Effect of high light conditions on the response of Arabidopsis thaliana plants with suppressed mitochondrial alternative oxidase
Elena V. Garmash , Kirill V. Yadrikhinskiy , Mikhail A. Shelyakin , Elena S. Belykh
Ecological Genetics ›› 2023, Vol. 21 ›› Issue (3) : 219 -234.
Effect of high light conditions on the response of Arabidopsis thaliana plants with suppressed mitochondrial alternative oxidase
BACKGROUND: Plants as sessile organisms have developed biochemical pathways to protect themselves from the excess light energy. Mitochondrial alternative oxidase (AOX) participates in the oxidation of reductants exported from chloroplasts, thereby optimizing photosynthesis and protecting cells from photodamage.
AIM: The effect of high light on respiration and the relative transcripts content of a number of genes in Arabidopsis thaliana plants of the T-DNA insertional line for AOX1a (aox1a) was studied and compared with the response of the antisense silencing of AOX1a line (AS-12) and wild type line Col-0.
MATERIALS AND METHODS: Four-week-old A. thaliana plants of three lines grown at 90 µmol/m2 · s and then exposed to moderately high light conditions, 400 µmol/m2 · s, in a short-term experiment (8 h). Respiratory pathways activity, gene expression, and superoxide anion content were determined during experiment.
RESULTS: Plants of the aox1a line in response to high light were characterized by the absence of the total and alternative respiration reaction and the absence of the AOX1 protein in spite of the increased mRNA level of AOX1c, in contrast to the Col-0 and AS-12 lines. Also, an increased content of transcripts of only SAPX and CHS were found, while in the other lines a compensatory increase in the expression of many “defense” genes was revealed.
CONCLUSIONS: Thus, the aox1a line was characterized by a low compensatory effect at the level of defense systems activation. This is apparently caused by the absence of the AOX1 protein and, as a result, the weakening of the stress signal and stress response. The results obtained indicate the important role of AOX in the response of respiration to light stress; can be used to study the signaling pathways of regulation of AOX1a expression.
Arabidopsis thaliana / high light / respiration / alternative oxidase (AOX) / AtAOX1a-suppressed lines / gene expression / oxidative stress
| [1] |
Wilhelm C, Selmar D. Energy dissipation is an essential mechanism to sustain the viability of plants: The physiological limits of improved photosynthesis. J Plant Physiol. 2011;168(2):79–87. DOI: 10.1016/j.jplph.2010.07.012 |
| [2] |
Wilhelm C., Selmar D. Energy dissipation is an essential mechanism to sustain the viability of plants: The physiological limits of improved photosynthesis // J Plant Physiol. 2011. Vol. 168, No. 2. P. 79–87. DOI: 10.1016/j.jplph.2010.07.012 |
| [3] |
Raghavendra AS, Padmasree K. Beneficial interactions of mitochondrial metabolism with photosynthetic carbon assimilation. Trends Plant Sci. 2003;8(11):546–553. DOI: 10.1016/j.tplants.2003.09.015 |
| [4] |
Raghavendra A.S., Padmasree K. Beneficial interactions of mitochondrial metabolism with photosynthetic carbon assimilation // Trends Plant Sci. 2003. Vol. 8, No. 11. P. 546–553. DOI: 10.1016/j.tplants.2003.09.015 |
| [5] |
Noguchi K, Yoshida K. Interaction between photosynthesis and respiration in illuminated leaves. Mitochondrion. 2008;8(1):87–99. DOI: 10.1016/j.mito.2007.09.003 |
