Thermophilic aerobic organoheterotrophic soil bacteria from anthropogenically changed territories of Saint Petersburg and Leningrad region
Anna S. Zhuravleva , Elena N. Volkova , Alexander S. Galushko
Ecological Genetics ›› 2021, Vol. 19 ›› Issue (1) : 47 -58.
Thermophilic aerobic organoheterotrophic soil bacteria from anthropogenically changed territories of Saint Petersburg and Leningrad region
Anthropogenically altered soils of Saint Petersburg and Luga (Leningrad Region) were investigated for the presence of thermophilic aerobic chemoorganoheterotrophic bacteria, potentially capable of decomposing hydrocarbons at elevated temperatures (60°C). 6 strains of pure spore-forming cultures of bacteria were isolated. Analysis of the nucleotide sequences of the 16S rRNA genes showed that they belong to the genera Geobacillus and Aeribacillus. For the first time, we obtained information on the presence of representatives of the genus Aeribacillus, which are typical inhabitants of hot springs and zones with geothermal activity, in the soils of the regions of Saint Petersburg and the Leningrad Region.
aerobes / thermophilic bacteria / acetate-decomposing bacteria / oil pollution / anthropogenic soil pollution
| [1] |
Panicker G, Aislabie J, Saul D, Bej AK. Cold tolerance of Pseudomonas sp. 30–3 isolated from oil-contaminated soil, Antarctica. Polar Biol. 2002;25:5–11. |
| [2] |
Panicker G., Aislabie J., Saul D., Bej A.K. Cold tolerance of Pseudomonas sp. 30–3 isolated from oil-contaminated soil, Antarctica // Polar Biol. 2002. Vol. 25. P. 5–11. |
| [3] |
Andreolli M, Albertarelli N, Lampis S, et al. Bioremediation of diesel contamination at an underground storage tank site: a spatial analysis of the microbial community. World J Microbiol Biotechnol. 2016;32:6. |
| [4] |
Andreolli M., Albertarelli N., Lampis S., et al. Bioremediation of diesel contamination at an underground storage tank site: a spatial analysis of the microbial community // World J Microbiol Biotechnol. 2016. Vol. 32. P. 6. |
| [5] |
Yan L, Sinkko H, Penttinen P, Lindström K. Characterization of successional changes in bacterial community composition during bioremediation of used motor oil-contaminated soil in a boreal climate. Science of the Total Environment. 2016;542:817–825. DOI: 10.1016/j.scitotenv.2015.10.144 |
| [6] |
Yan L., Sinkko H., Penttinen P., Lindström K. Characterization of successional changes in bacterial community composition during bioremediation of used motor oil-contaminated soil in a boreal climate // Science of the Total Environment. 2016. Vol. 542. P. 817–825. DOI: 10.1016/j.scitotenv.2015.10.144 |
| [7] |
Kim DD, O’Farrell C, Toth CRA., et al. Microbial community analyses of produced waters from high-temperature oil reservoirs reveal unexpected similarity between geographically distant oil reservoirs. Microb Biotechnol. 2018;11(4):788–796. DOI: 10.1111/1751-7915.13281 |
| [8] |
Kim D.D., O’Farrell C., Toth C.R.A., et al. Microbial community analyses of produced waters from high-temperature oil reservoirs reveal unexpected similarity between geographically distant oil reservoirs // Microb Biotechnol. 2018. Vol. 11, No. 4. P. 788–796. DOI: 10.1111/1751-7915.13281 |
| [9] |
Bonch-Osmolovskaja E.A. Termofil’nye mikroorganizmy: obshhij vzgljad. Trudy In-ta mikrobiologii im. S.N. Vinogradskogo. М.: MAKS Press, 2011. P. 5–14. (In Russ.) |
| [10] |
Бонч-Осмоловская Е.А. Термофильные микроорганизмы: общий взгляд // Труды Ин-та микробиологии им. С.Н. Виноградского. М.: МАКС Пресс, 2011. С. 5–14. |
| [11] |
Wiegel J. Anaerobic alkalithermophiles, a novel group of extremophiles. Extremophiles. 1998;2:257–267. |
| [12] |
Wiegel J. Anaerobic alkalithermophiles, a novel group of extremophiles // Extremophiles. 1998. Vol. 2. P. 257–267. |
| [13] |
Chamkha M, Mnif S, Sayadi S. 2008. Isolation of a thermophilic and halophilic tyrosol-degrading Geobacillus from a Tunisian hightemperature oil field. FEMS Microbiol Lett. 2008;283:23–29. DOI: 10.1111/j.1574-6968.2008.01136.x |
