The expansin gene NtEXPA5 increases stress tolerance of tobacco hairy roots through an effect on the antioxidant system
Bulat R. Kuluev , Khalit G. Musin , Alfira B. Yakupova
Ecological Genetics ›› 2021, Vol. 19 ›› Issue (1) : 5 -12.
The expansin gene NtEXPA5 increases stress tolerance of tobacco hairy roots through an effect on the antioxidant system
BACKGROUND: Expansins are non-enzymatic proteins involved in the softening of cell walls, the mechanism of action of which is associated with the weakening and breaking of hydrogen bonds between xyloglucans and cellulose microfibrils and is aimed at ensuring cell expansion.
THE AIM of our work was to obtain hairy roots of tobacco with constitutive expression of the NtEXPA5 expansin gene, their morphometric analysis and assessment of the state of their antioxidant system in response to stress factors.
MATERIALS AND METHODS: The hairy roots were obtained from transgenic tobacco plants expressing the NtEXPA5 gene under the control of the 35S promoter.
RESULTS: Constitutive expression of the NtEXPA5 gene promoted an increase in the length and dry weight of hairy roots both under normal conditions and under the action of salinity, copper sulfate, cadmium acetate, and mannitol. Both under normal conditions and under the action of stress factors in transgenic hairy roots, an increase in the activity of superoxide dismutase and the total antioxidate activity was recorded.
CONCLUSION: Expansins exert their positive effect on the productivity and stress tolerance of plants not only through their influence on cell expansion, but also through the effect on the antioxidant system.
expansins / hairy roots / salinity / copper / cadmium / mannitol / superoxide dismutase / catalase / peroxidase / total antioxidant capacity
| [1] |
Cosgrove DJ. Plant expansins: diversity and interactions with plant cell walls. Curr Opin Plant Biol. 2015;25:162–172. DOI: 10.1016/j.pbi.2015.05.014 |
| [2] |
Cosgrove D.J. Plant expansins: diversity and interactions with plant cell walls // Current Opinion Plant Biology. 2015. Vol. 25. P. 162–172. DOI: 10.1016/j.pbi.2015.05.014 |
| [3] |
Lin C, Choi HS, Cho HT. Root hair-specific EXPANSIN A7 is required for root hair elongation in Arabidopsis. Mol Cell. 2011;31:393–397. DOI: 10.1007/s10059-011-0046-2 |
| [4] |
Lin C., Choi H.S., Cho H.T. Root hair-specific EXPANSIN A7 is required for root hair elongation in Arabidopsis // Mole Cell. 2011. Vol. 31. P. 393–397. DOI: 10.1007/s10059-011-0046-2 |
| [5] |
Kuluev BR, Berezhneva ZA, Mikhaylova EV, Chemeris AV. Growth of transgenic tobacco plants with changed expression of genes encoding expansins under the action of stress factors. Russian Journal of Plant Physiology. 2018;65(2):211–221. DOI: 10.1134/S1021443718020036 |
| [6] |
Kuluev B.R., Berezhneva Z.A., Mikhaylova E.V., et al. Growth of transgenic tobacco plants with changed expression of genes encoding expansins under the action of stress factors // Russian Journal of Plant Physiology. 2018. Vol. 65. No. 2. P. 211–221. DOI: 10.1134/S1021443718020036 |
| [7] |
Zhao MR, Li F, Fang Y, et al. Expansin-regulated cell elongation is involved in the drought tolerance in wheat. Protoplasma. 2011;248:313–323. DOI: 10.1007/s00709-010- 0172-2 |
| [8] |
Zhao M.R., Li F., Fang Y., et al. Expansin-regulated cell elongation is involved in the drought tolerance in wheat // Protoplasma. 2011. Vol. 248. P. 313–323. DOI: 10.1007/s00709-010-0172-2 |
| [9] |
Xu Q, Xu X, Shi Y, et al. Transgenic tobacco plants overexpressing a grass PpEXP1 gene exhibit enhanced tolerance to heat stress. PLOS One. 2014;8: e100792. DOI: 10.1371/journal.pone.0100792 |
| [10] |
Xu Q., Xu X., Shi Y., et al. Transgenic tobacco plants overexpressing a grass PpEXP1 gene exhibit enhanced tolerance to heat stress // PLOS One. 2014. Vol. 8. e100792. DOI: 10.1371/journal.pone.0100792 |
| [11] |
Kuluev BR, Avalbaev AM, Mikhaylova EV, et al. Expression profiles and hormonal regulation of tobacco expansin genes and their involvement in abiotic stress response. J Plant Physiol. 2016;206:1–12. DOI: 10.1016/j.jplph.2016.09.001 |
