Creation of an inducible vector system based on the rhizobia nodA gene promoter

Olga V. Chubukova , Zilya R. Vershinina , Rustam T. Matnyazov , Andrey K. Baymiev , Aleksey K. Baymiev

Ecological Genetics ›› 2021, Vol. 19 ›› Issue (1) : 13 -21.

PDF (462KB)
Ecological Genetics ›› 2021, Vol. 19 ›› Issue (1) : 13 -21. DOI: 10.17816/ecogen48646
Genetic basis of ecosystems evolution
research-article

Creation of an inducible vector system based on the rhizobia nodA gene promoter

Author information +
History +
PDF (462KB)

Abstract

BACKGROUND: The possibility of changing the properties of rhizobial bacteria by giving them the ability to regulate the expression of additionally introduced genes into them is an urgent task both for fundamental science and for applied agrobiology, since this will make it possible to obtain microsymbionts with desired properties. An expression construct using the rhizobia regulatory system was created in this work. The rhizobia nodD gene encodes a regulatory protein that, in the presence of plant inducers, flavonoids, activates the transcription of nod-genes involved in the early stages of the formation of legume-rhizobium symbiosis.

MATERIALS AND METHODS: A vector construct containing the nodD gene from Rhizobium leguminosarum bv. trifoli under the regulation of its own promoter and the gfp gene under the regulation of the nodA gene promoter from the same rhizobia was obtained. Neorhizobium galegae CIAM 0702 were transformed with the vector construct.

RESULTS: It has been shown that in recombinant strains synthetic flavonoids are capable of inducing expression of gfp gene to varying degrees.

CONCLUSION: In the future, the results can be used to obtain rhizosphere microorganisms with a controlled synthesis of growth-stimulating and protective substances.

Keywords

nodule bacteria / nod genes / flavonoid

Cite this article

Download citation ▾
Olga V. Chubukova, Zilya R. Vershinina, Rustam T. Matnyazov, Andrey K. Baymiev, Aleksey K. Baymiev. Creation of an inducible vector system based on the rhizobia nodA gene promoter. Ecological Genetics, 2021, 19(1): 13-21 DOI:10.17816/ecogen48646

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gopalakrishnan S, Sathya A, Vijayabharathi R, Varshney RK, et al. Plant growth promoting rhizobia: challenges and opportunities. 3 Biotech. 2015;5(4):355–377. DOI: 10.1007/s13205-014-0241-x

[2]

Gopalakrishnan S., Sathya A., Vijayabharathi R., Varshney R.K., et al. Plant growth promoting rhizobia: challenges and opportunities // 3 Biotech. 2015. Vol. 5, No. 4. P. 355–377. DOI: 10.1007/s13205-014-0241-x

[3]

Bajmiev AnH, Gumenko RS, Vladimirova AA. et al. Artificial activation of nif gene expression in nodule bacteria ex planta. Ecological genetics. 2019;17(2):35–42. (In Russ.) DOI: 10.17816/ecogen17235-42.

[4]

Баймиев А.Х., Гуменко Р.С., Владимирова А.А., и др. Искусственная активация экспрессии nif-генов у клубеньковых бактерий ex planta // Экологическая генетика. 2019. Т. 17, № 2. С. 35–42.

[5]

Vershinina ZR, Khakimova LR, Lavina AM, et al. Effect of constitutive expression of the rapA1 gene on formation of bacterial biofilms and growth-stimulating activity of rhizobia. Microbiology. 2019;88(1):54–62. (In Russ.) DOI: 10.1134/s0026365619010105

[6]

Вершинина З.Р., Хакимова Л.Р., Лавина А.М., и др. Влияние конститутивной экспрессии гена rapA1 на образование бактериальных биопленок и ростостимулирующую активность ризобий // Микробиология. 2019. Т. 88, № 1. С. 62–71. DOI: 10.1134/s0026365619010105

[7]

Clua J, Roda C, Zaneti ME, Blanco FA. Compatibility between legumes and rhizobia for the establishment of a successful nitrogen fixing symbiosis. Genes (Basel). 2018;9(3):125. DOI: 10.3390/genes9030125

[8]

Clua J., Roda C., Zaneti M.E., Blanco F.A. Compatibility between legumes and rhizobia for the establishment of a successful nitrogen fixing symbiosis // Genes (Basel). 2018. Vol. 9, No. 3. P. 125. DOI: 10.3390/genes9030125

[9]

Andrews M, Andrews ME. Specificity in Legume-Rhizobia Symbioses. Int J Mol Sci. 2017;18(4):705. DOI: 10.3390/ijms18040705

[10]