| [14] |
Chamkha M., Mnif S., Sayadi S. Isolation of a thermophilic and halophilic tyrosol-degrading Geobacillus from a Tunisian high temperature oil field // FEMS Microbiol Lett. 2008. Vol. 283. P. 23–29. DOI: 10.1111/j.1574-6968.2008.01136.x |
| [15] |
Saw JH, Mountain BW, Feng L, et al. Encapsulated in silica: genome, proteome and physiology of the thermophilic bacterium Anoxybacillus flavithermus WK1. Genome Biol. 2008;9: R161. DOI: 10.1186/gb-2008-9-11-r161 |
| [16] |
Saw J.H., Mountain B.W., Feng L., et al. Encapsulated in silica: genome, proteome and physiology of the thermophilic bacterium Anoxybacillus flavithermus WK1 // Genome Biol. 2008. Vol. 9. R161. DOI: 10.1186/gb-2008-9-11-r161 |
| [17] |
Adiguzel A, Ozkan H, Baris O, et al. Identification and characterization of thermophilic bacteria isolated from hot springs in Turkey. J Microbiol Methods. 2009;79(3):321–328. DOI: 10.1016/j.mimet.2009.09.026 |
| [18] |
Adiguzel A., Ozkan H., Baris O., et al. Identification and characterization of thermophilic bacteria isolated from hot springs in Turkey // J Microbiol Methods. 2009. Vol. 79, Is. 3. P. 321–328. DOI: 10.1016/j.mimet.2009.09.026 |
| [19] |
Miñana-Galbis D, Pinzón DL, Loren JG, Manresa A, Oliart-Ros RM. Reclassification of Geobacillus pallidus (Scholz et al. 1988) Banat et al. 2004 as Aeribacillus pallidus gen. nov., comb. nov. Int J Syst Evol Microbiol. 2010;60:1600–1604. |
| [20] |
Miñana-Galbis D., Pinzón D.L., Loren J.G., et al. Reclassification of Geobacillus pallidus (Scholz et al. 1988) Banat et al. 2004 as Aeribacillus pallidus gen. nov., comb. nov // Int J Syst Evol Microbiol, 2010. Vol. 60. P. 1600–1604. |
| [21] |
Pinzón-Martínez DL, Rodríguez-Gómez C, Miñana-Galbis D, et al. Thermophilic bacteria from Mexican thermal environments: isolation and potential applications. Environ Technol. 2010;31(8–9):957–966. DOI: 10.1080/09593331003758797 |
| [22] |
Pinzón-Martínez D.L., Rodríguez-Gómez C., Miñana-Galbis D., et al. Thermophilic bacteria from Mexican thermal environments: isolation and potential applications // Environ Technol. 2010. Vol. 31, no. 8–9. P. 957–966. DOI: 10.1080/09593331003758797 |
| [23] |
Yasawong M, Areekit S, Pakpitchareon A, et al. 2011. Characterization of thermophilic halotolerant Aeribacillus pallidus TD1 from Tao Dam Hot Spring, Thailand. Int J MolSci. 2011;12(8):5294–5303. DOI: 10.3390/ijms12085294 |
| [24] |
Yasawong M., Areekit S., Pakpitchareon A., et al. 2011. Characterization of thermophilic halotolerant Aeribacillus pallidus TD1 from Tao Dam Hot Spring, Thailand // Int J MolSci. 2011. Vol. 12, No. 8. P. 5294–5303. DOI: 10.3390/ijms12085294 |
| [25] |
Zheng C, He J, Wang Y, et al. Hydrocarbon degradation and bioemulsifier production by thermophilic Geobacillus pallidus strains. Bioresour Technol. 2011;102;(9155–9161). |
| [26] |
Zheng C., He J., Wang Y., et al. Hydrocarbon degradation and bioemulsifier production by thermophilic Geobacillus pallidus strains // Bioresour Technol. 2011. Vol. 102. P. 9155–9161. |
| [27] |
Inan K, Belduz AO, Canakci S. Anoxybacillus kaynarcensis sp. nov., a moderately thermophilic, xylanase producing bacterium. J Basic Microbiol. 2013;53:410–419. |
| [28] |
Inan K., Belduz A.O., Canakci S. Anoxybacillus kaynarcensis sp. nov., a moderately thermophilic, xylanase producing bacterium // J Basic Microbiol. 2013. Vol. 53. P. 410–419. |
| [29] |
Radchenkova N, Vassilev S, Panchev I, et al. Production and properties of two novel exopolysaccharides synthesized by a thermophilic bacterium Aeribacillus pallidus 418. Appl Biochem Biotechnol. 2013;171:31–43. DOI: 10.1007/s12010-013-0348-2 |
| [30] |
Radchenkova N., Vassilev S., Panchev I., et al. Production and properties of two novel exopolysaccharides synthesized by a thermophilic bacterium Aeribacillus pallidus 418 // Appl Biochem Biotechnol. 2013. Vol. 171. P. 31–43. DOI: 10.1007/s12010-013-0348-2 |
| [31] |
