803673 |
| [127] |
Joshi MS, Mineo C, Shaul PW, et al. Biochemical consequences of the NOS3 Glu298Asp variation in human endothelium: altered caveolar localization and impaired response to shear. Faseb J. 2007;21(11):2655–2663. DOI: 10.1096/fj.06-7088com |
| [128] |
Joshi M.S., Mineo C., Shaul P.W., et al. Biochemical consequences of the NOS3 Glu298Asp variation in human endothelium: altered caveolar localization and impaired response to shear // Faseb J. 2007. Vol. 21, No. 11. P. 2655–2663. DOI: 10.1096/fj.06-7088com |
| [129] |
Akopyan AA, Kirillova KI, Strazhesko ID, et al. Association of the AGT, ACE, NOS3 polymorphism with subclinical arterial wall changes and cardiovascular diseases risk factors. Journal of Clinical Practice. 2020;11(1):30–41. (In Russ.) DOI: 10.17816/clinpract18572 |
| [130] |
Акопян А.А., Кириллова К.И., Стражеско И.Д., и др. Связь полиморфизма генов AGT, ACE, NOS3 с субклиническими изменениями артериальной стенки и факторами риска сердечно-cосудистых заболеваний // Клиническая практика. 2020. Т. 11, № 1. С. 30–41. DOI: 10.17816/clinpract18572 |
| [131] |
Souza-Costa DC, Belo VA, Silva PS, et al. eNOS haplotype associated with hypertension in obese children and adolescents. Int J Obes (Lond.). 2011;35(7):387–392. DOI: 10.1038/ijo.2010.146 |
| [132] |
Souza-Costa D.C., Belo V.A., Silva P.S., et al. eNOS haplotype associated with hypertension in obese children and adolescents // Int J Obes (Lond.). 2011. Vol. 35, No. 7. P. 387–392. DOI: 10.1038/ijo.2010.146 |
| [133] |
De Miranda JA, Lacchini R, Belo VA, et al. The effects of endothelial nitric oxide synthase tagSNPs on nitrite levels and risk of hypertension and obesity in children and adolescents. J Hum Hypertens. 2015;29(2):109–114. DOI: 10.1038/jhh.2014.48 |
| [134] |
De Miranda J.A., Lacchini R., Belo V.A., et al. The effects of endothelial nitric oxide synthase tagSNPs on nitrite levels and risk of hypertension and obesity in children and adolescents // J Hum Hypertens. 2015. Vol. 29, No. 2. P. 109–114. DOI: 10.1038/jhh.2014.48 |
| [135] |
Cooke GE, Doshi A, Binkley PF. Endothelial nitric oxide synthase gene: prospects for treatment of heart disease. Pharmacogenomics. 2007;8(12):1723–1734. DOI: 10.2217/14622416.8.12.1723 |
| [136] |
Cooke G.E., Doshi A., Binkley P.F. Endothelial nitric oxide synthase gene: prospects for treatment of heart disease // Pharmacogenomics. 2007. Vol. 8, No. 12. P. 1723–1734. DOI: 10.2217/14622416.8.12.1723 |
| [137] |
Nakata S, Tsutsui M, Shimokawa H, et al. Spontaneous myocardial infarction in mice lacking all nitric oxide synthase isoforms. Circulation. 2008;117(17):2211–2223. DOI: 10.1161/CIRCULATIONAHA.107.742692 |
| [138] |
Nakata S., Tsutsui M., Shimokawa H., et al. Spontaneous myocardial infarction in mice lacking all nitric oxide synthase isoforms // Circulation. 2008. Vol. 117, No. 17. P. 2211–2223. DOI: 10.1161/CIRCULATIONAHA.107.742692 |
| [139] |
Sansbury BE, Cummins TD, Tang Y, et al. Overexpression of endothelial nitric oxide synthase prevents diet-induced obesity and regulates adipocyte phenotype. Circ Res. 2012;111(9):1176–1189. DOI: 10.1161/CIRCRESAHA.112.266395 |
| [140] |
Sansbury B.E., Cummins T.D., Tang Y., et al. Overexpression of endothelial nitric oxide synthase prevents diet-induced obesity and regulates adipocyte phenotype // Circ Res. 2012. Vol. 111, No. 9. P. 1176–1189. DOI: 10.1161/CIRCRESAHA.112.266395 |
| [141] |
