Endophytic microorganisms of potato (Solanum tuberosum L.): biodiversity, functions and biotechnological potential
Nazira S. Karamova , Ammar A. Tuama , Zenon Stasevski
Ecological Genetics ›› 2023, Vol. 21 ›› Issue (2) : 123 -135.
Endophytic microorganisms of potato (Solanum tuberosum L.): biodiversity, functions and biotechnological potential
Endophytic communities represent a fascinating inner world of the plants. Endophytes are found in all plant species studied, though the number of microbial cells and their species diversity can differ a lot. The potato (Solanum tuberosum L.) is economically important staple food crop, and the induction of plant resistance to various infections as well as the search for the effective eco-friendly preparations could provide higher potato yields and are very promising for modern agriculture. In this review, we focus on the biodiversity of the potato endophytes and the aspects of their functional importance and possible application in the biological control of plant pathogens. We have systematized literature data regarding the prevention of the harmful effect of pathogenic fungi, bacteria, viruses, and insects resulting from the vital activity of the endophytic microorganisms within the potato plants.
endophytic microorganisms / potato / Solanum tuberosum L. / biocontrol of phytopathogens / protective mechanisms / biodiversity / biologically active metabolites
| [1] |
Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW. Bacterial endophytes in agricultural crops. Can J Microbiol. 1997;43(10):895–914. DOI: 10.1139/m97-131 |
| [2] |
Hallmann J., Quadt-Hallmann A., Mahaffee W.F., Kloepper J.W. Bacterial endophytes in agricultural crops // Can J Microbiol. 1997. Vol. 43, No. 10. P. 895–914. DOI: 10.1139/m97131 |
| [3] |
Xia Y, Liu J, Chen C, et al. The multifunctions and future prospects of endophytes and their metabolites in plant disease management. Microorganisms. 2022;10(5):1072. DOI: 10.3390/microorganisms10051072 |
| [4] |
Xia Y., Liu J., Chen C., et al. The multifunctions and future prospects of endophytes and their metabolites in plant disease management // Microorganisms. 2022. Vol. 10, No. 5. ID 1072. DOI: 10.3390/microorganisms10051072 |
| [5] |
Hardoim PR, van Overbeek LS, Berg G, et al. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev. 2015;9(3):293–320. DOI: 10.1128/MMBR.00050-14 |
| [6] |
Hardoim P.R., van Overbeek L.S., Berg G., et al. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes // Microbiol Mol Biol Rev. 2015. Vol. 9, No. 3. P. 293–320. DOI: 10.1128/MMBR.00050-14 |
| [7] |
Srivastava AK, Kashyap LP, Santoyo G, Newcombe G. Editorial: plant microbiome: interactions, mechanisms of action, and applications. Front Microbiol. 2021;12:706049. DOI: 10.3389/fmicb.2021.706049 |
| [8] |
Srivastava A.K., Kashyap L.P., Santoyo G., Newcombe G. Editorial: plant microbiome: interactions, mechanisms of action, and applications // Front Microbiol. 2021. Vol. 12. ID 706049. DOI: 10.3389/fmicb.2021.706049 |
| [9] |
White JF, Kingsley KL, Zhang Q, et al. Review: endophytic microbes and their potential applications in crop management. Pest Manag Sci. 2019;75(10):2558–2565. DOI: 10.1002/ps.5527 |
| [10] |
White J.F., Kingsley K.L., Zhang Q., et al. Review: endophytic microbes and their potential applications in crop management // Pest Manag Sci. 2019. Vol. 75, No. 10. P. 2558–2565. DOI: 10.1002/ps.5527 |
| [11] |