Cihan AC, Cokmus C, Koc M, Ozcan B. Anoxybacillus calidus sp. nov., a thermophilic bacterium isolated from soil near a thermal power plant. Int J Syst Evol Microbiol. 2014;64:211–219. |
| [32] |
Cihan A.C., Cokmus C., Koc M., Ozcan B. Anoxybacillus calidus sp. nov., a thermophilic bacterium isolated from soil near a thermal power plant // Int J Syst Evol Microbiol. 2014. Vol. 64. P. 211–219. |
| [33] |
Palanisamy N, Ramya J, Kumar S, et al. Diesel biodegradation capacities of indigenous bacterial species isolated from diesel contaminated soil. J Environ Heal Sci Eng. 2014;12:1–8. DOI: 10.1186/s40201-014-0142-2 |
| [34] |
Palanisamy N., Ramya J., Kumar S., et al. Diesel biodegradation capacities of indigenous bacterial species isolated from diesel contaminated soil // J Environ Heal Sci Eng. 2014. Vol. 12. P. 1–8. DOI: 10.1186/s40201-014-0142-2 |
| [35] |
Bryanskaya AV, Rozanov AS, Slynko NM, et al. Geobacillus icigianus sp. nov., a thermophilic bacterium isolated from a hot spring. Int J Syst Evol Microbiol. 2015;65:864–869. DOI: 10.1099/ijs.0.000029 |
| [36] |
Bryanskaya A.V., Rozanov A.S., Slynko N.M., et al. Geobacillus icigianus sp. nov., a thermophilic bacterium isolated from a hot spring // Int J Syst Evol Microbiol. 2015. Vol. 65. P. 864–869. DOI: 10.1099/ijs.0.000029. |
| [37] |
Delegan JA, Vetrova AA, Chernjavskaja MI, et al. Termotolerantnye aktinomicety kak agenty remediacii neftezagrjaznennyh gruntov i vod v uslovijah zharkogo aridnogo klimata. Izvestiya Tula State University. 2015(4):248–258. (In Russ.) |
| [38] |
Делеган Я.А., Ветрова А.А., Чернявская М.И., и др. Термотолерантные актиномицеты как агенты ремедиации нефтезагрязненных грунтов и вод в условиях жаркого аридного климата // Известия Тульского государственного университета. Естественные науки. 2015. Вып. 4. С. 248–258. |
| [39] |
Filippidou S., Jaussi M., Junier T., et al. Genome sequence of Aeribacillus pallidus strain GS3372, an endospore-forming bacterium isolated in a deep geothermal reservoir. Genome Announc. 2015;3(4); e00981–15. DOI: 10.1128/genomeA.00981-15 |
| [40] |
Filippidou S, Jaussi M, Junier T, et al. Genome sequence of Aeribacillus pallidus strain GS3372, an endospore-forming bacterium isolated in a deep geothermal reservoir // Genome Announc. 2015. Vol. 3, No. 4. P. e00981–15. DOI: 10.1128/genomeA.00981-15 |
| [41] |
Delegan JA. Termotolerantnye bakterii-destruktory uglevodorodov nefti [dissertation]. Pushchino: Pushchino State Institute of Natural Science, 2016. (In Russ.) Available from: https://dlib.rsl.ru/01008734496. |
| [42] |
Делеган Я.А. Термотолерантные бактерии-деструкторы углеводородов нефти: дис. … канд. биол. наук. Пущино: Пущинский государственный естественно-научный институт, 2016. Режим доступа: https://dlib.rsl.ru/01008734496. Дата обращения: 01.11.2016. |
| [43] |
Mesbaiah FZ, Eddouaouda K, Badis A, et al. Preliminary characterization of biosurfactant produced by a PAH-degrading Paenibacillus sp. under thermophilic conditions. Environ Sci Pollut Res. 2016;23:14221–14230. DOI: 10.1007/s11356-016-6526-3 |
| [44] |
Mesbaiah F.Z., Eddouaouda K., Badis A., et al. Preliminary characterization of biosurfactant produced by a PAH-degrading Paenibacillus sp. under thermophilic conditions // Environ Sci Pollut Res. 2016. Vol. 23. P. 14221–14230. DOI: 10.1007/s11356-016-6526-3 |
| [45] |
Poltaraus AB, Sokolova DS, Grouzdev DS, et al. Draft genome sequence of Aeribacillus pallidus strain 8m3, a thermophilic hydrocarbon-oxidizing bacterium isolated from the Dagang oil field (China). Genome Announc. 2016;4(3): e00500–16. DOI: 10.1128/genomeA.00500-16 |
| [46] |
Poltaraus A.B., Sokolova D.S., Grouzdev D.S., et al. Draft genome sequence of Aeribacillus pallidus strain 8m3, a thermophilic hydrocarbon-oxidizing bacterium isolated from the Dagang oil field (China) // Genome Announc. 2016. Vol. 4, No. 3. P. e00500–16. DOI: 10.1128/genomeA.00500-16 |
| [47] |