Miranda JA, Belo VA, Souza-Costa DC, et al. eNOS polymorphism associated with metabolic syndrome in children and adolescents. Mol Cell Biochem. 2013;372(1–2):155–160. DOI: 10.1007/s11010-012-1456-y |
| [142] |
Miranda J.A., Belo V.A., Souza-Costa D.C., et al. eNOS polymorphism associated with metabolic syndrome in children and adolescents // Mol Cell Biochem. 2013. Vol. 372, No. 1–2. P. 155–160. DOI: 10.1007/s11010-012-1456-y |
| [143] |
Aftabi Y, Gilani N, Ansarin A, et al. Female-biased association of NOS2-c.1823C>T (rs2297518) with co-susceptibility to metabolic syndrome and asthma. Can J Physiol Pharmacol. 2023;101(4):200–213. DOI: 10.1139/cjpp-2022-0334 |
| [144] |
Aftabi Y., Gilani N., Ansarin A., et al. Female-biased association of NOS2-c.1823C>T (rs2297518) with co-susceptibility to metabolic syndrome and asthma // Can J Physiol Pharmacol. 2023. Vol. 101, No. 4. P. 200–213. DOI: 10.1139/cjpp-2022-0334 |
| [145] |
Gusti AMT, Qusti SY, Alshammari EM, et al. Antioxidants-related superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione-S-transferase (GST), and nitric oxide synthase (NOS) gene variants analysis in an obese population: a preliminary case-control study. Antioxidants (Basel). 2021;10(4):595. DOI: 10.3390/antiox10040595 |
| [146] |
Gusti A.M.T., Qusti S.Y., Alshammari E.M., et al. Antioxidants-related superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione-S-transferase (GST), and nitric oxide synthase (NOS) gene variants analysis in an obese population: a preliminary case-control study // Antioxidants (Basel). 2021. Vol. 10, No. 4. ID 595. DOI: 10.3390/antiox10040595 |
| [147] |
Tinahones FJ, Murri-Pierri M, Garrido-Sánchez L, et al. Oxidative stress in severely obese persons is greater in those with insulin resistance. Obesity. 2012;17(2):240–246. DOI: 10.1038/oby.2008.536 |
| [148] |
Tinahones F.J., Murri-Pierri M., Garrido-Sánchez L., et al. Oxidative stress in severely obese persons is greater in those with insulin resistance // Obesity. 2012. Vol. 17, No. 2. P. 240–246. DOI: 10.1038/oby.2008.536 |
| [149] |
Perry JJP, Shin DS, Getzoff ED, Tainer JA. The structural biochemistry of the superoxide dismutases. Biochim Biophys Acta Proteins Proteom. 2010;1804(2):245–262. DOI: 10.1016/j.bbapap.2009.11.004 |
| [150] |
Perry J.J.P., Shin D.S., Getzoff E.D., Tainer J.A. The structural biochemistry of the superoxide dismutases // Biochim Biophys Acta Proteins Proteom. 2010. Vol. 1804, No. 2. P. 245–262. DOI: 10.1016/j.bbapap.2009.11.004 |
| [151] |
Hernandez-Guerrero C, Hernandez-Chavez P, Romo-Palafox I, et al. Genetic polymorphisms in SOD (rs2070424, rs7880) and CAT (rs7943316, rs1001179) enzymes are associated with increased body fat percentage and visceral fat in an obese population from Central Mexico. Arch Med Res. 2016;47(5):331–339. DOI: 10.1016/j.arcmed.2016.08.007 |
| [152] |
Hernandez-Guerrero C., Hernandez-Chavez P., Romo-Palafox I., et al. Genetic polymorphisms in SOD (rs2070424, rs7880) and CAT (rs7943316, rs1001179) enzymes are associated with increased body fat percentage and visceral fat in an obese population from Central Mexico // Arch Med Res. 2016. Vol. 47, No. 5. P. 331–339. DOI: 10.1016/j.arcmed.2016.08.007 |
| [153] |
Lewandowski Ł, Kepinska M, Milnerowicz H. Alterations in concentration/activity of superoxide dismutases in context of obesity and selected single nucleotide polymorphisms in genes: SOD1, SOD2, SOD3. Int J Mol Sci. 2020;21(14):5069. DOI: 10.3390/ijms21145069 |
| [154] |