Ferreira CMH, Soares HMVM, Soares EV. Promising bacterial genera for agricultural practices: an insight on plant growth-promoting properties and microbial safety aspects. Sci Total Environ. 2019;682:779–799. DOI: 10.1016/j.scitotenv.2019.04.225 |
| [12] |
Ferreira C.M.H., Soares H.M.V.M., Soares E.V. Promising bacterial genera for agricultural practices: an insight on plant growth-promoting properties and microbial safety aspects // Sci Total Environ. 2019. Vol. 682. P. 779–799. DOI: 10.1016/j.scitotenv.2019.04.225 |
| [13] |
Chebotar’ VK, Shcherbakov AV, Shcherbakova EN, et al. Biodiversity of endophytic bacteria as a promising biotechnological resource. Agricultural Biology. 2015;50(5):648–654. (In Russ.) DOI: 10.15389/agrobiology.2015.5.648rus |
| [14] |
Чеботарь В.К., Щербаков А.В, Щербакова Е.Н., и др. Эндофитные бактерии как перспективный биотехнологический ресурс и их разнообразие // Сельскохозяйственная биология. 2015. Т. 50, № 5. С. 648–654. DOI: 10.15389/agrobiology.2015.5.648rus |
| [15] |
Vasileva EN, Akhtemova GA, Zhukov VA, Tikhonovich IA. Endophytic microorganisms in fundamental research and agriculture. Ecological genetics. 2019;17(1):19–32. (In Russ.) DOI: 10.17816/ecogen17119-32 |
| [16] |
Васильева Е.Н., Ахтемова Г.А., Жуков В.А., Тихонович И.А. Эндофитные микроорганизмы в фундаментальных исследованиях и сельском хозяйстве // Экологическая генетика. 2019. Т. 17, № 1. С. 19–32. DOI: 10.17816/ecogen17119-32 |
| [17] |
Fadiji AE, Babalola OO. Elucidating mechanisms of endophytes used in plant protection and other bioactivities with multifunctional prospects. Front Bioeng Biotechnol. 2020;8:467. DOI: 10.3389/fbioe.2020.00467 |
| [18] |
Fadiji A.E., Babalola O.O. Elucidating mechanisms of endophytes used in plant protection and other bioactivities with multifunctional prospects // Front Bioeng Biotechnol. 2020. Vol. 8. ID 467. DOI: 10.3389/fbioe.2020.00467 |
| [19] |
Birch PRJ, Bryan G. Fenton B, et al. Crops that feed the world: Potato: are the trends of increased global production sustainable. Food Security. 2012;4:477–508. DOI: 10.1007/s12571-012-0220-1 |
| [20] |
Birch P.R.J., Bryan G., Fenton B., et al. Crops that feed the world: Potato: are the trends of increased global production sustainable // Food Security. 2012. Vol. 4. P. 477–508. DOI: 10.1007/s12571-012-0220-1 |
| [21] |
Soare E, Chiurciu IA. Study on the dynamics of potato production and worldwide trading during the period 2012–2019. Scientific Papers Series Management, Economic Engineering in Agriculture and Rural Development. 2021;21:527–532. |
| [22] |
Soare E., Chiurciu I.A. Study on the dynamics of potato production and worldwide trading during the period 2012–2019 // Scientific Papers Series Management, Economic Engineering in Agriculture and Rural Development. 2021. Vol. 21. P. 527–532. |
| [23] |
FAOSTAT [Internet]. Crops and livestock products [cited 2022 Oct 7]. Available at: www.fao.org/faostat/en/#data/QCL |
| [24] |
FAOSTAT [Электронный ресурс]. Crops and livestock products [дата обращения: 07.10.2022]. Доступ по: www.fao.org/faostat/en/ #data/QCL |
| [25] |
Rahman MM, Ali ME, Khan AA, et al., Isolation, characterization, and identification of biological control agent for potato soft rot in Bangladesh. Sci World J. 2012;2012:723293. DOI:10.1100/2012/723293 |
| [26] |
Rahman M.M., Ali M.E., Khan A.A., et al. Isolation, characterization, and identification of biological control agent for potato soft rot in Bangladesh // Sci World J. 2012. Vol. 2012. ID 723293. DOI:10.1100/2012/723293 |