Andrews M., Andrews M.E. Specificity in Legume-Rhizobia Symbioses // Int J Mol Sci. 2017. Vol. 18, No. 4. P. 705. DOI: 10.3390/ijms18040705

[11]

Lindström K, Mousavi SA. Effectiveness of nitrogen fixation in rhizobia. Microb Biotechnol. 2020;13(5):1314–1335. DOI: 10.1111/1751-7915.13517

[12]

Lindström K., Mousavi S.A. Effectiveness of nitrogen fixation in rhizobia // Microb Biotechnol. 2020. Vol. 13, No. 5. P. 1314–1335. DOI: 10.1111/1751-7915.13517

[13]

Liu C-W, Murray JD. The Role of Flavonoids in Nodulation Host-Range Specificity: An Update. Plants-Basel. 2016;5(3):33. DOI: 10.3390/plants5030033

[14]

Liu C.-W., Murray J.D. The Role of Flavonoids in Nodulation Host-Range Specificity: An Update // Plants-Basel. 2016. Vol. 5, No. 3. P. 33. DOI: 10.3390/plants5030033

[15]

Fauvart M, Michiels J. Rhizobial secreted proteins as determinants of host specificity in the rhizobium-legume symbiosis. FEMS Microbiol Lett. 2008;285(1):1–9. DOI: 10.1111/j.1574-6968.2008.01254.x

[16]

Fauvart M., Michiels J. Rhizobial secreted proteins as determinants of host specificity in the rhizobium-legume symbiosis // FEMS Microbiol Lett. 2008. Vol. 285, No. 1. P. 1–9. DOI: 10.1111/j.1574-6968.2008.01254.x

[17]

Jiménez-Guerrero I, Acosta-Jurado S, Del Cerro P, et al. Transcriptomic Studies of the Effect of nod Gene-Inducing Molecules in Rhizobia: Different Weapons, One Purpose. Genes (Basel). 2017;9(1):1. DOI: 10.3390/genes9010001

[18]

Jiménez-Guerrero I., Acosta-Jurado S., Del Cerro P., et al. Transcriptomic Studies of the Effect of nod Gene-Inducing Molecules in Rhizobia: Different Weapons, One Purpose // Genes (Basel). 2018. Vol. 9, No. 1. P. 1. DOI: 10.3390/genes9010001

[19]

Hu H, Liu S, Yang Y, et al. In Rhizobium leguminosarum, NodD represses its own transcription by competing with RNA polymerase for binding sites. Nucleic Acids Res. 2000;28(14):2784–2793. DOI: 10.1093/nar/28.14.2784

[20]

Hu H., Liu S., Yang Y., et al. In Rhizobium leguminosarum, NodD represses its own transcription by competing with RNA polymerase for binding sites // Nucleic Acids Res. 2000. Vol. 28, No. 14. P. 2784–2793. DOI: 10.1093/nar/28.14.2784

[21]

Rossen L, Shearman CA, Johnston AWB, Downiel JA. The nodD gene of Rhizobium leguminosarum is autoregulatory and in the presence of plant exudate induces the nodA, B, C genes. EMBO J. 1985;4(13A):3369–3373. DOI: 10.1002/j.1460-2075.1985.tb04092.x

[22]

Rossen L., Shearman C.A., Johnston A.W.B., Downiel J.A. The nodD gene of Rhizobium leguminosarum is autoregulatory and in the presence of plant exudate induces the nodA, B, C genes // EMBO J. 1985. Vol. 4, No. 13A. P. 3369–3373. DOI: 10.1002/j.1460-2075.1985.tb04092.x

[23]

Spaink HP, Okker RJ, Wijffelman CA, et al. Promoters in the nodulation region of the Rhizobium leguminosarum Sym plasmid pRL1JI. Plant Mol Biol. 1987;9(1):27–39. DOI: 10.1007/BF00017984

[24]

Spaink H.P., Okker R.J., Wijffelman C.A., et al. Promoters in the nodulation region of the Rhizobium leguminosarum Sym plasmid pRL1JI // Plant Mol Biol. 1987. Vol. 9, No. 1. P. 27–39. DOI: 10.1007/BF00017984

[25]

Begum AA, Leibovitch S, Migner P, Zhang F. Specific flavonoids induced nod gene expression and pre-activated nod genes of Rhizobium leguminosarum increased pea (Pisum sativum L.) and lentil (Lens culinaris L.) nodulation in controlled growth chamber environments. J Exp Bot. 2001;52(360):1537–1543. DOI: 10.1093/jexbot/52.360.1537

[26]