Lewandowski Ł., Kepinska M., Milnerowicz H. Alterations in concentration/activity of superoxide dismutases in context of obesity and selected single nucleotide polymorphisms in genes: SOD1, SOD2, SOD3 // Int J Mol Sci. 2020. Vol. 21, No. 14. ID 5069. DOI: 10.3390/ijms21145069 |
| [155] |
Echart Montano MA, Barrio Lera JP, Valle Gottlieb MG, et al. Association between manganese superoxide dismutase (MnSOD) gene polymorphism and elderly obesity. Mol Cell Biochem. 2009;328(3):33–40. DOI: 10.1007/s11010-009-0071-z |
| [156] |
Echart Montano M.A., Barrio Lera J.P., Valle Gottlieb M.G., et al. Association between manganese superoxide dismutase (MnSOD) gene polymorphism and elderly obesity // Mol Cell Biochem. 2009. Vol. 328, No. 3. P. 33–40. DOI: 10.1007/s11010-009-0071-z |
| [157] |
Sutton A, Imbert A, Igoudjil A, et al. The manganese superoxide dismutase Ala16Val dimorphism modulates both mitochondrial import and mRNA stability. Pharmacogenet Genomics. 2005;15(5):311–319. DOI: 10.1097/01213011-200505000-00006 |
| [158] |
Sutton A., Imbert A., Igoudjil A., et al. The manganese superoxide dismutase Ala16Val dimorphism modulates both mitochondrial import and mRNA stability // Pharmacogenet Genomics. 2005. Vol. 15, No. 5. P. 311–319. DOI: 10.1097/01213011-200505000-00006 |
| [159] |
Nandi A, Yan LJ, Jana CK, Das N. Role of catalase in oxidative stress- and age-associated degenerative diseases. Oxid Med Cell Longev. 2019;2019(11):9613090. DOI: 10.1155/2019/9613090 |
| [160] |
Nandi A., Yan L.J., Jana C.K., Das N. Role of catalase in oxidative stress- and age-associated degenerative diseases // Oxid Med Cell Longev. 2019. Vol. 2019, No. 11. ID 9613090. DOI: 10.1155/2019/9613090 |
| [161] |
Forsberg L, Lyrenás L, Morgenstern R, De Faire U. A common functional C-T substitution polymorphism in the promoter region of the human catalase gene influences transcription factor binding, reporter gene transcription and is correlated to blood catalase levels. Free Radic Biol Med. 2001;30(5):500–505. DOI: 10.1016/s0891-5849(00)00487-1 |
| [162] |
Forsberg L., Lyrenás L., Morgenstern R., De Faire U. A common functional C-T substitution polymorphism in the promoter region of the human catalase gene influences transcription factor binding, reporter gene transcription and is correlated to blood catalase levels // Free Radic Biol Med. 2001. Vol. 30, No. 5. P. 500–505. DOI: 10.1016/s0891-5849(00)00487-1 |
| [163] |
Ruperez AI, Olza J, Gil-Campos M, et al. Are catalase –844A/G polymorphism and activity associated with childhood obesity? Antioxid Redox Signal. 2013;19(16):1970–1975. DOI: 10.1089/ars.2013.5386 |
| [164] |
Ruperez A.I., Olza J., Gil-Campos M., et al. Are catalase –844A/G polymorphism and activity associated with childhood obesity? // Antioxid Redox Signal. 2013. Vol. 19, No. 16. P. 1970–1975. DOI: 10.1089/ars.2013.5386 |
| [165] |
Ershova OA, Bairova TA. Polymorphism –262C/T of catalase gene (rs1001179) in Russian and Buryat populations with essential hypertension living in the Eastern Siberia. Acta Biomedica Scientifica. 2015;(3):70–73. (In Russ.) |
| [166] |
Ершова О.А., Баирова Т.А. Распространенность полиморфизма –262С/Т гена каталазы (rs1001179) у русских и бурят Восточной Сибири с эссенциальной артериальной гипертензией // Acta Biomedica Scientifica. 2015. № 3. С. 70–73. |
| [167] |
Brigelius-Flohе R, Flohe L. Regulatory phenomena in the glutathione peroxidase superfamily. Antiox Redox Signal. 2020;33(7): 498–516. DOI: 10.1089/ars.2019.7905 |