Poltaraus AB, Sokolova DS, Grouzdev DS, et al. Draft genome sequence of Geobacillus subterraneus strain K, a hydrocarbon-oxidizing thermophilic bacterium isolated from a petroleum reservoir in Kazakhstan. Genome Announc. 2016;4(4): e00782–16. DOI: 10.1128/genomeA.00782-16 |
| [48] |
Poltaraus A.B., Sokolova D.S., Grouzdev D.S., et al. Draft genome sequence of Geobacillus subterraneus strain K, a hydrocarbon-oxidizing thermophilic bacterium isolated from a petroleum reservoir in Kazakhstan // Genome Announc. 2016. Vol. 4, No. 4. P. e00782–16. DOI: 10.1128/genomeA.00782-16 |
| [49] |
Pugazhendi A, Wazin HA, Qari H, et al. Biodegradation of low and high molecular weight hydrocarbons in petroleum refinery wastewater by a thermophilic bacterial consortium. Environ Tech. 2016:2381–2391. DOI: 10.1080/09593330.2016.1262460 |
| [50] |
Pugazhendi A., Wazin H.A., Qari H., et al. Biodegradation of low and high molecular weight hydrocarbons in petroleum refinery wastewater by a thermophilic bacterial consortium // Environ Tech. 2016. P. 2381–2391. DOI: 10.1080/09593330.2016.1262460 |
| [51] |
Nazina TN, Shestakova NM, Semenova EM, et al. Diversity of metabolically active bacteria in water-flooded high-temperature heavy oil reservoir. Front Microbiol. 2017;8:707. DOI: 10.3389/fmicb.2017.00707 |
| [52] |
Nazina T.N., Shestakova N.M., Semenova E.M., et al. Diversity of metabolically active bacteria in water-flooded high-temperature heavy oil reservoir // Front Microbiol. 2017. Vol. 8. P. 707. DOI: 10.3389/fmicb.2017.00707 |
| [53] |
Khan IU, Habib N, Xiao M, et al. Anoxybacillus sediminis sp. nov., a novel moderately thermophilic bacterium isolated from a hot spring. Antonie Van Leeuwenhoek. 2018;111(12):2275–2282. DOI: 10.1007/s10482-018-1118-5 |
| [54] |
Khan I.U., Habib N., Xiao M., et al. Anoxybacillus sediminis sp. nov., a novel moderately thermophilic bacterium isolated from a hot spring // Antonie Van Leeuwenhoek. 2018. Vol. 111, No. 12. P. 2275–2282. DOI: 10.1007/s10482-018-1118-5 |
| [55] |
Panosyan H, Di Donato P, Poli A, Nicolaus B. Production and characterization of exopolysaccharides by Geobacillus thermodenitrificans ArzA-6 and Geobacillus toebii ArzA-8 strains isolated from an Armenian geothermal spring. Extremophiles. 2018;22(5): 725–737. DOI: 10.1007/s00792-018-1032-9 |
| [56] |
Panosyan H., Di Donato P., Poli A., Nicolaus B. Production and characterization of exopolysaccharides by Geobacillus thermodenitrificans ArzA-6 and Geobacillus toebii ArzA-8 strains isolated from an Armenian geothermal spring // Extremophiles. 2018. Vol. 22, No. 5. P. 725–737. DOI: 10.1007/s00792-018-1032-9 |
| [57] |
Radchenkova N, Vassilev S, Panchev I, et al. Production and properties of two novel exopolysaccharides synthesized by a thermophilic bacterium Aeribacillus pallidus 418. Appl Biochem Biotechnol. 2013;171:31–43. DOI: 10.1007/s12010-013-0348-2 |
| [58] |
Radchenkova N., Vassilev S., Panchev I., et al. Production and properties of two novel exopolysaccharides synthesized by a thermophilic bacterium Aeribacillus pallidus 418 // Appl Biochem Biotechnol. 2013. Vol. 171. P. 31–43. DOI: 10.1007/s12010-013-0348-2 |
| [59] |
Yadav P, Korpole S, Prasad GS, et al. Morphological, enzymatic screening, and phylogenetic analysis of thermophilic bacilli isolated from five hot springs of Myagdi, Nepal. J Appl Biol Biotechnol. 2018;6(3):1–8. DOI: 10.7324/JABB.2018.60301 |
| [60] |
Yadav P., Korpole S., Prasad G.S., et al. Morphological, enzymatic screening, and phylogenetic analysis of thermophilic bacilli isolated from five hot springs of Myagdi, Nepal // J Appl Biol Biotechnol. 2018. Vol. 6, No. 3. P. 1–8 DOI: 10.7324/JABB.2018.60301 |
| [61] |
Mantiri FR, Rumende RRH, Sudewi S. Identification of α-amylase gene by PCR and activity of thermostable α-amylase from thermophilic Anoxybacillus thermarum isolated from Remboken hot spring in Minahasa, Indonesia. IOP Conf. Ser.: Earth Environ. 2019;217:012045. DOI: 10.1088/1755-1315/217/1/012045 |
| [62] |