| [6] |
Noguchi K., Yoshida K. Interaction between photosynthesis and respiration in illuminated leaves // Mitochondrion. 2008. Vol. 8, No. 1. P. 87–99. DOI: 10.1016/j.mito.2007.09.003 |
| [7] |
Vanlerberghe GC, Dahal K, Alber NA, Chadee A. Photosynthesis, respiration and growth: A carbon and energy balancing act for alternative oxidase. Mitochondrion. 2020;52:197–211. DOI: 10.1016/j.mito.2020.04.001 |
| [8] |
Vanlerberghe G.C., Dahal K., Alber N.A., Chadee A. Photosynthesis, respiration and growth: A carbon and energy balancing act for alternative oxidase // Mitochondrion. 2020. Vol. 52. P. 197–211. DOI: 10.1016/j.mito.2020.04.001 |
| [9] |
Garmash EV. Suppression of mitochondrial alternative oxidase can result in upregulation of the ROS scavenging network: some possible mechanisms underlying the compensation effect. Plant Biol. 2022;25(1):43–53. DOI: 10.1111/plb.13477 |
| [10] |
Garmash E.V. Suppression of mitochondrial alternative oxidase can result in upregulation of the ROS scavenging network: some possible mechanisms underlying the compensation effect // Plant Biol. 2022. Vol. 25, No. 1. P. 43–53. DOI: 10.1111/plb.13477 |
| [11] |
Dinakar C, Raghavendra AS, Padmasree K. Importance of AOX pathway in optimizing photosynthesis under high light stress: role of pyruvate and malate in activating AOX. Physiol Plant. 2010;139(1):13–26. DOI: 10.1111/j.1399-3054.2010.01346.x |
| [12] |
Dinakar C., Raghavendra A.S., Padmasree K. Importance of AOX pathway in optimizing photosynthesis under high light stress: role of pyruvate and malate in activating AOX // Physiol Plant. 2010. Vol. 139, No. 1. P. 13–26. DOI: 10.1111/j.1399-3054.2010.01346.x |
| [13] |
Albury MS, Elliott C, Moore AL. Towards a structural elucidation of the alternative oxidase in plants. Physiol Plant. 2009;137(4):316–327. DOI: 10.1111/j.1399-3054.2009.01270.x |
| [14] |
Albury M.S., Elliott C., Moore A.L. Towards a structural elucidation of the alternative oxidase in plants // Physiol Plant. 2009. Vol. 137, No. 4. P. 316–327. DOI: 10.1111/j.1399-3054.2009.01270.x |
| [15] |
Polidoros AN, Mylona PV, Arnholdt-Schmitt B. Aox gene structure, transcript variation and expression in plants. Physiol Plant. 2009;137(4):342–353. DOI: 10.1111/j.1399-3054.2009.01284.x |
| [16] |
Polidoros A.N., Mylona P.V., Arnholdt-Schmitt B. Aox gene structure, transcript variation and expression in plants // Physiol Plant. 2009. Vol. 137, No. 4. P. 342–353. DOI: 10.1111/j.1399-3054.2009.01284.x |
| [17] |
Bouché N, Bouchez D. Arabidopsis gene knockout: phenotypes wanted. Curr Opin Plant Biol. 2001;4(2):111–117. DOI: 10.1016/S1369-5266(00)00145-X |
| [18] |
Bouché N., Bouchez D. Arabidopsis gene knockout: phenotypes wanted // Curr Opin Plant Biol. 2001. Vol. 4, No. 2. P. 111–117. DOI: 10.1016/S1369-5266(00)00145-X |
| [19] |
The Arabidopsis genome initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature. 2000;408:796–815. DOI: 10.1038/35048692 |
| [20] |
The Arabidopsis genome initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana // Nature. 2000. Vol. 408. P. 796–815. DOI: 10.1038/35048692 |
| [21] |
Clifton R, Lister R, Parker KL, et al. Stress-induced co-expression of alternative respiratory chain components in Arabidopsis thaliana. Plant Mol Biol. 2005;58:193–212. DOI: 10.1007/s11103-005-5514-7 |
| [22] |