Begum A.A., Leibovitch S., Migner P., Zhang F. Specific flavonoids induced nod gene expression and pre-activated nod genes of Rhizobium leguminosarum increased pea (Pisum sativum L.) and lentil (Lens culinaris L.) nodulation in controlled growth chamber environments // J Exp Bot. 2001. Vol. 52, No. 360. P. 1537–1543. DOI: 10.1093/jexbot/52.360.1537

[27]

Maj D, Wielbo J, Marek-Kozaczuk M, Skorupska A. Response to flavonoids as a factor influencing competitiveness and symbiotic activity of Rhizobium leguminosarum. Microbiol Res. 2010;165(1): 50–60. DOI: 10.1016/j.micres.2008.06.002

[28]

Maj D., Wielbo J., Marek-Kozaczuk M., Skorupska A. Response to flavonoids as a factor influencing competitiveness and symbiotic activity of Rhizobium leguminosarum // Microbiol Res. 2010. Vol. 165, No. 1. P. 50–60. DOI: 10.1016/j.micres.2008.06.002

[29]

Spaink HP, Wijffelman CA, Pees E, et al. Rhizobium nodulation gene nodD as a determinant of host specificity. Nature. 1987;328:337–340. DOI: 10.1038/328337a0

[30]

Spaink H.P., Wijffelman C.A., Pees E., et al. Rhizobium nodulation gene nodD as a determinant of host specificity // Nature. 1987. Vol. 328. P. 337–340. DOI: 10.1038/328337a0

[31]

Suominen L, Luukkainen R, Roos C, Lindström K. Activation of the nodA promoter by the nodD genes of Rhizobium galegae induced by synthetic flavonoids or Galega orientalis root exudate. FEMS Microbiol Lett. 2003;219(2):225–232. DOI: 10.1016/s0378-1097(02)01206-5

[32]

Suominen L., Luukkainen R., Roos C., Lindström K. Activation of the nodA promoter by the nodD genes of Rhizobium galegae induced by synthetic flavonoids or Galega orientalis root exudate // FEMS Microbiol Lett. 2003. Vol. 219, No. 2. P. 225–232. DOI: 10.1016/s0378-1097(02)01206-5

[33]

Hugria M, Jonston AWB, Phillips DA. Effects of flavonoids release naturally from bean (Phaseolus vulgaris) on nodD-regulated gene transcription in Rhizobium leguminosarum bv. phaseoli. Mol Plant Microbe Interact. 1992;5(3):199–203. DOI: 10.1094/mpmi-5-199

[34]

Hungria M., Johnston A.W., Phillips D.A. Effects of flavonoids release naturally from bean (Phaseolus vulgaris) on nodD-regulated gene transcription in Rhizobium leguminosarum bv. Phaseoli // Mol Plant Microbe Interact. 1992. Vol. 5, No. 3. P. 199–203. DOI: 10.1094/mpmi-5-199

[35]

Dakora FD, Joseph CM, Phillips DA. Alfalfa (Medicago sativa L.) root exudates contain isoflavonoids in the presence of Rhizobium meliloti. Plant Physiol. 1993;101(3):819–824. DOI: 10.1104/pp.101. 3.819

[36]

Dakora F.D., Joseph C.M., Phillips D.A. Alfalfa (Medicago sativa L.) root exudates contain isoflavonoids in the presence of Rhizobium meliloti // Plant Physiol. 1993. Vol. 101, No. 3. P. 819–824. DOI: 10.1104/pp.101.3.819.

[37]

Janczarek M, Urbanik-Sypniewska T, Skorupska А. Effect of authentic flavonoids and the exudate of clover roots on growth rate and inducing ability of nod genes of Rhizobium leguminosarum bv. trifolii. Microbiol Res. 1997;152(1):93–98. DOI: 10.1016/s0944-5013(97)80028-6

[38]

Janczarek M., Urbanik-Sypniewska T., Skorupska А. Effect of authentic flavonoids and the exudate of clover roots on growth rate and inducing ability of nod genes of Rhizobium leguminosarum bv. trifolii // Microbiol Res. 1997. Vol. 152, No. 1. P. 93–98. DOI: 10.1016/s0944-5013(97)80028-6

[39]

Feng J, Li Q, Hu HL, et al. Inactivation of the nod box distal half-site allows tetrameric NodD to activate nodA transcription in an inducer-independent manner. Nucleic Acids Res. 2003;31(12): 3143–3156. DOI: 10.1093/nar/gkg411

[40]

Feng J., Li Q., Hu H.L., et al. Inactivation of the nod box distal half-site allows tetrameric NodD to activate nodA transcription in an inducer-independent manner // Nucleic Acids Res. 2003. Vol. 31, No. 12. P. 3143–3156. DOI: 10.1093/nar/gkg411

