Genetic structure of the water frog (Pelophylax esculentus complex) populations in the south of the Central Russian Upland
Anatoliy S. Barkhatov , Eduard A. Snegin , Sergeu R. Yusupov
Ecological Genetics ›› 2021, Vol. 19 ›› Issue (2) : 107 -119.
Genetic structure of the water frog (Pelophylax esculentus complex) populations in the south of the Central Russian Upland
BACKGROUND: The water frog (Pelophylax esculentus complex) is hybrid in composition. In view of the fact that a large number of data on the species composition of the water frog and very scarce material on the genetic structure of populations are available in the literature, we aimed to analyze the genetic structure of populations of the water frog in the southern part of the Middle Russian upland, which was one of the refugia for many species during the glacial epoch and the center of dispersion in the postglacial time, based on DNA microsatellite markers.
MATERIALS AND METHODS: The study involved 36 local populations. DNA variability was analyzed by multiplex SSR-PCR. Seven loci (Res 14, Res 15, Res 17, Res 22, Rrid059A, Rrid082A, and Rrid171A) were used for amplification. Fragment analysis of PCR products was performed on an ABI PRISM 3500 automated capillary DNA sequencer (Applied Biosystems, USA).
RESULTS: The total number of alleles detected ranged from 13 to 41. The effective number of alleles (Ae) averaged 4.569 ± 0.219, the Chenon index (I) 1.567 ± 0.04, level of expected heterozygosity (Не) 0.68 ± 0.01. According to Wright’s model, the greatest contribution to genetic variability is made by the heterogeneity of individuals within populations, some of which are of a hybrid nature (Fis = 0.281 ± 0.069, Fit = 0.413 ± 0.053, Fst = 0.180 ± 0.017). The average indicator of the intensity of gene exchange between populations (Nm) was 1.212 ± 0.142 individuals per generation. The calculation of the effective abundance using the LD method indicates a high level of viability of the studied groups of the frogs.
CONCLUSION: The results demonstrated a high level of genetic diversity and viability of most of the studied groups, which, due to the intense gene exchange between them, can represent a single panmictic population. The data of the genetic analysis support the active adaptation of P. esculentus complex to living in an urbanized environment.
population structure / microsatellites / Pelophylax esculentus complex
| [1] |
Pillsbury FC, Miller JR. Habitat and landscape characteristics underlying anuran community structure along an urban-rural gradient. Ecol Appl. 2008;18(5):1107–1118. DOI: 10.1890/071899.1 |
| [2] |
Pillsbury F.C., Miller J.R. Habitat and landscape characteristics underlying anuran community structure along an urban-rural gradient // Ecol Appl. 2008. Vol. 18, No. 5. P. 1107–1118. DOI: 10.1890/07-1899.1 |
| [3] |
Shijan AA. Changes of population characteristics of lake frog (Rana ridibunda Pall.) At dwelling in ponds-evaporators of sugar factories. Scientific Journal of KubSAU. 2011;67(3):47–54. (In Russ.) |
| [4] |
Шиян А.А. Изменения популяционных характеристик озерной лягушки (Rana ridibunda Pall.) при обитании в прудах испарителях сахарных заводов // Научный журнал КубГАУ. 2011. Т. 67. № 3. С. 47–54. |
| [5] |
Ryzhov MK. Zemnovodnye i presmykajushhiesja respubliki Mordovija: rasprostranenie, raspredelenie, troficheskie svjazi i sostojanie ohrany. [dissertation] Tol’jatti; 2007. 19 p. (In Russ.) |
| [6] |
Рыжов М.К. Земноводные и пресмыкающиеся республики Мордовия: распространение, распределение, трофические связи и состояние охраны: Автореф. дис. … канд. биол. наук. Тольятти, 2007. 19 с. |
| [7] |
Kuzovenko AE. Jekologo-faunisticheskaja harakteristika amfibij urbanizirovannyh territorij Samarskoj oblasti. [dissertation abstract] Tol’jatti; 2018. 19 p. (In Russ.) |