Clifton R., Lister R., Parker K.L., et al. Stress-induced co-expression of alternative respiratory chain components in Arabidopsis thaliana // Plant Mol Biol. 2005. Vol. 58. P. 193–212. DOI: 10.1007/s11103-005-5514-7 |
| [23] |
Clifton R, Millar AH, Whelan J. Alternative oxidases in Arabidopsis: A comparative analysis of differential expression in the gene family provides new insights into function of non-phosphorylating bypasses. Biochim Biophys Acta Bioenerg. 2006;1757(7):730–741. DOI: 10.1016/j.bbabio.2006.03.009 |
| [24] |
Clifton R., Millar A.H., Whelan J. Alternative oxidases in Arabidopsis: A comparative analysis of differential expression in the gene family provides new insights into function of non-phosphorylating bypasses // Biochim Biophys Acta Bioenerg. 2006. Vol. 1757, No. 7. P. 730–741. DOI: 10.1016/j.bbabio.2006.03.009 |
| [25] |
Ho LHM, Giraud E, Uggalla V, et al. Identification of regulatory pathways controlling gene expression of stress-responsive mitochondrial proteins in Arabidopsis. Plant Physiol. 2008;147(4): 1858–1873. DOI: 10.1104/pp.108.121384 |
| [26] |
Ho L.H.M., Giraud E., Uggalla V., et al. Identification of regulatory pathways controlling gene expression of stress-responsive mitochondrial proteins in Arabidopsis // Plant Physiol. 2008. Vol. 147, No. 4. P. 1858–1873. DOI: 10.1104/pp.108.121384 |
| [27] |
Yoshida K, Noguchi K. Differential gene expression profiles of the mitochondrial respiratory components in illuminated Arabidopsis leaves. Plant Cell Physiol. 2009;50(8):1449–1462. DOI: 10.1093/pcp/pcp090 |
| [28] |
Yoshida K., Noguchi K. Differential gene expression profiles of the mitochondrial respiratory components in illuminated Arabidopsis leaves // Plant Cell Physiol. 2009. Vol. 50, No. 8. P. 1449–1462. DOI: 10.1093/pcp/pcp090 |
| [29] |
Vishwakarma A, Tetali SD, Selinski J, et al. Importance of the alternative oxidase (AOX) pathway in regulating cellular redox and ROS homeostasis to optimize photosynthesis during restriction of the cytochrome oxidase pathway in Arabidopsis thaliana. Ann Bot. 2015;116(4):555–569. DOI: 10.1093/aob/mcv122 |
| [30] |
Vishwakarma A., Tetali S.D., Selinski J., et al. Importance of the alternative oxidase (AOX) pathway in regulating cellular redox and ROS homeostasis to optimize photosynthesis during restriction of the cytochrome oxidase pathway in Arabidopsis thaliana // Ann Bot. 2015. Vol. 116, No. 4. P. 555–569. DOI: 10.1093/aob/mcv122 |
| [31] |
Garmash EV, Belykh ES, Velegzhaninov IO. The gene expression profiles of mitochondrial respiratory components in Arabidopsis plants with differing amounts of ALTERNATIVE OXIDASE1a under high intensity light. Plant Signal Behav. 2021;16(3):1864962. DOI: 10.1080/15592324.2020.1864962 |
| [32] |
Garmash E.V., Belykh E.S., Velegzhaninov I.O. The gene expression profiles of mitochondrial respiratory components in Arabidopsis plants with differing amounts of ALTERNATIVE OXIDASE1a under high intensity light // Plant Signal Behav. 2021. Vol. 16, No. 3. ID 1864962. DOI: 10.1080/15592324.2020.1864962 |
| [33] |
Liu J, Li Z, Wang Y, et al. Overexpression of ALTERNATIVE OXIDASE1a alleviates mitochondria-dependent programmed cell death induced by aluminium phytotoxicity in Arabidopsis. J Exp Bot. 2014;65(15):4465–4478. DOI: 10.1093/jxb/eru222 |
| [34] |
Liu J., Li Z., Wang Y., et al. Overexpression of ALTERNATIVE OXIDASE1a alleviates mitochondria-dependent programmed cell death induced by aluminium phytotoxicity in Arabidopsis // J Exp Bot. 2014. Vol. 65, No. 15. P. 4465–4478. DOI: 10.1093/jxb/eru222 |