| [12] |
Kuluev B.R., Avalbaev A.M., Mikhaylova E.V., et al. Expression profiles and hormonal regulation of tobacco expansin genes and their involvement in abiotic stress response // Journal of Plant Physiology. 2016. Vol. 206. P. 1–12. DOI: 10.1016/j.jplph.2016.09.001 |
| [13] |
Kuluev BR, Safiullina MG, Knyazev AV, Chemeris AV. Effect of ectopic expression of NtEXPA5 gene on cell size and growth of organs of transgenic tobacco plants. Rus J Devel Biol. 2013;44:28–34. DOI: 10.1134/S1062360413010049 |
| [14] |
Kuluev B.R., Safiullina M.G., Knyazev A.V., et al. Effect of ectopic expression of NtEXPA5 gene on cell size and growth of organs of transgenic tobacco plants // Russ J of Dev Biol. 2013. Vol. 44. P. 28–34. DOI: 10.1134/S1062360413010049 |
| [15] |
Gumerova GR, Chemeris AV, Nikonorov YuM, Kuluev BR. Morphological and molecular analysis of isolated cultures of tobacco adventitious roots obtained by the methods of biolistic bombardment and Agrobacterium-mediated transformation. Russian Journal of Plant Physiology. 2018;65(5):740–749. DOI: 10.1134/S1021443718050072 |
| [16] |
Gumerova G.R., Chemeris A.V., Nikonorov Yu.M., et al. Morphological and molecular analysis of isolated cultures of tobacco adventitious roots obtained by the methods of biolistic bombardment and Agrobacterium-mediated transformation // Russian Journal of Plant Physiology. 2018. Vol. 65. No. 5. P. 740–749. DOI: 10.1134/S1021443718050072 |
| [17] |
Rogers SO, Bendich AJ. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol Biol. 1985;5(2):69–76. DOI: 10.1007/BF00020088 |
| [18] |
Rogers S.O., Bendich A.J. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues // Plant Mol Biol. 1985. Vol. 5. No. 2. P. 69–76. DOI: 10.1007/BF00020088. |
| [19] |
Duncan DB. Multiple range and multiple F-test. Biometrics. 1955;11:1–5. DOI: 10.2307/3001478 |
| [20] |
Duncan D.B. Multiple range and multiple F-test // Biometrics. 1955. Vol. 11. P. 1–5. DOI: 10.2307/3001478 |
| [21] |
Chevari S, Chaba I, Sekei I. Rol’ superoksiddismutazy v okislitel’nykh protsessakh kletki i metod opredeleniya ee v biologicheskikh materialakh. Laboratornoe delo. 1985;(11):678–681. (In Russ.) |
| [22] |
Чевари С., Чаба И., Секей И. Роль супероксиддисмутазы в окислительных процессах клетки и метод определения ее в биологических материалах // Лабораторное дело. 1985. № 11. С. 678–681. |
| [23] |
Ermakov AI, Arisimovich VV, Yarosh NP. Metody biokhimicheskogo issledovaniya rastenii. A.I. Ermakova, ed. 3 izd., pererab. i dop. Leningrad: Agropromizdat; 1987. 430 p. |
| [24] |
Ермаков А.И., Арасимович В.В., Ярош Н.Р., и др. Методы биохимического исследования растений / под ред. А.И. Ермакова. 3 изд., перераб. и доп. Л.: Агропромиздат, 1987. 430 с. |
| [25] |
Panchuck II, Volkov RA, Schoff F. Heat stress and heat shock transcription factor-depend expression and activity of ascorbate peroxidase in Arabidopsis. Plant Physol. 2002;129:838–853. DOI: 10.1104/pp.001362 |
| [26] |
Panchuck I.I., Volkov R.A., Schoff F. Heat stress and heat shock transcription factor-depend expression and activity of ascorbate peroxidase in Arabidopsis // Plant Physology. 2002. Vol. 129. P. 838–853. DOI: 10.1104/pp.001362 |
| [27] |
Boestfleisch C, Wagenseil NB, Buhmann AK, et al. Manipulating the antioxidant capacity of halophytes to increase their cultural and economic value through saline cultivation. AoB Plants. 2014;(13):6–12. DOI: 10.1093/aobpla/plu046 |
| [28] |
Boestfleisch C., Wagenseil N.B., Buhmann A.K., et al. Manipulating the antioxidant capacity of halophytes to increase their cultural and economic value through saline cultivation // AoB Plants. 2014. No. 13. P. 6–12. DOI: 10.1093/aobpla/plu046 |
| [29] |
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–254. DOI: 10.1006/abio.1976.9999 |
| [30] |
Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding // Anal Biochem. 1976. Vol. 72. P. 248–254. DOI: 10.1006/abio.1976.9999 |
| [31] |
Guimaraes LA, Pereira BM, Araujo ACG, et al. Ex vitro hairy root induction in detached peanut leaves for plant-nematode interaction studies. Plant Methods. 2017;13:25. DOI: 10.1186/s13007-017-0176-4 |