| [8] |
Кузовенко А.Е. Эколого-фаунистическая характеристика амфибий урбанизированных территорий Самарской области: Автореф. дис. … канд. биол. наук. Тольятти, 2018. 19. с. |
| [9] |
Berger L. Morphology of the F1 Generation of various crosses within Rana esculenta-complex. Acta Zool Cracoviensia. 1968;13:301–324. |
| [10] |
Berger L. Morphology of the F1 Generation of various crosses within Rana esculenta-complex // Acta Zool Cracoviensia. 1968. Vol. 13. P. 301–324. |
| [11] |
Plötner J, Uzzell T, Beerli P, et al. Genetic divergence and evolution of reproductive isolation in eastern Mediterranean water frogs. In: Evolution in Action. Glaubrecht M, Schneider H, eds. Springer-Verlag Berlin Heidelberg; 2010. P. 373–403. DOI: 10.1007/978-3-642-12425-9_18 |
| [12] |
Plötner J., Uzzell T., Beerli P., et al. Genetic divergence and evolution of reproductive isolation in eastern Mediterranean water frogs. In: Evolution in Action. Glaubrecht M, Schneider H, eds. Springer-Verlag Berlin Heidelberg, 2010. P. 373–403. DOI: 10.1007/978-3-642-12425-9_18 |
| [13] |
Ermarov OA, Fayzulin AI, Zaks MM, et al. Distribution “western” and “eastern” forms of marsh frog Pelophylax ridibundus s. l. in the samara and Saratov Region (on data of analysis of mtDNA and nDNA). Izvestija Samarskogo Nauchnogo Centra RAN. 2014;16(5):409–412. (In Russ.) |
| [14] |
Ермаков О.А., Файзулин А.И., Закс М.М., и др. Распространение «западной» и «восточной» форм озерной лягушки Pelophylax ridibundus s. l. на территории Самарской и Саратовской областей (по данным анализа митохондриальной и ядерной ДНК) // Известия Самарского научного центра РАН. 2014. Т. 16. № 5. С. 409–412. |
| [15] |
Lada GA. Sredneevropejskie zelenye ljagushki (gibridogennyj kompleks Rana esculenta): vvedenie v problem. Flora i fauna Chernozem’ja. Tambov; 1995. P. 88–109. (In Russ.) |
| [16] |
Лада Г.А. Среднеевропейские зеленые лягушки (гибридогенный комплекс Rana esculenta): введение в проблему. Флора и фауна Черноземья. Тамбов, 1995. С. 88–109. |
| [17] |
Plötner J. Die westpaläarktischen Wasserfrösche: von Märtyrern der Wissenschaft zur biologischen Sensation. Bielefeld: Laurenti; 2005. 160 p. (In Germ.) |
| [18] |
Plötner J. Die westpaläarktischen Wasserfrösche: von Märtyrern der Wissenschaft zur biologischen Sensation. Bielefeld: Laurenti, 2005. 160 p. (In Germ.) |
| [19] |
Fayzulin AI, Zamaletdinov RI, Litvinchuk SN et al. Species composition and distributional peculiarities of green frogs (Pelophylax esculentus complex) in protected areas of the middle Volga Region (Russia). Nature Conservation Research. Zapovednaja Nauka. 2018;3(S1):1–16 (In Russ.) DOI: 10.24189/ncr.2018.056 |
| [20] |
Файзулин А.И., Замалетдинов Р.И., Литвинчук С.Н. и др. Видовой состав и особенности распространения зеленых лягушек (Pelophylax esculentus complex) на особо охраняемых природных территориях среднего Поволжья (Россия) // Nature Conservation Research. Заповедная Наука. 2018. Т. 3, № S1. С. 1–16. DOI: 10.24189/ncr.2018.056 |
| [21] |
Zamaletdinov RI, Pavlov AV, Zaks MM, et al. Molecular-genetic characteristic of Pelophylax esculentus complex from the eastern range of distribution (Volga Region, Tatarstan Republic). Tomsk State University Journal of Biology. 2015;(3):54–66. (In Russ.) DOI: 10.17223/19988591/31/5 |
| [22] |
Замалетдинов Р.И., Павлов А.В., Закс М.М., и др. Молекулярно-генетическая характеристика лягушек Pelophylax esculentus комплекса на восточной периферии ареала (Поволжье, Республика Татарстан) // Вестник Томского государственного университета. Биология. 2015. № 3(31). С. 54–66. DOI: 10.17223/19988591/31/5 |
| [23] |