| [168] |
Brigelius-Flohе R., Flohe L. Regulatory phenomena in the glutathione peroxidase superfamily // Antiox Redox Signal. 2020. Vol. 33, No. 7. P. 498–516. DOI: 10.1089/ars.2019.7905 |
| [169] |
Kulinsky VI, Kolesnichenko LS. Glutathione system. I. Synthesis, transport, glutathione transferases, glutathione peroxidases. Biomeditsinskaya Khimiya. 2009;55(3):255–277. (In Russ.) |
| [170] |
Кулинский В.И., Колесниченко Л.С. Система глутатиона. 1. Синтез, транспорт, глутатионтрансферазы, глутатионпероксидазы // Биомедицинская химия. 2009. Т. 55, № 3. С. 255–277. |
| [171] |
Hernandez Guerrero C, Hernandez Chávez P, Castro NM, et al. Glutathione peroxidase-1 Pro200Leu polymorphism (rs1050450) is associated with morbid obesity independently of the presence of prediabetes or diabetes in women from Central Mexico. Nutr Hosp. 2015;32(4):1516–1525. DOI: 10.3305/nh.2015.32.4.9500 |
| [172] |
Hernandez Guerrero C., Hernandez Chávez P., Castro N.M., et al. Glutathione peroxidase-1 Pro200Leu polymorphism (rs1050450) is associated with morbid obesity independently of the presence of prediabetes or diabetes in women from Central Mexico // Nutr Hosp. 2015. Vol. 32, No. 4. P. 1516–1525. DOI: 10.3305/nh.2015.32.4.9500 |
| [173] |
Azarova IE, Klyosova EYu, Samgina TA, et al. Polymorphic variant in gpx2 gene (rs4902346) and predisposition to type 2 diabetes mellitus. Medical Genetics. 2020;19(2):17–27. (In Russ.) DOI: 10.25557/2073-7998.2020.02.17-27 |
| [174] |
Азарова Ю.Э., Клёсова Е.Ю., Бушуева О.Ю., и др. Полиморфный вариант гена GPx2 (rs4902346) и предрасположенность к сахарному диабету 2-го типа // Медицинская генетика. 2020. Т. 19, № 2. С. 17–27. DOI: 10.25557/2073-7998.2020.02.17-27 |
| [175] |
Costa-Urrutia P, Flores-Buendía AM, Ascencio-Montiel I, et al. antioxidant enzymes haplotypes and polymorphisms associated with obesity in Mexican children. Antioxidants. 2020;9(8):684. DOI: 10.3390/antiox9080684 |
| [176] |
Costa-Urrutia P., Flores-Buendía A.M., Ascencio-Montiel I., et al. antioxidant enzymes haplotypes and polymorphisms associated with obesity in Mexican children // Antioxidants. 2020. Vol. 9, No. 8. ID 684. DOI: 10.3390/antiox9080684 |
| [177] |
Johansson A-S, Stenberg G, Widersten M, Mannervik B. Structureactivity relationships and thermal stability of human glutathione transferase P1-1 governed by the H-site residue 105. J Mol Biol. 1998;278(3):687–698. DOI: 10.1006/jmbi.1998.1708 |
| [178] |
Johansson A.-S., Stenberg G., Widersten M., Mannervik B. Structureactivity relationships and thermal stability of human glutathione transferase P1-1 governed by the H-site residue 105 // J Mol Biol. 1998. Vol. 278, No. 3. P. 687–698. DOI: 10.1006/jmbi.1998.1708 |
| [179] |
Azarova IE, Konoplya AI, Polonikov AV. Genetic variation in genes for glutathione S-Transferases and susceptibility to type 2 diabetes mellitus in Central Chernozem region of Russia. Medical Genetics. 2017;16(4):29–34. (In Russ.) |
| [180] |
Азарова Ю.Э., Конопля А.И., Полоников А.В. Полиморфизм генов глутатион-S-трансфераз и предрасположенность к сахарному дибету 2 типа у жителей Центрального Черноземья // Медицинская генетика. 2017. Т. 16, № 4. С. 29–34. |
| [181] |
Chielle EO, Fortuna PC, Maziero JS. Association between the glutathione S-transferase P1 (GSTP1) Ile105Val gene polymorphism in obese and overweight patients over 60 years. J Bras Patol Med Lab. 2016;52(4):211–216. DOI: 10.5935/1676-2444.20160035 |