| [35] |
Zhang D-W, Yuan S, Xu F, et al. Light intensity affects chlorophyll synthesis during greening process by metabolite signal from mitochondrial alternative oxidase in Arabidopsis. Plant Cell Environ. 2016;39(1):12–25. DOI: 10.1111/pce.12438 |
| [36] |
Zhang D.-W., Yuan S., Xu F., et al. Light intensity affects chlorophyll synthesis during greening process by metabolite signal from mitochondrial alternative oxidase in Arabidopsis // Plant Cell Environ. 2016. Vol. 39, No. 1. P. 12–25. DOI: 10.1111/pce.12438 |
| [37] |
Garmash EV, Velegzhaninov IO, Ermolina KV, et al. Altered levels of AOX1a expression result in changes in metabolic pathways in Arabidopsis thaliana plants acclimated to low dose rates of ultraviolet B radiation. Plant Sci. 2020;291:110332. DOI: 10.1016/j.plantsci.2019.110332 |
| [38] |
Garmash E.V., Velegzhaninov I.O., Ermolina K.V., et al. Altered levels of AOX1a expression result in changes in metabolic pathways in Arabidopsis thaliana plants acclimated to low dose rates of ultraviolet B radiation // Plant Sci. 2020. Vol. 291. ID 110332. DOI: 10.1016/j.plantsci.2019.110332 |
| [39] |
Garmash EV, Dymova OV, Silina EV, et al. AOX1a expression in Arabidopsis thaliana affects the state of chloroplast photoprotective systems under moderately high light conditions. Plants. 2023;11(22):3030. DOI: 10.3390/plants11223030 |
| [40] |
Garmash E.V., Dymova O.V., Silina E.V., et al. AOX1a expression in Arabidopsis thaliana affects the state of chloroplast photoprotective systems under moderately high light conditions // Plants. 2023. Vol. 11, No. 22. ID 3030. DOI: 10.3390/plants11223030 |
| [41] |
Giraud E, Ho LHM, Clifton R, et al. The absence of ALTERNATIVE OXIDASE1a in Arabidopsis results in acute sensitivity to combined light and drought stress. Plant Physiol. 2008;147(2):595–610. DOI: 10.1104/pp.107.115121 |
| [42] |
Giraud E., Ho L.H.M., Clifton R., et al. The absence of ALTERNATIVE OXIDASE1a in Arabidopsis results in acute sensitivity to combined light and drought stress // Plant Physiol. 2008. Vol. 147, No. 2. P. 595–610. DOI: 10.1104/pp.107.115121 |
| [43] |
Strodtkötter I, Padmasree K, Dinakar C, et al. Induction of the AOX1D Isoform of alternative oxidase in A. thaliana T-DNA insertion lines lacking isoform AOX1A is insufficient to optimize photosynthesis when treated with Antimycin A. Mol Plant. 2009;2(2):284–297. DOI: 10.1093/mp/ssn089 |
| [44] |
Strodtkötter I., Padmasree K., Dinakar C., et al. Induction of the AOX1D Isoform of alternative oxidase in A. thaliana T-DNA insertion lines lacking isoform AOX1A is insufficient to optimize photosynthesis when treated with Antimycin A // Mol Plant. 2009. Vol. 2, No. 2. P. 284–297. DOI: 10.1093/mp/ssn089 |
| [45] |
Kühn K, Yin G, Duncan O, et al. Decreasing electron flux through the cytochrome and/or alternative respiratory pathways triggers common and distinct cellular responses dependent on growth conditions. Plant Physiol. 2015;167(1):228–250. DOI: 10.1104/pp.114.249946 |
| [46] |
Kühn K., Yin G., Duncan O., et al. Decreasing electron flux through the cytochrome and/or alternative respiratory pathways triggers common and distinct cellular responses dependent on growth conditions // Plant Physiol. 2015. Vol. 167, No. 1. P. 228–250. DOI: 10.1104/pp.114.249946 |
| [47] |