| [27] |
Wu F, Wang W, Ma Y, et al. Prospect of beneficial microorganisms applied in potato cultivation for sustainable agriculture. Afr J Microbiol Res. 2013;7(20):2150–2158. DOI: 10.5897/AJMRx12.00 |
| [28] |
Wu F., Wang W., Ma Y., et al. Prospect of beneficial microorganisms applied in potato cultivation for sustainable agriculture // Afr J Microbiol Res. 2013. Vol. 7, No. 20. P. 2150–2158. DOI: 10.5897/AJMRx12.00 |
| [29] |
Enebe MC, Babalola OO. The impact of microbes in the orchestration of plant’s resistance to biotic stress: a disease management approach. Appl Microbiol Biotechnol. 2019;103:9–25. DOI:10.1007/s00253-018-9433-3 |
| [30] |
Enebe M.C., Babalola O.O. The impact of microbes in the orchestration of plant’s resistance to biotic stress: a disease management approach // Appl Microbiol Biotechnol. 2019. Vol. 103. P. 9–25. DOI:10.1007/s00253-018-9433-3 |
| [31] |
De Boer SH, Copeman RJ. Endophytic bacterial flora in Solanum tuberosum and its significance in bacterial ring rot disease. Can J Plant Sci. 1974;54(1):115–122. DOI: 10.4141/cjps74-019 |
| [32] |
De Boer S.H., Copeman R.J. Endophytic bacterial flora in Solanum tuberosum and its significance in bacterial ring rot disease // Can J Plant Sci. 1974. Vol. 54, No. 1. P. 115–122. DOI: 10.4141/cjps74-019 |
| [33] |
Garbeva P, van Overbeek LS, van Vuurde JWL, van Elsas JD. Analysis of endophytic bacterial communities of potato by plating and denaturating gradient gel electrophoresis (DGGE) of 16S rDNA based PCR fragments. Microbial Ecology. 2001;41:369–383. DOI: 10.1007/s002480000096 |
| [34] |
Garbeva P., van Overbeek L.S., van Vuurde J.W.L., van Elsas J.D. Analysis of endophytic bacterial communities of potato by plating and denaturating gradient gel electrophoresis (DGGE) of 16S rDNA based PCR fragments // Microbial Ecology. 2001. Vol. 41. P. 369–383. DOI: 10.1007/s002480000096 |
| [35] |
Sessitsch A, Reiter B, Pfeifer U, Wilhelm E. Cultivation-independent population analysis of bacterial endophytes in three potato varieties based on eubacterial and Actinomycetes-specific PCR of 16S rRNA genes. FEMS Microbiol Ecol. 2002;39(1):23–32. DOI: 10.1111/j.1574-6941.2002.tb00903.x |
| [36] |
Sessitsch A., Reiter B., Pfeifer U., Wilhelm E. Cultivation-independent population analysis of bacterial endophytes in three potato varieties based on eubacterial and Actinomycetes-specific PCR of 16S rRNA genes // FEMS Microbiol Ecol. 2002. Vol. 39, No. 1. P. 23–32. DOI: 10.1111/j.1574-6941.2002.tb00903.x |
| [37] |
Sessitsch A, Reiter B, Berg G. Endophytic bacterial communities of field-grown potato plants and their plant-growth-promoting and antagonistic abilities. Can J Microbiol. 2004;50(4):239–249. DOI: 10.1139/w03-118 |
| [38] |
Sessitsch A., Reiter B., Berg G. Endophytic bacterial communities of field-grown potato plants and their plant-growth-promoting and antagonistic abilities // Can J Microbiol. 2004. Vol. 50, No. 4. P. 239–249. DOI: 10.1139/w03-118 |
| [39] |
Andreote FD, da Rocha UN, Araujo WL, et al. Effect of bacterial inoculation, plant genotype and developmental stage on root-associated and endophytic bacterial communities in potato (Solanum tuberosum). Antonie van Leeuwenhoek. 2010;97:389–399. DOI: 10.1007/s10482-010-9421-9 |
| [40] |