| [182] |
Chielle E.O., Fortuna P.C., Maziero J.S. Association between the glutathione S-transferase P1 (GSTP1) Ile105Val gene polymorphism in obese and overweight patients over 60 years // J Bras Patol Med Lab. 2016. Vol. 52, No. 4. P. 211–216. DOI: 10.5935/1676-2444.20160035 |
| [183] |
Yang S-A. Lack of association between glutathione s-transferase mu 1 (GSTM1) gene polymorphisms and obesity. J Exerc Rehabil. 2017;13(5):608–612. DOI: 10.12965/jer.1735128.564 |
| [184] |
Yang S.-A. Lack of association between glutathione s-transferase mu 1 (GSTM1) gene polymorphisms and obesity // J Exerc Rehabil. 2017. Vol. 13, No. 5. P. 608–612. DOI: 10.12965/jer.1735128.564 |
| [185] |
Klusek J, Błońska-Sikora E, Witczak B, Orlewska K. Glutathione S-transferases gene polymorphism influence on the age of diabetes type 2 onset. BMJ Open Diabetes Res Care. 2020;8(2):e001773. DOI: 10.1136/bmjdrc-2020-001773 |
| [186] |
Klusek J., Błońska-Sikora E., Witczak B., Orlewska K. Glutathione S-transferases gene polymorphism influence on the age of diabetes type 2 onset // BMJ Open Diabetes Res Care. 2020. Vol. 8, No. 2. ID e001773. DOI: 10.1136/bmjdrc-2020-001773 |
| [187] |
Azarova IE, Klyosova EY, Polonikov AV. Polymorphic variants of glutathione reductase — new genetic markers of predisposition to type 2 diabetes mellitus. Terapevticheskii arkhiv. 2021;93(10): 1164–1170. (In Russ.) DOI: 10.26442/00403660.2021.10.201101 |
| [188] |
Азарова Ю.Э., Клесова Е.Ю., Полоников А.В. Полиморфные варианты гена глутатионредуктазы — новые генетические маркеры предрасположенности к сахарному диабету 2-го типа // Терапевтический архив. 2021. Т. 93, № 10. С. 1164–1170. DOI: 10.26442/00403660.2021.10.201101 |
| [189] |
Hopkins BL, Neumann CA. Redoxins as gatekeepers of the transcriptional oxidative stress response. Redox Biol. 2019;21(2):101104. DOI: 10.1016/j.redox.2019.101104 |
| [190] |
Hopkins B.L., Neumann C.A. Redoxins as gatekeepers of the transcriptional oxidative stress response // Redox Biol. 2019. Vol. 21, No. 2. ID 101104. DOI: 10.1016/j.redox.2019.101104 |
| [191] |
Huh JY, Kim Y, Jeong J, et al. Peroxiredoxin 3 is a key molecule regulating adipocyte oxidative stress, mitochondrial biogenesis, and adipokine expression. Antioxid Redox Signal. 2012;16(3):229–243.DOI: 10.1089/ars.2010.3766 |
| [192] |
Huh J.Y., Kim Y., Jeong J., et al. Peroxiredoxin 3 is a key molecule regulating adipocyte oxidative stress, mitochondrial biogenesis, and adipokine expression // Antioxid Redox Signal. 2012. Vol. 16, No. 3. P. 229–243.DOI: 10.1089/ars.2010.3766 |
| [193] |
Hiroi M, Nagahara Y, Miyauchi R, et al. The combination of genetic variations in the PRDX3 gene and dietary fat intake contribute to obesity risk. Obesity. 2011;19(4):882–887. DOI: 10.1038/oby.2010.275 |
| [194] |
Hiroi M., Nagahara Y., Miyauchi R., et al. The combination of genetic variations in the PRDX3 gene and dietary fat intake contribute to obesity risk // Obesity. 2011. Vol. 19, No. 4. P. 882–887. DOI: 10.1038/oby.2010.275 |
| [195] |
Yoshihara E, Masaki S, Matsuo Y, et al. Thioredoxin/Txnip: redoxisome, as a redox switch for the pathogenesis of diseases. Front Immunol. 2014;4(1):514. DOI: 10.3389/fimmu.2013.00514 |
| [196] |
Yoshihara E., Masaki S., Matsuo Y., et al. Thioredoxin/Txnip: redoxisome, as a redox switch for the pathogenesis of diseases // Front Immunol. 2014. Vol. 4, No. 1. ID 514. DOI: 10.3389/fimmu.2013.00514 |
| [197] |