Ermakov OA, Simonov EP, Ivanov AJu, et al. Genetic characteristics of marsh frog (Рelophylax ridibundus complex) from the Western Caucasus based on mitochondrial and nuclear DNA data. Transactions of Papanin Institute for Biology of Inland Waters Ras. 2016;(73):70–76 (In Russ.) DOI: 10.24411/0320-3557-2016-10006 |
| [24] |
Ермаков О.А., Симонов Е.П., Иванов А.Ю., и др. Генетические формы озерной лягушки (Pelophylax ridibundus complex) Западного Кавказа по данным анализа митохондриальной и ядерной ДНК // Труды Института биологии внутренних вод РАН. 2016. № 73. С. 70–76. DOI: 10.24411/0320-3557-2016-10006 |
| [25] |
Faizulin AI, Kukushkin OV, Ivanov Ayu, et al. Preliminary Data on the Molecular Genetic Structure of Pelophylax ridibundus (Amphibia: Anura: Ranidae) from the Southern Part of the Crimean Peninsula, Based on Mitochondrial and Nuclear DNA Analysis. Current Studies in Herpetology. 2017;17(1–2):56–65. (In Russ.) DOI: 10.18500/1814-6090-2017-17-1-2-56-65 |
| [26] |
Файзулин А.И., Кукушкин О.В., Иванов А.Ю., и др. Предварительные данные о молекулярно-генетической структуре Pelophylax ridibundus (Amphibia, Anura, Ranidae) южной части Крымского полуострова, по результатам анализа митохондриальной и ядерной ДНК // Современная герпетология. 2017. Т. 17. № 1/2. С. 56–65. DOI: 10.18500/1814-6090-2017-17-1-2-56-65 |
| [27] |
Ermakov O, Ivanov A, Titov S, et al. New multiplex PCR method for identification of East European green frog species and their hybrids. Russian Journal of Herpetology. 2019;26(6):367–370. DOI: 10.30906/1026-2296-2019-26-6-367-370 |
| [28] |
Ermakov O., Ivanov A., Titov S., et al. New multiplex PCR method for identification of East European green frog species and their hybrids // Russian Journal of Herpetology. 2019. Vol. 26, No. 6. P. 367–370. DOI: 10.30906/1026-2296-2019-26-6-367-370 |
| [29] |
Lipatov VA, Severinov DA, Kryukov AA, Saakyan AR. Ethical and legal aspects of in vivo experimental biomedical research of the conduct. I.P. Pavlov Russian Medical Biological Herald. 2019;27(2): 245–257. (In Russ.) DOI: 10.23888/PAVLOVJ2019272245-257 |
| [30] |
Липатов В.А., Северинов Д.А., Крюков А.А., Саакян А.Р. Этические и правовые аспекты проведения экспериментальных биомедицинских исследований in vivo. Часть II // Российский медико-биологический вестник им. академика И.П. Павлова. 2019. Т. 27. № 2. С. 245–257. DOI: 10.23888/PAVLOVJ2019272245-257 |
| [31] |
Zeisset I, Rowe G, Beebee TJ. Polymerase chain reaction primers for microsatellite loci in the north European water frogs Rana ridibunda and R. lessonae. Mol Ecol. 2000;9(8):1173–1174. DOI: 10.1046/j.1365-294x.2000.00954-2.x |
| [32] |
Zeisset I., Rowe G., Beebee T.J. Polymerase chain reaction primers for microsatellite loci in the north European water frogs Rana ridibunda and R. lessonae // Mol Ecol. 2000. Vol. 9, No. 8. P. 1173–1174. DOI: 10.1046/j.1365-294x.2000.00954-2.x |
| [33] |
Hotz H, Uzzell T, Guex G, et al. Microsatellites: A tool for evolutionary genetic studies of western Palearctic water frogs. Mitt Mus Nat kd Berl Zool. 2001;77(1):43–50. DOI: 10.1002/mmnz.20010770108 |
| [34] |
Hotz H., Uzzell T., Guex G., et al. Microsatellites: A tool for evolutionary genetic studies of western Palearctic water frogs // Mitt Mus Nat kd Berl Zool. 2001.Vol. 77, No. 1. P. 43–50. DOI: 10.1002/mmnz.20010770108 |
| [35] |
Mikulíček P, Pišút P. Genetic structure of the marsh frog (Pelophylax ridibundus) populations in urban landscape. Eur J Wildl Res. 2012;58:833–845. DOI: 10.1007/s10344-012-0631-5 |
| [36] |
Mikulíček P., Pišút P. Genetic structure of the marsh frog (Pelophylax ridibundus) populations in urban landscape // Eur J Wildl Res. 2012. Vol. 58. P. 833–845. DOI: 10.1007/s10344-012-0631-5 |
| [37] |