Umbach AL, Fiorani F, Siedow JN. Characterization of transformed Arabidopsis with altered alternative oxidase levels and analysis of effects on reactive oxygen species in tissue. Plant Physiol. 2005;139(4):1806–1820. DOI: 10.1104/pp.105.070763 |
| [48] |
Umbach A.L., Fiorani F., Siedow J.N. Characterization of transformed Arabidopsis with altered alternative oxidase levels and analysis of effects on reactive oxygen species in tissue // Plant Physiol. 2005. Vol. 139, No. 4. P. 1806–1820. DOI: 10.1104/pp.105.070763 |
| [49] |
Boyes DC, Zayed AM, Ascenzi R, et al. Growth stage-based phenotypic analysis of Arabidopsis: A model for high throughput functional genomics in plants. Plant Cell. 2001;13:1499–1510. DOI: 10.2307/3871382 |
| [50] |
Boyes D.C., Zayed A.M., Ascenzi R., et al. Growth stage-based phenotypic analysis of Arabidopsis: A model for high throughput functional genomics in plants // Plant Cell. 2001. Vol. 13. P. 1499–1510. DOI: 10.2307/3871382 |
| [51] |
Czechowski T, Stitt M, Altmann T, et al. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol. 2005;139(1):5–17. DOI: 10.1104/pp.105.063743 |
| [52] |
Czechowski T., Stitt M., Altmann T., et al. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis // Plant Physiol. 2005. Vol. 139, No. 1. P. 5–17. DOI: 10.1104/pp.105.063743 |
| [53] |
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–408. DOI: 10.1006/meth.2001.1262 |
| [54] |
Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method // Methods. 2001. Vol. 25, No. 4. P. 402–408. DOI: 10.1006/meth.2001.1262 |
| [55] |
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1–2):248–254. DOI: 10.1016/0003-2697(76)90527-3 |
| [56] |
Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding // Anal Biochem. 1976. Vol. 72, No. 1–2. P. 248–254. DOI: 10.1016/0003-2697(76)90527-3 |
| [57] |
Chaitanya KSK, Naithani SC. Role of superoxide, lipid peroxidation and superoxide dismutase in membrane perturbation during loss of viability in seeds of Shorea robusta Gaertn. f. New Phytol. 1994;126(4):623–627. DOI: 10.1111/j.1469-8137.1994.tb02957.x |
| [58] |
Chaitanya K.S.K., Naithani S.C. Role of superoxide, lipid peroxidation and superoxide dismutase in membrane perturbation during loss of viability in seeds of Shorea robusta Gaertn. f. // New Phytol. 1994. Vol. 126, No. 4. P. 623–627. DOI: 10.1111/j.1469-8137.1994.tb02957.x |
| [59] |
Foyer CH, Noctor G. Ascorbate and glutathione: the heart of the redox hub. Plant Physiol. 2011;155(1):2–18. DOI: 10.1104/pp.110.167569 |
| [60] |
Foyer C.H., Noctor G. Ascorbate and glutathione: the heart of the redox hub // Plant Physiol. 2011. Vol. 155, No. 1. P. 2–18. DOI: 10.1104/pp.110.167569 |
| [61] |
Landi M, Tattini M, Gould KS. Multiple functional roles of anthocyanins in plant-environment interactions. Environ Exp Bot. 2015;119:4–17. DOI: 10.1016/j.envexpbot.2015.05.012 |
| [62] |
Landi M., Tattini M., Gould K.S. Multiple functional roles of anthocyanins in plant-environment interactions // Environ Exp Bot. 2015. Vol. 119. P. 4–17. DOI: 10.1016/j.envexpbot.2015.05.012 |
| [63] |
Fiorani F, Umbach AL, Siedow JN. The alternative oxidase of plant mitochondria is involved in the acclimation of shoot growth at low temperature. A study of Arabidopsis AOX1a transgenic plants. Plant Physiol. 2005;139(4):1795–1805. DOI: 10.1104/pp.105.070789 |
| [64] |
Fiorani F., Umbach A.L., Siedow J.N. The alternative oxidase of plant mitochondria is involved in the acclimation of shoot growth at low temperature. A study of Arabidopsis AOX1a transgenic plants // Plant Physiol. 2005. Vol. 139, No. 4. P. 1795–1805. DOI: 10.1104/pp.105.070789 |