Bodnar JS, Chatterjee A, Castellani LW, et al. Positional cloning of the combined hyperlipidemia gene Hyplip1. Nat Genet. 2002;30(1):110–116. DOI: 10.1038/ng811 |
| [198] |
Bodnar J.S., Chatterjee A., Castellani L.W., et al. Positional cloning of the combined hyperlipidemia gene Hyplip1 // Nat Genet. 2002. Vol. 30, No. 1. P. 110–116. DOI: 10.1038/ng811 |
| [199] |
Ferreira NE, Omae S, Pereira A, et al. Thioredoxin interacting protein genetic variation is associated with diabetes and hypertension in the Brazilian general population. Atherosclerosis. 2012;221(1): 131–136. DOI: 10.1016/j.atherosclerosis.2011.12.009 |
| [200] |
Ferreira N.E., Omae S., Pereira A., et al. Thioredoxin interacting protein genetic variation is associated with diabetes and hypertension in the Brazilian general population // Atherosclerosis. 2012. Vol. 221, No. 1. P. 131–136. DOI: 10.1016/j.atherosclerosis.2011.12.009 |
| [201] |
Wang X-B, Han Y-D, Zhang S, et al. Associations of polymorphisms in TXNIP and gene-environment interactions with the risk of coronary artery disease in a Chinese Han population. J Cell Mol Med. 2016;20(12):2362–2373. DOI: 10.1111/jcmm.12929 |
| [202] |
Wang X.-B., Han Y.-D., Zhang S., et al. Associations of polymorphisms in TXNIP and gene-environment interactions with the risk of coronary artery disease in a Chinese Han population // J Cell Mol Med. 2016. Vol. 20, No. 12. P. 2362–2373. DOI: 10.1111/jcmm.12929 |
| [203] |
Jimenez-Osorio AS, Gonzalez-Reyes S, Garcia-Nino WR, et al. association of nuclear factor-erythroid 2-related factor 2, thioredoxin interacting protein, and heme oxygenase-1 gene polymorphisms with diabetes and obesity in Mexican patients. Oxid Med Cell Longev. 2016;2016:7367641. DOI: 10.1155/2016/7367641 |
| [204] |
Jimenez-Osorio A.S., Gonzalez-Reyes S., Garcia-Nino W.R., et al. association of nuclear factor-erythroid 2-related factor 2, thioredoxin interacting protein, and heme oxygenase-1 gene polymorphisms with diabetes and obesity in Mexican patients // Oxid Med Cell Longev. 2016. Vol. 2016. ID 7367641. DOI: 10.1155/2016/7367641 |
| [205] |
Das SK, Sharma NK, Hasstedt SJ, et al. An integrative genomics approach identifies activation of thioredoxin/thioredoxin reductase-1-mediated oxidative stress defense pathway and inhibition of angiogenesis in obese nondiabetic human subjects. J Clin Endocrin Metabol. 2011;96(8):E1308–E1313. DOI: 10.1210/jc.2011-0101 |
| [206] |
Das S.K., Sharma N.K., Hasstedt S.J., et al. An integrative genomics approach identifies activation of thioredoxin/thioredoxin reductase-1-mediated oxidative stress defense pathway and inhibition of angiogenesis in obese nondiabetic human subjects // J Clin Endocrin Metabol. 2011. Vol. 96, No. 8. P. E1308–E1313. DOI: 10.1210/jc.2011-0101 |
| [207] |
Abraham NG, Junge JM, Drummond GS. Translational significance of heme oxygenase in obesity and metabolic syndrome. Trends Pharmacol Sci. 2016;37(1):17–36. DOI: 10.1016/j.tips.2015.09.003 |
| [208] |
Abraham N.G., Junge J.M., Drummond G.S. Translational significance of heme oxygenase in obesity and metabolic syndrome // Trends Pharmacol Sci. 2016. Vol. 37, No. 1. P. 17–36. DOI: 10.1016/j.tips.2015.09.003 |
| [209] |
Gozzelino R, Jeney V, Soares MP. Mechanisms of cell protection by heme oxygenase-1. Annu Rev Pharmacol Toxicol. 2010;50: 323–354. DOI: 10.1146/annurev.pharmtox.010909.105600 |
| [210] |
Gozzelino R., Jeney V., Soares M.P. Mechanisms of cell protection by heme oxygenase-1 // Annu Rev Pharmacol Toxicol. 2010. Vol. 50. P. 323–354. DOI: 10.1146/annurev.pharmtox.010909.105600 |