Mantiri F.R., Rumende R.R.H., Sudewi S. Identification of α-amylase gene by PCR and activity of thermostable α-amylase from thermophilic Anoxybacillus thermarum isolated from Remboken hot spring in Minahasa, Indonesia // IOP Conf. Ser.: Earth Environ. 2019. Sci. 217. 012045. DOI: 10.1088/1755-1315/217/1/012045 |
| [63] |
Mechri S, Bouacem K, ZaraîJaouadi N, et al. Identification of a novel protease from the thermophilic Anoxybacillus kamchatkensis M1V and its application as laundry detergent additive. Extremophiles. 2019;23:687–706. DOI: 10.1007/s00792-019-01123-6 |
| [64] |
Mechri S., Bouacem K., ZaraîJaouadi N. et al. Identification of a novel protease from the thermophilic Anoxybacillus kamchatkensis M1V and its application as laundry detergent additive // Extremophiles. 2019. Vol. 23. P. 687–706. DOI: 10.1007/s00792-019-01123-6 |
| [65] |
Elumalai P, Parthipan P, Narenkumar J et al. Role of thermophilic bacteria (Bacillus and Geobacillus) on crude oil degradation and biocorrosion in oil reservoir environment. 3 Biotech. 2019;9:79. DOI: 10.1007/s13205-019-1604-0 |
| [66] |
Elumalai P., Parthipan P., Narenkumar J., et al. Role of thermophilic bacteria (Bacillus and Geobacillus) on crude oil degradation and biocorrosion in oil reservoir environment // 3 Biotech. 2019. Vol. 9. P. 79. DOI: 10.1007/s13205-019-1604-0 |
| [67] |
Yamprayoonswat W, Sittihan S, Jumpathong W, Yasawonga M. Draft genome sequence of thermophilic halotolerant Aeribacillus pallidus TD1, isolated from Tao Dam hot spring, Thailand. Microbiol. 2019;8(17): e00204–19. DOI: 10.1128/MRA.00204-19 |
| [68] |
Yamprayoonswat W., Sittihan S., Jumpathong W., Yasawonga M. Draft genome sequence of thermophilic halotolerant Aeribacillus pallidus TD1, isolated from Tao Dam hot spring, Thailand // Microbiol. 2019. Vol. 8, No. 17. P. e00204–19. DOI: 10.1128/MRA.00204-19. |
| [69] |
Harirchi S, Etemadifar Z, Mahboubi A, et al. The efect of calcium/magnesium ratio on the biomass production of a novel thermoalkaliphilic Aeribacillus pallidus strain with highly heat-resistant spores. Curr Microbiol. 2020;77:2565–2574. DOI: 10.1007/s00284-020-02010-6 |
| [70] |
Harirchi S., Etemadifar Z., Mahboubi A., et al. The efect of calcium/magnesium ratio on the biomass production of a novel thermoalkaliphilic Aeribacillus pallidus strain with highly heat-resistant spores // Curr Microbiol. 2020. Vol. 77. P. 2565–2574. DOI: 10.1007/s00284-020-02010-6 |
| [71] |
Miyazaki K, Hase E, Tokito N. Complete genome sequence of Geobacillus sp. strain E55-1, isolated from mine geyser in Japan. Microbiol Resour Announc. 2020;9: e00339–20. DOI: 10.1128/MRA.00339-20 |
| [72] |
Miyazaki K., Hase E., Tokito N. Complete genome sequence of Geobacillus sp. strain E55–1, isolated from mine geyser in Japan // Microbiol Resour Announc. 2020. Vol. 9. P. e00339–20. DOI: 10.1128/MRA.00339-20 |
| [73] |
Puopolo R, Gallo G, Mormone A, et al. Identification of a new heavy-metal-resistant strain of Geobacillus stearothermophilus isolated from a hydrothermally active volcanic area in southern Italy. Int J Environ Res Public Health. 2020;17(8):2678. DOI: 10.3390/ijerph17082678 |
| [74] |
Puopolo R., Gallo G., Mormone A., et al. Identification of a new heavy-metal-resistant strain of Geobacillus stearothermophilus isolated from a hydrothermally active volcanic area in southern Italy // Int J Environ Res Public Health. 2020. Vol. 17, No. 8. P. 2678. DOI: 10.3390/ijerph17082678 |
| [75] |
Delegan JA, Vetrova AA, Akimov VN, et al. Thermotolerant oil-degrading bacteria isolated from soil and water of geographically distant regions. Applied biochemistry and microbiology. 2016;52(4):383–391. (In Russ.) DOI: 10.7868/S0555109916040024 |
| [76] |
Делеган Я.А., Ветрова А.А., Акимов В.Н., и др. Термотолерантные бактерии-нефтедеструкторы, выделенные из проб грунта и воды географически удаленных регионов // Прикладная биохимия и микробиология. 2016. Т. 52, № 4. С. 383–391. DOI: 10.7868/S0555109916040024 |
| [77] |