Andreote F.D., da Rocha U.N., Araujo W.L., et al. Effect of bacterial inoculation, plant genotype and developmental stage on root-associated and endophytic bacterial communities in potato (Solanum tuberosum) // Antonie van Leeuwenhoek. 2010. Vol. 97. P. 389–399. DOI: 10.1007/s10482-010-9421-9 |
| [41] |
van Overbeek L, van Elsas JD. Effects of plant genotype and growth stage on the structure of bacterial communities associated with potato (Solanum tuberosum L.). FEMS Microbiol Ecol. 2008;64(2):283–296. DOI: 10.1111/j.1574-6941.2008.00469.x |
| [42] |
van Overbeek L., van Elsas J.D. Effects of plant genotype and growth stage on the structure of bacterial communities associated with potato (Solanum tuberosum L.) // FEMS Microbiol Ecol. 2008. Vol. 64, No. 2. P. 283–296. DOI: 10.1111/j.1574-6941.2008.00469.x |
| [43] |
Тuаmа АА, Karamova NS, Stasecski Z. Comparative analysis of endophytic bacteria in five varieties of potato. Modern Science: actual problems of theory and practice. Series “Natural and Technical Sciences”. 2021;(10):59–63. (In Russ.) DOI 10.37882/2223-2966.2021.10.28 |
| [44] |
Туама А.А., Карамова Н.С., Сташевски З. Сравнительный анализ эндофитных бактерий разных сортов картофеля // Современная наука: актуальные проблемы теории и практики. Серия: Естественные и технические науки. 2021. № 10. С. 59–63. DOI 10.37882/2223-2966.2021.10.28 |
| [45] |
Kõiv V, Roosaare M, Vedler E, et al. Microbial population dynamics in response to Pectobacterium atrosepticum infection in potato tubers. Sci Rep. 2015;5:11606. DOI: 10.1038/srep11606 |
| [46] |
Kõiv V., Roosaare M., Vedler E., et al. Microbial population dynamics in response to Pectobacterium atrosepticum infection in potato tubers // Sci Rep. 2015. Vol. 5. ID11606. DOI: 10.1038/srep11606 |
| [47] |
Kracmarova M, Karpiskova J, Uhlik O, et al. Microbial communities in soils and endosphere of Solanum tuberosum L. and their response to long-term fertilization. Microorganisms. 2020;8(9):1377. DOI:10.3390/microorganisms8091377 |
| [48] |
Kracmarova M., Karpiskova J., Uhlik O., et al. Microbial communities in soils and endosphere of Solanum tuberosum L. and their response to long-term fertilization // Microorganisms. 2020. Vol. 8, No. 9. ID1377. DOI:10.3390/microorganisms8091377 |
| [49] |
Götz M, Nirenberg H, Krause S, et al. Fungal endophytes in potato roots studied by traditional isolation and cultivation-independent DNA-based methods. FEMS Microbiol Ecol. 2006;58(3):404–413. DOI: 10.1111/j.1574-6941.2006.00169.x |
| [50] |
Götz M., Nirenberg H., Krause S., et al. Fungal endophytes in potato roots studied by traditional isolation and cultivation-independent DNA-based methods // FEMS Microbiol Ecol. 2006. Vol. 58, No. 3. P. 404–413. DOI: 10.1111/j.1574-6941.2006.00169.x |
| [51] |
Tyurin M, Kabilov MR, Smirnova N, et al. Can potato plants be colonized with the fungi Metarhizium and Beauveria under their natural load in agrosystems. Microorganisms. 2021;9(7):1373. DOI: 10.3390/microorganisms9071373 |
| [52] |
Tyurin M., Kabilov M.R., Smirnova N., et al. Can potato plants be colonized with the fungi Metarhizium and Beauveria under their natural load in agrosystems // Microorganisms. 2021. Vol. 9, No. 7. ID1373. DOI: 10.3390/microorganisms9071373 |
| [53] |
Moonjely S, Barelli L, Bidochka MJ. Insect pathogenic fungi as endophytes. Adv Genet. 2016;94:107–135. DOI: 10.1016/bs.adgen.2015.12.004 |
| [54] |
Moonjely S., Barelli L., Bidochka M.J. Insect pathogenic fungi as endophytes // Adv Genet. 2016. Vol. 94. P. 107–135. DOI: 10.1016/bs.adgen.2015.12.004 |