| [211] |
Ma L-L, Sun L, Wang Y-X, et al. Association between HO1 gene promoter polymorphisms and diseases (review). Mol Med Rep. 2022;25(1):29. DOI: 10.3892/mmr.2021.12545 |
| [212] |
Ma L.-L., Sun L., Wang Y.-X., et al. Association between HO1 gene promoter polymorphisms and diseases (review) // Mol Med Rep. 2022. Vol. 25, No. 1. ID 29. DOI: 10.3892/mmr.2021.12545 |
| [213] |
Zhang M-M, Zheng Y-Y, Gao Y, et al. Heme oxygenase-1 gene promoter polymorphisms are associated with coronary heart disease and restenosis after percutaneous coronary intervention: A meta-analysis. Oncotarget. 2016;50(7):83437–83450. DOI: 10.18632/oncotarget.13118 |
| [214] |
Zhang M.-M., Zheng Y.-Y., Gao Y., et al. Heme oxygenase-1 gene promoter polymorphisms are associated with coronary heart disease and restenosis after percutaneous coronary intervention: A meta-analysis // Oncotarget. 2016. Vol. 50, No. 7. P. 83437–83450. DOI: 10.18632/oncotarget.13118 |
| [215] |
Lee WS, Ham W, Kim J. Roles of NAD(P)H: quinone oxidoreductase 1 in diverse diseases. Life (Basel). 2021;11(12):1301. DOI: 10.3390/life11121301 |
| [216] |
Lee W.S., Ham W., Kim J. Roles of NAD(P)H: quinone oxidoreductase 1 in diverse diseases // Life (Basel). 2021. Vol. 11, No. 12. ID 1301. DOI: 10.3390/life11121301 |
| [217] |
Palming J, Sjöholm K, Jernås M, et al. The expression of NAD(P)H: quinone oxidoreductase 1 is high in human adipose tissue, reduced by weight loss, and correlates with adiposity, insulin sensitivity, and markers of liver dysfunction. J Clin Endocrinol Metab. 2007;92(6):2346–2352. DOI: 10.1210/jc.2006-2476 |
| [218] |
Palming J., Sjöholm K., Jernås M., et al. The expression of NAD(P)H: quinone oxidoreductase 1 is high in human adipose tissue, reduced by weight loss, and correlates with adiposity, insulin sensitivity, and markers of liver dysfunction // J Clin Endocrinol Metab. 2007. Vol. 92, No. 6. P. 2346–2352. DOI: 10.1210/jc.2006-2476 |
| [219] |
Ross D, Siegel D. The diverse functionality of NQO1 and its roles in redox control. Redox Biol. 2021;41:101950. DOI: 10.1016/j.redox.2021.101950 |
| [220] |
Ross D., Siegel D. The diverse functionality of NQO1 and its roles in redox control // Redox Biol. 2021. Vol. 41. ID 101950. DOI: 10.1016/j.redox.2021.101950 |
| [221] |
Gutiérrez-Cuevas J, Galicia-Moreno M, Monroy-Ramírez HC, et al. The role of NRF2 in obesity-associated cardiovascular risk factors. Antioxidants (Basel). 2022;11(2):235. DOI: 10.3390/antiox11020235 |
| [222] |
Gutiérrez-Cuevas J., Galicia-Moreno M., Monroy-Ramírez H.C., et al. The role of NRF2 in obesity-associated cardiovascular risk factors // Antioxidants (Basel). 2022. Vol. 11, No. 2. ID 235. DOI: 10.3390/antiox11020235 |
| [223] |
Cho H-Y, Marzec J, Kleeberger SR. Functional polymorphisms in Nrf2: implications for human disease. Free Radic Biol Med. 2015;88(B):362–372. DOI: 10.1016/j.freeradbiomed.2015.06.012 |
| [224] |
Cho H.-Y., Marzec J., Kleeberger S.R. Functional polymorphisms in Nrf2: implications for human disease // Free Radic Biol Med. 2015. Vol. 88, No. B. P. 362–372. DOI: 10.1016/j.freeradbiomed.2015.06.012 |
| [225] |
Porokhovnik LN, Pisarev VM. Association of polymorphisms in NFE2L2 gene encoding transcription factor NRF2 with multifactorial diseases. Russian Journal of Genetics. 2017;53(8):895–910. (In Russ.) DOI: 10.6878/S0016675817080057 |
| [226] |