| [65] |
Yoshida K, Terashima I, Noguchi K. How and why does mitochondrial respiratory chain respond to light? Plant Signal Behav. 2011;6(6):864–866. DOI: 10.4161/psb.6.6.15224 |
| [66] |
Yoshida K., Terashima I., Noguchi K. How and why does mitochondrial respiratory chain respond to light? // Plant Signal Behav. 2011. Vol. 6, No. 6. P. 864–866. DOI: 10.4161/psb.6.6.15224 |
| [67] |
Li Y-T, Liu M-J, Li Y, et al. Photoprotection by mitochondrial alternative pathway is enhanced at heat but disabled at chilling. Plant J. 2020;104(2):403–415. DOI: 10.1111/tpj.14931 |
| [68] |
Li Y.-T., Liu M.-J., Li Y., et al. Photoprotection by mitochondrial alternative pathway is enhanced at heat but disabled at chilling // Plant J. 2020. Vol. 104, No. 2. P. 403–415. DOI: 10.1111/tpj.14931 |
| [69] |
Selinski J, Hartmann A, Deckers-Hebestreit G, et al. Alternative oxidase isoforms are differentially activated by tricarboxylic acid cycle intermediates. Plant Physiol. 2018;176(2):1423–1432. DOI: 10.1104/pp.17.01331 |
| [70] |
Selinski J., Hartmann A., Deckers-Hebestreit G., et al. Alternative oxidase isoforms are differentially activated by tricarboxylic acid cycle intermediates // Plant Physiol. 2018. Vol. 176, No. 2. P. 1423–1432. DOI: 10.1104/pp.17.01331 |
| [71] |
Schwarzländer M, Finkemeier I. Mitochondrial energy and redox signaling in plants. Antioxid Redox Signal. 2013;18(16):2122–2144. DOI: 10.1089/ars.2012.5104 |
| [72] |
Schwarzländer M., Finkemeier I. Mitochondrial energy and redox signaling in plants // Antioxid Redox Signal. 2013. Vol. 18, No. 16. P. 2122–2144. DOI: 10.1089/ars.2012.5104 |
| [73] |
Amirsadeghi S, Robson CA, McDonald AE, Vanlerberghe GC. Changes in plant mitochondrial electron transport alter cellular levels of reactive oxygen species and susceptibility to cell death signaling molecules. Plant Cell Physiol. 2006;47(11):1509–1519. DOI: 10.1093/pcp/pcl016 |
| [74] |
Amirsadeghi S., Robson C.A., McDonald A.E., Vanlerberghe G.C. Changes in plant mitochondrial electron transport alter cellular levels of reactive oxygen species and susceptibility to cell death signaling molecules // Plant Cell Physiol. 2006. Vol. 47, No. 11. P. 1509–1519. DOI: 10.1093/pcp/pcl016 |
| [75] |
Wang J, Vanlerberghe GC. A lack of mitochondrial alternative oxidase compromises capacity to recover from severe drought stress. Physiol Plant. 2013;149(4):461–473. DOI: 10.1111/ppl.12059 |
| [76] |
Wang J., Vanlerberghe G.C. A lack of mitochondrial alternative oxidase compromises capacity to recover from severe drought stress // Physiol Plant. 2013. Vol. 149, No. 4. P. 461–473. DOI: 10.1111/ppl.12059 |
| [77] |
El-Brolosy MA, Stainier DYR. Genetic compensation: A phenomenon in search of mechanisms. PLoS Genet. 2017;13:e1006780. DOI: 10.1371/journal.pgen.1006780 |
| [78] |
El-Brolosy M.A., Stainier D.Y.R. Genetic compensation: A phenomenon in search of mechanisms // PLoS Genet. 2017. Vol. 13. ID e1006780. DOI: 10.1371/journal.pgen.1006780 |
| [79] |
Ye J, Coulouris G, Zaretskaya I, et al. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinf. 2012;13:134. DOI: 10.1186/1471-2105-13-134 |
| [80] |
Ye J., Coulouris G., Zaretskaya I., et al. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction // BMC Bioinf. 2012. Vol. 13. ID 134. DOI: 10.1186/1471-2105-13-134 |
Eco-Vector
/
| 〈 |
|
〉 |