| [55] |
Gray EJ, Smith DL. Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem. 2005;37(3):395–412. DOI: 10.1016/j.soilbio.2004.08.030 |
| [56] |
Gray E.J., Smith D.L. Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes // Soil Biol Biochem. 2005. Vol. 37, No. 3. P. 395–412. DOI: 10.1016/j.soilbio.2004.08.030 |
| [57] |
Papik J, Folkmanova M, Polivkova-Majorova M, et al. The invisible life inside plants: deciphering the riddles of endophytic bacterial diversity. Biotechnol Adv. 2020;44:107614. DOI: 10.1016/j.biotechadv.2020.107614 |
| [58] |
Papik J., Folkmanova M., Polivkova-Majorova M., et al. The invisible life inside plants: deciphering the riddles of endophytic bacterial diversity // Biotechnol Adv. 2020. Vol. 44. ID107614. DOI: 10.1016/j.biotechadv.2020.107614 |
| [59] |
Akosah YA, Vologin SG, Lutfullin MT, et al. Fusarium oxysporum strains from wilting potato plants: Potential causal agents of dry rot disease in potato tubers. Research on Crops. 2021;22:49–53. DOI: 10.31830/2348-7542.2021.012 |
| [60] |
Akosah Y.A., Vologin S.G., Lutfullin M.T., et al. Fusarium oxysporum strains from wilting potato plants: Potential causal agents of dry rot disease in potato tubers // Research on Crops. 2021. Vol. 22. P. 49–53. DOI: 10.31830/2348-7542.2021.012 |
| [61] |
Lastochkina O, Pusenkova L, Garshina D, et al. The effect of endophytic bacteria Bacillus subtilis and salicylic acid on some resistance and quality traits of stored Solanum tuberosum L. tubers infected with Fusarium dry rot. Plants. 2020;9(6):738. DOI: 10.3390/plants9060738 |
| [62] |
Lastochkina O., Pusenkova L., Garshina D., et al. The effect of endophytic bacteria Bacillus subtilis and salicylic acid on some resistance and quality traits of stored Solanum tuberosum L. tubers infected with Fusarium dry rot // Plants. 2020. Vol. 9, No. 6. ID 738. DOI: 10.3390/plants9060738 |
| [63] |
Shcherbakov AV, Shcherbakova EN, Mulina SA, et al. Psychrophilic endophytic pseudomonas as potential agents in biocontrol of phytopathogenic and putrefactive microorganisms during potato storage. Agricultural Biology. 2017;52(1):116–128. (In Russ.) DOI: 10.15389/agrobiology.2017.1.116rus |
| [64] |
Щербаков А.В., Щербакова Е.Н., Мулина С.А., и др. Психрофильные псевдомонады-эндофиты как потенциальные агенты в биоконтроле фитопатогенных и гнилостных микроорганизмов при холодильном хранении картофеля // Сельскохозяйственная биология. 2017. Т. 52, № 1. С. 116–128. DOI: 10.15389/agrobiology.2017.1.116rus |
| [65] |
Grossi CE, Fantino E, Serral F, et al. Methylobacterium sp. 2A is a plant growth promoting Rhizobacteria that has the potential to improve potato crop yield under adverse conditions. Front Plant Sci. 2020;11:71. DOI: 10.3389/fpls.2020.00071 |
| [66] |
Grossi C.E., Fantino E., Serral F., et al. Methylobacterium sp. 2A is a plant growth promoting Rhizobacteria that has the potential to improve potato crop yield under adverse conditions // Front Plant Sci. 2020. Vol. 11. ID71. DOI: 10.3389/fpls.2020.00071 |
| [67] |
Berg G, Krechel A, Ditz M, et al. Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiol Ecol. 2005;51(2):215–229. DOI: 10.1016/j.femsec.2004.08.006 |
| [68] |
Berg G., Krechel A., Ditz M., et al. Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi // FEMS Microbiol Ecol. 2005. Vol. 51, No. 2. P. 215–229. DOI: 10.1016/j.femsec.2004.08.006 |