| [32] |
Guimaraes L.A., Pereira B.M., Araujo A.C.G., et al. Ex vitro hairy root induction in detached peanut leaves for plant-nematode interaction studies // Plant Methods. 2017. Vol. 13. P. 25. DOI: 10.1186/s13007-017-0176-4 |
| [33] |
Sosa ALG, Agostini E, Medina MI. Antioxidant response of tobacco (Nicotiana tabacum) hairy roots after phenol treatment. Plant Physiol Biochem. 2011;49(9):1020–1028. DOI: 10.1016/j.plaphy.2011.07.009 |
| [34] |
Sosa A.L.G., Agostini E., Medina M.I. Antioxidant response of tobacco (Nicotiana tabacum) hairy roots after phenol treatment // Plant Physiol Biochem. 2011. Vol. 49. No. 9. P. 1020–1028. DOI: 10.1016/j.plaphy.2011.07.009 |
| [35] |
Wang L, Chen Q, Xin D, et al. Overexpression of GmBIN2, a soybean glycogen synthase kinase 3 gene, enhances tolerance to salt and drought in transgenic Arabidopsis and soybean hairy roots. J Integr Agric. 2018;17(9):1959–1971. DOI: 10.1016/S2095-3119(17)61863-X |
| [36] |
Wang L., Chen Q., Xin D., et al. Overexpression of GmBIN2, a soybean glycogen synthase kinase 3 gene, enhances tolerance to salt and drought in transgenic Arabidopsis and soybean hairy roots // J Integr Agric. 2018. Vol. 17. No. 9. P. 1959–1971. DOI: 10.1016/S2095-3119(17)61863-X |
| [37] |
Han Y, Chen Y, Yin S, et al. Over-expression of TaEXPB23, a wheat expansin gene, improves oxidative stress tolerance in transgenic tobacco plants. J Plant Physiol. 2015;173:62–71. DOI: 10.1016/j.jplph.2014.09.007 |
| [38] |
Han Y., Chen Y., Yin S., et al. Over-expression of TaEXPB23, a wheat expansin gene, improves oxidative stress tolerance in transgenic tobacco plants // J Plant Physiol. 2015. Vol. 173. P. 62–71. DOI: 10.1016/j.jplph.2014.09.007 |
| [39] |
Li AX, Han YY, Wang X, et al. Root-specific expression of wheat expansin gene TaEXPB23 enhances root growth and water stress tolerance in tobacco. Environ Exp Bot. 2015;110:73–84. DOI: 10.1016/j.envexpbot.2014.10.002 |
| [40] |
Li A.X., Han Y.Y., Wang X., et al. Root-specific expression of wheat expansin gene TaEXPB23 enhances root growth and water stress tolerance in tobacco // Environ Exp Bot. 2015. Vol. 110. P. 73–84. DOI:10.1016/j.envexpbot.2014.10.002 |
| [41] |
Jadamba C, Kang K, Paek NC, et al. Overexpression of rice expansin 7 (Osexpa 7) confers enhanced tolerance to salt stress in rice. Int J Moc Sci. 2020;21(2):454. DOI: 10.3390/ijms21020454 |
| [42] |
Jadamba C., Kang K., Paek N.C., et al. Overexpression of rice expansin 7 (Osexpa 7) confers enhanced tolerance to salt stress in rice // Int J Moc Sci. 2020. Vol. 21. No. 2. P. 454. DOI: 10.3390/ijms21020454 |
| [43] |
Chen Y, Han Y, Zhang M, et al. Overexpression of the wheat expansin gene TaEXPA2 improved seed production and drought tolerance in transgenic tobacco plants. PLoS One. 2016;11(4): e0153494. DOI: 10.1371/journal.pone.0153494 |
| [44] |
Chen Y., Han Y., Zhang M., et al. Overexpression of the wheat expansin gene TaEXPA2 improved seed production and drought tolerance in transgenic tobacco plants // PLoS One. 2016. Vol. 11. No. 4. e0153494. DOI: 10.1371/journal.pone.0153494 |
| [45] |
Yang J, Zhang G, An J, et al. Expansin gene TaEXPA2 positively regulates drought tolerance in transgenic wheat (Triticum aestivum L.). Plant Sci: Int J Exp Plant Biol. 2020;298:110596. DOI: 10.1016/j.plantsci.2020.110596 |
| [46] |
Yang J., Zhang G., An J., et al. Expansin gene TaEXPA2 positively regulates drought tolerance in transgenic wheat (Triticum aestivum L.) // Plant Science. 2020. Vol. 298. P. 110596. DOI: 10.1016/j.plantsci.2020.110596 |
| [47] |
Passardi F, Penel C, Dunand C. Performing the paradoxical: how plant peroxidases modify the cell wall. Trends in Plant Sci. 2004;9(11):534–540. DOI: 10.1016/j.tplants.2004.09.002 |
| [48] |
Passardi F., Penel C., Dunand C. Performing the paradoxical: how plant peroxidases modify the cell wall // Trends in Plant Sci. 2004. Vol. 9. No. 11. P. 534–540. DOI: 10.1016/j.tplants. 2004.09.002 |
Kuluev B.R., Musin K.G., Yakupova A.B.
/
| 〈 |
|
〉 |