[41]

Stacey G. Bradyrhizobium japonicum nodulation genetics. FEMS Microbiol Lett. 1995;127(1-2):1–9. DOI: 10.1111/j.1574-6968.1995.tb07441.x

[42]

Stacey G. Bradyrhizobium japonicum nodulation genetics. // FEMS Microbiol Lett. 1995. Vol. 127, No. 1–2. P. 1–9. DOI: 10.1111/j.1574-6968.1995.tb07441.x

[43]

Suominen L, Roos C, Lortet G, et al. Identification and structure of the Rhizobium galegae common nodulation genes: evidence for horizontal gene transfer. Mol Biol Evol. 2001;18(6):907–916. DOI: 10.1093/oxfordjournals.molbev.a003891

[44]

Suominen L., Roos C., Lortet G., et al. Identification and structure of the Rhizobium galegae common nodulation genes: evidence for horizontal gene transfer // Mol Biol Evol. 2001. Vol. 18, No. 6. P. 907–916. DOI: 10.1093/oxfordjournals.molbev.a003891

[45]

Lin JJ. Electrotransformation of Agrobacterium. Methods Mol Biol. 1995;47:171–178. DOI: 10.1385/0-89603-310-4:171.

[46]

Lin J.J. Electrotransformation of Agrobacterium // Methods Mol Biol. 1995. Vol. 47. P. 171–178. DOI: 10.1385/0-89603-310-4:171.

[47]

Mongiardini EJ, Ausmees N, Perez-Gimenez J, et al. The Rhizobial adhesion protein RapA1 is involved in adsorption of Rhizobia to plant roots but not in nodulation. FEMS Microbiol Ecol. 2008;65(2):279–288. DOI: 10.1111/j.1574-6941.2008.00467.x

[48]

Mongiardini E.J., Ausmees N., Perez-Gimenez J., et al. The Rhizobial adhesion protein RapA1 is involved in adsorption of Rhizobia to plant roots but not in nodulation // FEMS Microbiol Ecol. 2008. Vol. 65, No. 2. P. 279–288. DOI: 10.1111/j.1574-6941.2008.00467.x

[49]

Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA. 1979;76(9): 4350–4354. DOI: 10.1073/pnas.76.9.4350

[50]

Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications // Proc Natl Acad Sci USA. 1979. Vol. 76, No. 9. P. 4350–4354. DOI: 10.1073/pnas.76.9.4350

[51]

Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22(22):4673–4680. DOI: 10.1093/nar/22.22.4673.

[52]

Thompson J.D., Higgins D.G., Gibson T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice // Nucleic Acids Res. 1994. Vol. 22, No. 22. P. 4673–4680. DOI: 10.1093/nar/22.22.4673.

[53]

Osterman J, Chizhevskaja EP, Andronov EE, et al. Galega orientalis is more diverse than Galega officinalis in Caucasus – whole-genome AFLP analysis and phylogenetics of symbiosis-related genes. Mol Ecol. 2011;20(22):4808–4821. DOI: 10.1111/j.1365-294x.2011.05291.x.

[54]

Osterman J., Chizhevskaja E.P., Andronov E.E., et al. Galega orientalis is more diverse than Galega officinalis in Caucasus – whole-genome AFLP analysis and phylogenetics of symbiosis-related genes // Mol Ecol. 2011. Vol. 20, No. 22. P. 4808–4821. DOI: 10.1111/j.1365-294x.2011.05291.x.

[55]

Machado D, Pueppke SG, Vinardell JM, et al. Expression of nodD1 and nodD2 in Sinorhizobium fredii, a Nitrogen-Fixing Symbiont of Soybean and Other Legumes. MPMI. 1998;11(5):375–382. DOI: 10.1094/mpmi.1998.11.5.375.

[56]

Machado D., Pueppke S.G., Vinardell J.M., et al. Expression of nodD1 and nodD2 in Sinorhizobium fredii, a Nitrogen-Fixing Symbiont of Soybean and Other Legumes // Mol Plant Microbe Interact. 1998. Vol. 11, No. 5. P. 375–382. DOI: 10.1094/mpmi.1998.11.5.375

Funding

Госзадание Института биохимии и генетики УФИЦ РАНInstitute of Biochemistry and Genetics UFRC RAS(АААА-А16-116020350028-4)

РФФИRFFI(18-34-20004 мол_а_вед.)

RIGHTS & PERMISSIONS

Chubukova O.V., Vershinina Z.R., Matnyazov R.T., Baymiev A.K., Baymiev A.К.

AI Summary AI Mindmap
PDF (462KB)

58

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/