Пороховник Л.Н., Писарев В.М. Связь аллельных вариантов гена NFE2L2 транскрипционного фактора NRF2 с патогенезом многофакторных заболеваний // Генетика. 2017. Т. 53, № 8. С. 895–910. DOI: 10.6878/S0016675817080057 |
| [227] |
Chen QM, Maltagliati AJ. Nrf2 at the heart of oxidative stress and cardiac protection. Physiol Genomics. 2018;50(2):77–97. DOI: 10.1152/physiolgenomics.00041.2017. |
| [228] |
Chen Q.M., Maltagliati A.J. Nrf2 at the heart of oxidative stress and cardiac protection // Physiol Genomics. 2018. Vol. 50, No. 2. P. 77–97. DOI: 10.1152/physiolgenomics.00041.2017. |
| [229] |
Kwak M-K, Itoh K, Yamamoto M, Kensler TW. Enhanced expression of the transcription factor Nrf2 by cancer chemopreventive agents: role of antioxidant response element-like sequences in the nrf2 promoter. Mol Cell Biol. 2002;22(9):2883–2892. DOI: 10.1128/MCB.22.9.2883-2892.2002 |
| [230] |
Kwak M.-K., Itoh K., Yamamoto M., Kensler T.W. Enhanced expression of the transcription factor Nrf2 by cancer chemopreventive agents: role of antioxidant response element-like sequences in the nrf2 promoter // Mol Cell Biol. 2002. Vol. 22, No. 9. P. 2883–2892. DOI: 10.1128/MCB.22.9.2883-2892.2002 |
| [231] |
Xia Y, Zhai X, Qiu Y, et al. The Nrf2 in obesity: A friend or foe? Antioxidants. 2022;11(10):2067. DOI: 10.3390/antiox11102067 |
| [232] |
Xia Y., Zhai X., Qiu Y., et al. The Nrf2 in obesity: A friend or foe? // Antioxidants. 2022. Vol. 11, No. 10. ID 2067. DOI: 10.3390/antiox11102067 |
| [233] |
Vasileva LV, Savova MS, Amirova KM, et al. Obesity and NRF2-mediated cytoprotection: Where is the missing link? Pharmacol Res. 2020;156(6):104760. DOI: 10.1016/j.phrs.2020.104760 |
| [234] |
Vasileva L.V., Savova M.S., Amirova K.M., et al. Obesity and NRF2-mediated cytoprotection: Where is the missing link? // Pharmacol Res. 2020. Vol. 156, No. 6. ID 104760. DOI: 10.1016/j.phrs.2020.104760 |
| [235] |
Wang X, Chen H, Liu J, et al. Association between the NF-E2 related factor 2 gene polymorphism and oxidative stress, anti-oxidative status, and newly-diagnosed type 2 diabetes mellitus in a Chinese population. Int J Mol Sci. 2015;16(7):16483–16496. DOI: 10.3390/ijms160716483 |
| [236] |
Wang X., Chen H., Liu J., et al. Association between the NF-E2 related factor 2 gene polymorphism and oxidative stress, anti-oxidative status, and newly-diagnosed type 2 diabetes mellitus in a chinese population // Int J Mol Sci. 2015. Vol. 16, No. 7. P. 16483–16496. DOI: 10.3390/ijms160716483 |
| [237] |
Ahmad AA, Rahimi Z, Vaisi-Raygani A. Keap1 gene variants (rs11085735) and lipid profile in obese individuals from Kurdistan, Iraq. Avicenna J Med Biochem. 2022;10(2):95–100. DOI: 10.34172/ajmb.2022.2389 |
| [238] |
Ahmad A.A., Rahimi Z., Vaisi-Raygani A. Keap1 gene variants (rs11085735) and lipid profile in obese individuals from Kurdistan, Iraq // Avicenna J Med Biochem. 2022. Vol. 10, No. 2. P. 95–100. DOI: 10.34172/ajmb.2022.2389 |
| [239] |
Khalili F, Vaisi-Raygani A, Shakiba E, et al. Oxidative stress parameters and keap 1 variants in T2DM: Association with T2DM, diabetic neuropathy, diabetic retinopathy, and obesity. J Clin Lab Anal. 2022;36(1):e24163. DOI: 10.1002/jcla.24163 |
| [240] |
Khalili F., Vaisi-Raygani A., Shakiba E., et al. Oxidative stress parameters and keap 1 variants in T2DM: Association with T2DM, diabetic neuropathy, diabetic retinopathy, and obesity // J Clin Lab Anal. 2022. Vol. 36, No. 1. ID e24163. DOI: 10.1002/jcla.24163 |
Eco-Vector
/
| 〈 |
|
〉 |