Peakall R, Smouse PE. GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research – an update. Mol Ecol Notes. 2006;6(1):288–295. DOI: 10.1111/j.1471-8286.2005.01155.x |
| [38] |
Peakall R., Smouse P.E. GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research – an update // Mol Ecol Notes. 2006. Vol. 6, No. 1. P. 288–295. DOI: 10.1111/j.1471-8286.2005.01155.x |
| [39] |
Sundqvist L, Keenan K, Zackrisson M, et al. Directional genetic differentiation and relative migration. Ecol Evol. 2016;6(11):3461–3475. DOI: 10.1002/ece3.2096 |
| [40] |
Sundqvist L., Keenan K., Zackrisson M., et al. Directional genetic differentiation and relative migration // Ecol Evol. 2016. Vol. 6, No. 11. P. 3461–3475. DOI: 10.1002/ece3.2096 |
| [41] |
Do C, Waples RS, Peel D, et al. NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Resour. 2014;14(1):209–214. DOI: 10.1111/1755-0998.12157 |
| [42] |
Do C., Waples R.S., Peel D., et al. NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data // Mol Ecol Resour. 2014. Vol. 14, No. 1. P. 209–214. DOI: 10.1111/1755-0998.12157 |
| [43] |
Zhivotovskij LA. Populjacionnaja biometrija. Moscow: Nauka; 1991. 271p. (In Russ.) |
| [44] |
Животовский Л.А. Популяционная биометрия. М.: Наука, 1991. 271 с. |
| [45] |
Hill WG. Estimation of effective population size from data on linkage disequilibrium. Genetics Research. 1981;38(3):209–216. DOI: 10.1017/S0016672300020553 |
| [46] |
Hill W.G. Estimation of effective population size from data on linkage disequilibrium. Genetics Research. 1981. Vol. 38, No. 3. P. 209–216. DOI: 10.1017/S0016672300020553 |
| [47] |
Snegin EA, Barkhatov AS. Morphogenetic structure of marsh frog populations of Pelophylax ridibundus (Amphibia, Anura) under conditions of urban environment. Theoretical and Applied Ecology. 2019;(1):47–53 (In Russ.) DOI: 10.25750/1995-4301-2019-1-047-053 |
| [48] |
Снегин Э.А., Бархатов А.С. Морфогенетическая структура популяций озерной лягушки Pelophylax ridibundus (Amphibia, Anura) в условиях городской среды // Теорeтическая и прикладная экология. 2019. № 1. С. 47–53. DOI: 10.25750/1995-4301-2019-1-047-053 |
| [49] |
Wright S. Random drift and shifting balance theory of evolution. Mathematical topics in population genetics. Berlin: Springer Verlag; 1970. 31 p. |
| [50] |
Wright S. Random drift and shifting balance theory of evolution. Mathematical topics in population genetics. Berlin: Springer Verlag, 1970. 31 p. |
| [51] |
Kuz’min SL. Zemnovodnye byvshego SSSR. Moscow: Tovarishhestvo nauchnyh izdanij KMK; 2012. 370 p. (In Russ.) |
| [52] |
Кузьмин С.Л. Земноводные бывшего СССР. М.: Товарищество научных изданий КМК, 2012. 370 с. |
| [53] |
Zeisset I, Beebee TJ. Population genetics of a successful invader: the marsh frog Rana ridibunda in Britain. Mol Ecol. 2003;12(3):639–646. DOI: 10.1046/j.1365-294x.2003.01775.x |
| [54] |
Zeisset I., Beebee T.J. Population genetics of a successful invader: the marsh frog Rana ridibunda in Britain // Mol Ecol. 2003. Vol. 12, No. 3. P. 639–646. DOI: 10.1046/j.1365-294x.2003.01775.x |
| [55] |
Hoffmann A, Plötner J, Pruvost NBM, et al. Genetic diversity and distribution patterns of diploid and polyploid hybrid water frog populations (Pelophylax esculentus complex) across Europe. Mol Ecol. 2015;24(17):4371–4391. DOI: 10.1111/mec.13325 |
| [56] |
Hoffmann A., Plötner, J., Pruvost N.B.M., et al. Genetic diversity and distribution patterns of diploid and polyploid hybrid water frog populations (Pelophylax esculentus complex) across Europe // Mol Ecol. 2015. Vol. 24, No. 17. P. 4371–4391. DOI: 10.1111/mec.13325 |
| [57] |
Mil’kov FN. Lesostep’ Russkoj ravniny. Moscow: Izd-vo AN SSSR; 1950. 292p. (In Russ.) |
| [58] |
Мильков Ф.Н. Лесостепь Русской равнины. М.: Изд-во АН СССР, 1950. 292 с. |
Barkhatov A.S., Snegin E.A., Yusupov S.R.
/
| 〈 |
|
〉 |