| [69] |
Stevenson WR, Loria R, Franc GD, Weingartner DP, editors. Compendium of potato diseases. 2nd ed. Saint Paul: American Phytopathological Society Press, 2001. |
| [70] |
Stevenson W.R., Loria R., Franc G.D., Weingartner D.P., editors. Compendium of potato diseases. 2nd ed. Saint Paul: American Phytopathological Society Press, 2001. |
| [71] |
Rado R, Andrianarisoa B, Ravelomanantsoa S, et al. Biocontrol of potato wilt by selective rhizospheric and endophytic bacteria associated with potato plant. Afr J Food Agric Nutr Dev. 2015;15(1): 9762–9776. DOI: 10.18697/ajfand.68.15005 |
| [72] |
Rado R., Andrianarisoa B., Ravelomanantsoa S., et al. Biocontrol of potato wilt by selective rhizospheric and endophytic bacteria associated with potato plant // Afr J Food Agric Nutr Dev. 2015. Vol. 15, No. 1. P. 9762–9776. DOI: 10.18697/ajfand.68.15005 |
| [73] |
Elsayed TR, Grosch R, Smalla K. Potato plant spheres and to a lesser extent the soil type influence the proportion and diversity of bacterial isolates with in vitro antagonistic activity towards Ralstonia solanacearum. FEMS Microbiol Ecol. 2021;97(4):fiab038. DOI: 10.1093/femsec/fiab038 |
| [74] |
Elsayed T.R., Grosch R., Smalla K. Potato plant spheres and to a lesser extent the soil type influence the proportion and diversity of bacterial isolates with in vitro antagonistic activity towards Ralstonia solanacearum // FEMS Microbiol Ecol. 2021. Vol. 97, No. 4. ID fiab038. DOI: 10.1093/femsec/fiab038 |
| [75] |
Pageni BB, Lupwayi NZ, Akter Z, et al. Plant growth-promoting and phytopathogen-antagonistic properties of bacterial endophytes from potato (Solanum tuberosum L.) cropping systems. Can J Plant Sci. 2014;94(5):835–844. DOI: 10.4141/CJPS2013-356 |
| [76] |
Pageni B.B., Lupwayi N.Z., Akter Z., et al. Plant growth-promoting and phytopathogen-antagonistic properties of bacterial endophytes from potato (Solanum tuberosum L.) cropping systems // Can J Plant Sci. 2014. Vol. 94, No. 5. P. 835–844. DOI: 10.4141/CJPS2013-356 |
| [77] |
Shi W, Su G, Li M, et al. Distribution of bacterial endophytes in the non-lesion tissues of potato and their response to potato common scab. Front Microbiol. 2021;12:616013. DOI: 10.3389/fmicb.2021.616013 |
| [78] |
Shi W., Su G., Li M., et al. Distribution of bacterial endophytes in the non-lesion tissues of potato and their response to potato common scab // Front Microbiol. 2021. Vol. 12. ID 616013. DOI: 10.3389/fmicb.2021.616013 |
| [79] |
Liu J-M, Wang S-S, Zheng X, et al. Antimicrobial activity against phytopathogens and inhibitory activity on solanine in potatoes of endophytic bacteria isolated from potato tubers. Front Microbiol. 2020;11:570926. DOI: 10.3389/fmicb.2020.570926 |
| [80] |
Liu J.-M., Wang S.-S., Zheng X., et al. Antimicrobial activity against phytopathogens and inhibitory activity on solanine in potatoes of endophytic bacteria isolated from potato tubers // Front Microbiol. 2020. Vol. 11. ID570926. DOI: 10.3389/fmicb.2020.570926 |
| [81] |
Reiter B, Pfeifer U, Schwab H, Sessitsch A. Response of endophytic bacterial communities in potato plants to infection with Erwinia carotovora subsp. Atroseptica. Appl Environ Microbiol. 2002;68(5):2261–2268. DOI: 10.1128/aem.68.5.2261-2268.2002 |
| [82] |
Reiter B., Pfeifer U., Schwab H., Sessitsch A. Response of endophytic bacterial communities in potato plants to infection with Erwinia carotovora subsp. atroseptica // Appl Environ Microbiol. 2002. Vol. 68, No. 5. P. 2261–2268. DOI: 10.1128/aem.68.5.2261-2268.2002 |