Volkova EN, Zdorovceva AG, Galushko AS. Poisk termofil’nyh nefterazrushajushhih pochvennyh bakterij na meste nesankcionirovannoj svalki na okraine g. Sankt-Peterburga. Proceedings of the National Scientific and Practical Conference dedicated to the memory of Doctor of Medical Sciences, Professor L.F. Zykin “Zykinskie chtenija”. Larionova OS, Sazonova IA, eds. Saratov: Saratovskij GAU, 2020. P. 41–46. (In Russ.) |
| [78] |
Волкова Е.Н., Здоровцева А.Г., Галушко А.С., и др. Поиск термофильных нефтеразрушающих почвенных бактерий на месте несанкционированной свалки на окраине г. Санкт-Петербурга // Материалы национальной научно-практической конференции, посвященной памяти д. м. н., профессора Л.Ф. Зыкина: «Зыкинские чтения» / под ред. О.С. Ларионовой, И.А. Сазоновой. Саратов: Саратовский ГАУ, 2020. C. 41–46. |
| [79] |
Portillo MC, Santana M, Gonzalez JM. Presence and potential role of thermophilic bacteria in temperate terrestrial environments. Naturwissenschaften. 2012;99:43–53. DOI: 10.1007/s00114-011-0867-z |
| [80] |
Portillo M.C., Santana M., Gonzalez J.M. Presence and potential role of thermophilic bacteria in temperate terrestrial environments // Naturwissenschaften. 2012. Vol. 99. P. 43–53. DOI: 10.1007/s00114-011-0867-z |
| [81] |
Dorzhiev SS, Bazarova EG, Rosenblum MI. Jekologicheskij karkas dlja optimizacii teplovogo rezhima pochvy na aridnyh territorijah. Proceedings of the Russian science conference “Jekologija: vchera, segodnja, zavtra”. 2019:155–160. (In Russ.) |
| [82] |
Доржиев С.С., Базарова Е.Г., Розенблюм М.И. Экологический каркас для оптимизации теплового режима почвы на аридных территориях // Материалы Всероссийской научно-практической конференции: Экология: вчера, сегодня, завтра. 2019. C. 155–160. |
| [83] |
Makhatkov I.D., Ermolov Y.V. The thermal regime of active layer of pit-covered terrain in northern taiga. Mezhdunarodnyj zhurnal prikladnyh i fundamental’nyh issledovanij. 2015(11–3):400–407. (In Russ.) |
| [84] |
Махатков И.Д. Ермолов Ю.В. Температурный режим деятельного слоя верхового болота северной тайги // Международный журнал прикладных и фундаментальных исследований. 2015. № 11, ч. 3. С. 400–407. |
| [85] |
Wong ML, An D, Caffrey SM, et al. Roles of thermophiles and fungi in bitumen degradation in mostly cold oil sands outcrops. Appl Environ Microbiol. 2015;81:6825–6838. |
| [86] |
Wong M.L., An D., Caffrey S.M., et al. Roles of thermophiles and fungi in bitumen degradation in mostly cold oil sands outcrops // Appl Environ Microbiol. 2015. Vol. 81. P. 6825–6838. |
| [87] |
Shkadova AK. Temperaturnyj rezhim pochv na territorii SSSR. Leningrad; 1979: P. 75–81. (In Russ.) |
| [88] |
Шкадова А.К. Температурный режим почв на территории СССР. Ленинград, 1979. С. 75–81. |
| [89] |
Marchik TP, Efremov AL. Pochvovedenie s osnovami rastenievodstva. Grodno: GrGU, 2006. 249 p. (In Russ.) |
| [90] |
Марчик Т.П., Ефремов А.Л. Почвоведение с основами растениеводства. Гродно: ГрГУ, 2006. 249 с. |
| [91] |
Skvortsova IV, Berezutski MA. Railway embankment flora in the southern Volga height. Povolzhskij jekologicheskij zhurnal. 2008(1):55–64. (In Russ.) |
| [92] |
Скворцов И.В., Березуцкий М.А. Флора железнодорожных насыпей Приволжской возвышенности // Поволжский экологический журнал. 2008. № 1. С. 55–64. |
| [93] |
Sudakova SS. Features of railway flora of Ulynovsk Region. I. Yakovlev Chuvash State Pedagogical University Bulletin. 2013;2(78):150–154. (In Russ.) |
| [94] |
Судакова С.С. Особенности флоры железнодорожных путей Ульяновской области // Вестник Чувашского государственного педагогического университета им. И.Я. Яковлева. 2013. Т. 2, № 78. С. 150–154. |
| [95] |
Voroshilova AA, Dianova EV. Okisljajushhie neft’ bakterii — pokazateli intensivnosti biologicheskogo okislenija nefti v prirodnyh uslovijah. Mikrobiologiya. 1952; ХХI(4):408–415. (In Russ.) |
| [96] |
Ворошилова А.А., Дианова Е.В. Окисляющие нефть бактерии — показатели интенсивности биологического окисления нефти в природных условиях // Микробиология, 1952. Т. 21, № 4. С. 408–415. |