| [83] |
Padilla-Gálvez N, Luengo-Uribe P, Mancilla S, et al. Antagonistic activity of endophytic actinobacteria from native potatoes (Solanum tuberosum subsp. tuberosum L.) against Pectobacterium carotovorum subsp. carotovorum and Pectobacterium atrosepticum. BMC Microbiology. 2021;21:335. DOI: 10.1186/s12866-021-02393-x |
| [84] |
Padilla-Gálvez N., Luengo-Uribe P., Mancilla S., et al. Antagonistic activity of endophytic actinobacteria from native potatoes (Solanum tuberosum subsp. tuberosum L.) against Pectobacterium carotovorum subsp. carotovorum and Pectobacterium atrosepticum // BMC Microbiology. 2021. Vol. 21. ID 335. DOI: 10.1186/s12866-021-02393-x |
| [85] |
Podolich O, Laschevskyy V, Ovcharenko L, et al. Methylobacterium sp. resides in unculturable state in potato tissues in vitro and becomes culturable after induction by Pseudomonas fluorescens IMGB163. J Appl Microbiol. 2009;106(3):728–737. DOI: 10.1111/j.1365-2672.2008.03951.x. |
| [86] |
Podolich O., Laschevskyy V., Ovcharenko L., et al. Methylobacterium sp. resides in unculturable state in potato tissues in vitro and becomes culturable after induction by Pseudomonas fluorescens IMGB163 // J Appl Microbiol. 2009. Vol. 106, No. 3. P. 728–737. DOI: 10.1111/j.1365-2672.2008.03951.x. |
| [87] |
Ardanov P, Ovcharenko L, Zaets I, et al. Endophytic bacteria enhancing growth and disease resistance of potato (Solanum tuberosum L.). Biological Control. 2011;56(1):43–49. DOI: 10.1016/j.biocontrol.2010.09.014 |
| [88] |
Ardanov P., Ovcharenko L., Zaets I., et al. Endophytic bacteria enhancing growth and disease resistance of potato (Solanum tuberosum L.) // Biological Control. 2011. Vol. 56, No. 1. P. 43–49. DOI: 10.1016/j.biocontrol.2010.09.014 |
| [89] |
Makarova SS, Makarov VV, Taliansky ME, Kalinina NO. Virus resistance in potato: current state and prospects. Russ J Genet Appl Res. 2017;7:845–857. DOI: 10.1134/S2079059717050148 |
| [90] |
Makarova S.S., Makarov V.V., Taliansky M.E., Kalinina N.O. Virus resistance in potato: current state and prospects // Russ J Genet Appl Res. 2017. Vol. 7. P. 845–857. DOI: 10.1134/S2079059717050148 |
| [91] |
Sorokan A, Cherepanova E, Burkhanova G, et al. Endophytic Bacillus spp. as a prospective biological tool for control of viral diseases and non-vector Leptinotarsa decemlineata Say in Solanum tuberosum L. Front Microbiol. 2020;11:569457. DOI: 10.3389/fmicb.2020.569457 |
| [92] |
Sorokan A., Cherepanova E., Burkhanova G., et al. Endophytic Bacillus spp. as a prospective biological tool for control of viral diseases and non-vector Leptinotarsa decemlineata Say in Solanum tuberosum L. // Front Microbiol. 2020. Vol. 11. ID569457. DOI: 10.3389/fmicb.2020.569457 |
| [93] |
Sorokan A, Veselova S, Benkovskaya G, Maksimov I. Endophytic strain Bacillus subtilis 26D increases levels of phytohormones and repairs growth of potato plants after Colorado potato beetle damage. Plants. 2021;10(5):923. DOI: 10.3390/plants10050923 |
| [94] |
Sorokan A., Veselova S., Benkovskaya G., Maksimov I. Endophytic strain Bacillus subtilis 26D increases levels of phytohormones and repairs growth of potato plants after Colorado potato beetle damage // Plants. 2021. Vol. 10, No. 5. ID 923. DOI: 10.3390/plants10050923 |
| [95] |
Sorokan AV, Iskandarova ZF, Blagova DK, et al. The role of surfactine produced by endophitic bacteria bacillus subtilis 26d in the development of symbiotic relations with potato plants. Ecobiotech. 2019;2(3): 257–261. (In Russ.) DOI:10.31163/2618-964X-2019-2-3-257-261 |
| [96] |
Сорокань А.В., Искандарова З.Ф., Благова Д.К., и др. Роль сурфактина эндофитных бактерий Bacillus subtilis 26D в развитии симбиотических отношений с растениями картофеля // Экобиотех. 2019. Т. 2, № 3. С. 257–261. DOI:10.31163/2618-964X-2019-2-3-257-261 |
| [97] |
Malfanova N, Kamilova F, Validov S, et al. Characterization of Bacillus subtilis HC8, a novel plant beneficial endophytic strain from giant hogweed. Microb Biotechnol. 2011;4(4):523–532. DOI: 10.1111/j.1751-7915.2011.00253.x |
| [98] |
Malfanova N., Kamilova F., Validov S., et al. Characterization of Bacillus subtilis HC8, a novel plant beneficial endophytic strain from giant hogweed // Microb Biotechnol. 2011. Vol. 4, No. 4. P. 523–532. DOI: 10.1111/j.1751-7915.2011.00253.x |
| [99] |
Maksimov IV, Cherepanova EA, Burkhanova GF, et al. Prospects and applications of lipopeptide-producing bacteria for plant protection (review). Applied Biochemistry and Microbiology. 2020;56(1): 19–34. (In Russ.) DOI: 10.31857/S0555109920010134 |
| [100] |
Максимов И.В., Сингх Б.П., Черепанова Е.А., и др. Перспективы применения бактерий — продуцентов липопептидов для защиты растений (обзор) // Прикладная биохимия и микробиология. 2020. Т. 56, № 1. С. 19–34. DOI: 10.31857/S0555109920010134 |
| [101] |
Lin С, Tsai C-H, Chen P-Y, et al. Biological control of potato common scab by Bacillus amyloliquefaciens Ba01. PLoS One. 2018;13(17):1–17. DOI: 10.1371/journal.pone.0196520 |
| [102] |
Lin С., Tsai C.-H., Chen P.-Y., et al. Biological control of potato common scab by Bacillus amyloliquefaciens Ba01 // PLoS One. 2018. Vol. 13, No. 17. P. 1–17. DOI: 10.1371/journal.pone.0196520 |
| [103] |
Pavithra G, Bindal S, Rana M. and Srivastava S. Role of endophytic microbes against plant pathogens: a review. Asian Journal of Plant Sciences. 2020;19:54–62. DOI: 10.3923/ajps.2020.54.62 |
| [104] |
Pavithra G., Bindal S., Rana M. and Srivastava S. Role of endophytic microbes against plant pathogens: a review // Asian Journal of Plant Sciences. 2020. Vol. 19. P. 54–62. DOI: 10.3923/ajps.2020.54.62 |
| [105] |
Schalk IJ, Hannauer M, Braud A. New roles for bacterial siderophores in metal transport and tolerance. Environ Microbiol. 2011;13(11):2844–2854. DOI: 10.1111/j.1462-2920.2011.02556.x |
| [106] |
Schalk I.J., Hannauer M., Braud A. New roles for bacterial siderophores in metal transport and tolerance // Environ Microbiol. 2011. Vol. 13, No.11. P. 2844–2854. DOI: 10.1111/j.1462-2920.2011.02556.x |
| [107] |
Ghorbel M, Brini F, Sharma A, Landi M. Role of jasmonic acid in plants: The molecular point of view. Plant Cell Reports. 2021;40: 1471–1494. DOI: 10.1007/s00299-021-02687-4 |
| [108] |
Ghorbel M., Brini F., Sharma A., Landi M. Role of jasmonic acid in plants: The molecular point of view // Plant Cell Reports. 2021. Vol. 40. P. 1471–1494. DOI: 10.1007/s00299-021-02687-4 |
| [109] |
Ludwig-Müller J. Plants and endophytes: equal partners in secondary metabolite production. Biotechnol Lett. 2015;37: 1325–1334. DOI: 10.1007/s10529-015-1814-4 |
| [110] |
Ludwig-Müller J. Plants and endophytes: equal partners in secondary metabolite production // Biotechnol Lett. 2015. Vol. 37. P. 1325–1334. DOI: 10.1007/s10529-015-1814-4 |
Eco-Vector
/
| 〈 |
|
〉 |