| [97] |
Palatinszky M, Herbold C, Jehmlich N, et al. Cyanate as an energy source for nitrifiers. Nature. 2015;524:105–108. DOI: 10.1038/nature14856 |
| [98] |
Palatinszky M., Herbold C., Jehmlich N., et al. Cyanate as an energy source for nitrifiers // Nature. 2015. Vol. 524. P. 105–108. DOI: 10.1038/nature14856 |
| [99] |
Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol. 1993;10:512–526. |
| [100] |
Tamura K., Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees // Mol Biol Evol. 1993. Vol. 10. P. 512–526. |
| [101] |
Chevenet F, Brun C, Banuls AL, et al. TreeDyn: towards dynamic graphics and annotations for analyses of trees. BMC Bioinformatics. 2006;7:439. DOI: 10.1186/1471-2105-7-439 |
| [102] |
Chevenet F., Brun C., Banuls A.L., et al. TreeDyn: towards dynamic graphics and annotations for analyses of trees // BMC Bioinformatics. 2006. Vol. 7. P. 439. DOI: 10.1186/1471-2105-7-439 |
| [103] |
Dereeper A, Guignon V, Blanc G, et al. Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 2008;36(2):465–469. DOI: 10.1093/nar/gkn180 |
| [104] |
Dereeper A., Guignon V., Blanc G., et al. Phylogeny.fr: robust phylogenetic analysis for the non-specialist // Nucleic Acids Res. 2008. Vol. 36, No. 2. P. 465–469. DOI: 10.1093/nar/gkn180 |
| [105] |
Dereeper A, Audic S, Claverie JM, Blanc G. BLAST-EXPLORER helps you building datasets for phylogenetic analysis. BMC Evol Biol. 2010;10:8. DOI: 10.1186/1471-2148-10-8 |
| [106] |
Dereeper A., Audic S., Claverie J.M., Blanc G. BLAST-EXPLORER helps you building datasets for phylogenetic analysis // BMC Evol Biol. 2010. Vol. 10. P. 8. DOI: 10.1186/1471-2148-10-8 |
| [107] |
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;(5):1792–1797. DOI: 10.1093/nar/gkh340 |
| [108] |
Edgar R.C. MUSCLE: multiple sequence alignment with high accuracy and high throughput // Nucleic Acids Res. 2004. Vol. 32, No. 5. P. 1792–1797. DOI: 10.1093/nar/gkh340 |
| [109] |
Finore I, Gioiello A, Leone L, et al. Aeribacillus composti sp. nov., a thermophilic bacillus isolated from olive mill pomace compost. Int J Syst Evol Microbiol. 2017;67:4830–4835. DOI: 10.1099/ijsem.0.002391 |
| [110] |
Finore I., Gioiello A., Leone L., et al. Aeribacillus composti sp. nov., a thermophilic bacillus isolated from olive mill pomace compost // Int J Syst Evol Microbiol. 2017. Vol. 67. P. 4830–4835. DOI: 10.1099/ijsem.0.002391 |
| [111] |
Zheng C, Li Z, Su J, et al. Characterization and emulsifying property of a novel bioemulsifier by Aeribacillus pallidus YM-1. J Appl Microbiol. 2012;13(44–51). DOI: 10.1111/j.1365-2672.2012.05313.x |
| [112] |
Zheng C., Li Z., Su J., et al. Characterization and emulsifying property of a novel bioemulsifier by Aeribacillus pallidus YM-1 // J Appl Microbiol. 2012. Vol. 13. P. 44–51. DOI: 10.1111/j.1365-2672.2012.05313.x |
| [113] |
Mnif S, Sayadi S, Chamkha M. Biodegradative potential and characterization of a novel aromatic-degrading bacterium isolated from a geothermal oil field under saline and thermophilic conditions. Int Biodeterior Biodegradation. 2014;86(C):258–264. DOI: 10.1016/j.ibiod.2013.09.015 |
| [114] |
Mnif S., Sayadi S., Chamkha M. Biodegradative potential and characterization of a novel aromatic-degrading bacterium isolated from a geothermal oil field under saline and thermophilic conditions // Int Biodeterior Biodegradation. 2014. Vol. 86, part C. P. 258–264. DOI: 10.1016/j.ibiod.2013.09.015 |
| [115] |
Mehetre GT, Dastager SG, Dharne MS. Biodegradation of mixed polycyclic aromatic hydrocarbons by pure and mixed cultures of biosurfactant producing thermophilic and thermo-tolerant bacteria. Sci Total Environ. 2019;679:52–60. DOI: 10.1016/j.scitotenv.2019.04.376 |
| [116] |
Mehetre G.T., Dastager S.G., Dharne M.S. Biodegradation of mixed polycyclic aromatic hydrocarbons by pure and mixed cultures of biosurfactant producing thermophilic and thermo-tolerant bacteria // Sci Total Environ. 2019. Vol. 679. P. 52–60. DOI: 10.1016/j.scitotenv.2019.04.376 |
| [117] |
Tao W, Lin J, Wang W, et al. Biodegradation of aliphatic and polycyclic aromatic hydrocarbons by the thermophilic bioemulsifier-producing Aeribacillus pallidus strain SL-1. Ecotoxicol Environ Saf. 2020;189:1–9. DOI: 10.1016/j.ecoenv.2019.109994 |
| [118] |
Tao W., Lin J., Wang W., et al. Biodegradation of aliphatic and polycyclic aromatic hydrocarbons by the thermophilic bioemulsifier-producing Aeribacillus pallidus strain SL-1 // Ecotoxicol Environ Saf. 2020. Vol. 189. P. 1–9. DOI: 10.1016/j.ecoenv.2019.109994 |
| [119] |
Wang L, Tang Y, Wang S, et al. Isolation and characterization of a novel thermophilic Bacillus strain degrading long-chain n-alkanes. Extremophiles. 2006;10(4):347–356. DOI: 10.1007/s00792-006-0505-4 |
| [120] |
Wang L., Tang Y., Wang S., et al. Isolation and characterization of a novel thermophilic Bacillus strain degrading long-chain n-alkanes // Extremophiles. 2006. Vol. 10, No. 4. P. 347–356. DOI: 10.1007/s00792-006-0505-4 |
| [121] |
Mechri S, Berrouina MBE, Benmrad M O, et al. Characterization of a novel protease from Aeribacillus pallidus VP3 with potential biotechnological interest. Int J Biol Macromol. 2017;94(A):221–232. DOI: 10.1016/j.ijbiomac.2016.09.112 |
| [122] |
Mechri S., Berrouina M.B.E., Benmrad M.O., et al. Characterization of a novel protease from Aeribacillus pallidus VP3 with potential biotechnological interest // Int J Biol Macromol. 2017. Vol. 94, part A. P. 221–232. DOI: 10.1016/j.ijbiomac.2016.09.112 |
| [123] |
Nazina TN, Lebedeva EV, Poltaraus AB, et al. Geobacillus gargensis sp. nov., a novel thermophile from a hot spring, and the reclassification of Bacillus vulcani as Geobacillus vulcani comb. nov. Int J Syst Evol Microbiol. 2004;(6):2019–2024. DOI: 10.1099/ijs.0.02932-0 |
| [124] |
Nazina T.N., Lebedeva E.V., Poltaraus A.B., et al. Geobacillus gargensis sp. nov., a novel thermophile from a hot spring, and the reclassification of Bacillus vulcani as Geobacillus vulcani comb. nov // Int J Syst Evol Microbiol. 2004. Vol. 54, No. 6. P. 2019–2024. DOI: 10.1099/ijs.0.02932-0 |
| [125] |
Rozanov AS, Logacheva MD, Peltek SE. Draft genome sequences of Geobacillus stearothermophilus strains 22 and 53, isolated from the Garga hot spring in the Barguzin river valley of the Russian Federation. Genome Announc. 2014;2(6): e01205–14. DOI: 10.1128/genomeA.01205-14 |
| [126] |
Rozanov A.S., Logacheva M.D., Peltek S.E. Draft genome sequences of Geobacillus stearothermophilus strains 22 and 53, isolated from the Garga hot spring in the Barguzin river valley of the Russian Federation // Genome Announc. 2014. Vol. 2, No. 6. P. e01205–14. DOI: 10.1128/genomeA.01205-14 |
| [127] |
Junicyna OA, Kisil’ OJ, Rudakova VA. Termofil’nye bakterii, vydelennye iz othodov lesopilenija, — producenty ksilanoliticheskih i amiloliticheskih fermentov. Proceedings of the Russian science conference “Tehnologii i oborudovanie himicheskoj, biotehnologicheskoj i pishhevoj promyshlennosti”; May 22–24 2019. Bijsk. P. 433–437. (In Russ.) |
| [128] |
Юницына О.А., Кисиль О.Я., Рудакова В.А. Термофильные бактерии, выделенные из отходов лесопиления, — продуценты ксиланолитических и амилолитических ферментов // Материалы конференции «Технологии и оборудование химической, биотехнологической и пищевой промышленности»; 22–24 мая 2019 г. Бийск. С. 433–437. |
| [129] |
Ahtemova GA. Izmenenie struktury mikrobnogo kompleksa pochvy pri ispol’zovanii produktov pererabotki stokov svinootkormochnyh predprijatij v kachestve udobrenija [dissertation]. Saint Petersburg: VNI ISM, 1998. 22 p. (In Russ.) Available from: https://dlib.rsl.ru/01000796688. |
| [130] |
Ахтемова Г.А. Изменение структуры микробного комплекса почвы при использовании продуктов переработки стоков свинооткормочных предприятий в качестве удобрения: автореф. дис. … канд. биол. наук. Санкт-Петербург: ВНИ ИСМ, 1998. 22 с. Режим доступа: https://dlib.rsl.ru/01000796688. Дата обращения: 05.05.2008. |
/
| 〈 |
|
〉 |