Study of acetylated histone h3k9 – an active chromatin mark – in chromosomes from adult and fetal human lymphocytes

Olga A. Efimova , Anna A. Pendina , Yuliia G. Lezhnina , Andrei V. Tikhonov , Olga G. Chiryaeva , Lyubov I. Petrova , Vera S. Dudkina , Alla S. Koltsova , Mikhail I. Krapivin , Anastasiia V. Petrovskaia-Kaminskaia , Olga E. Talantova , Tatiana V. Kuznetzova , Vladislav S. Baranov

Ecological Genetics ›› 2019, Vol. 17 ›› Issue (3) : 111 -117.

PDF (2331KB)
Ecological Genetics ›› 2019, Vol. 17 ›› Issue (3) : 111 -117. DOI: 10.17816/ecogen173111-117
Human ecological genetics
research-article

Study of acetylated histone h3k9 – an active chromatin mark – in chromosomes from adult and fetal human lymphocytes

Author information +
History +
PDF (2331KB)

Abstract

Background: Incorrect epigenetic modifications of the human genome may result in epigenetic disorders, thus, highlighting the necessity of studying chromosome epigenetic patterns in human development.

Aim of the study: A comparative analysis of acetylated histone H3K9 (AcH3K9) patterns in human metaphase chromosomes from the lymphocytes of adults and fetuses.

            Materials and methods: The immunocytochemical detection of AcH3K9 in the metaphase chromosomes from PHA-stimulated peripheral lymphocytes of 13 adults and cord blood lymphocytes of 10 fetuses at 20-22 weeks of gestation.

Results: Both in the chromosomes of the adults and the fetuses, AcH3K9 accumulated in the R- and T-, but not G-bands and avoided the regions of pericentromeric heterochromatin of the chromosomes 1, 9 and 16. When comparing the adult and the fetal chromosomes, different levels of AcH3K9 were revealed in a few bands: 2q31, 5p13, 5p15 and 16p13 had higher level of Н3К9 acetylation in adults, in contrast to 9q13 which was hyperacetylated in fetuses.

Conclusion: The АсН3К9 distribution in metaphase chromosomes is band-specific and is similar between the adults and the fetuses, excluding a few bands with different acetylation levels.

Keywords

epigenetics / human development / histone acetylation / chromosomes / chromatin disorders / prenatal diagnosis

Cite this article

Download citation ▾
Olga A. Efimova, Anna A. Pendina, Yuliia G. Lezhnina, Andrei V. Tikhonov, Olga G. Chiryaeva, Lyubov I. Petrova, Vera S. Dudkina, Alla S. Koltsova, Mikhail I. Krapivin, Anastasiia V. Petrovskaia-Kaminskaia, Olga E. Talantova, Tatiana V. Kuznetzova, Vladislav S. Baranov. Study of acetylated histone h3k9 – an active chromatin mark – in chromosomes from adult and fetal human lymphocytes. Ecological Genetics, 2019, 17(3): 111-117 DOI:10.17816/ecogen173111-117

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Waddington CH. The epigenotype. 1942. Int J Epidemiol. 2012;41(1):10-13. https://doi.org/10. 1093/ije/dyr184.

[2]

Корочкин Л.И. Биология индивидуального развития (генет. аспект). – M.: Изд-во МГУ, 2002. – 262 с. [Korochkin LI. Biology of individual development. Moscow: Izd-vo MGU; 2002. 262 p. (In Russ.)]

[3]

Назаренко С.А. Эпигенетические модификации генома и болезни человека // Молекулярно-биологические технологии в медицинской практике / Под ред. чл.-корр. РАЕН А.Б. Масленникова. Вып. 7. – Новосибирск: Альфа-Виста, 2005. – С. 82–97. [Nazarenko SA. Epigeneticheskie modifikatsii genoma i bolezni cheloveka. In: Molekulyarno-biologicheskie tekhnologii v meditsinskoy praktike. Ed. by A.B. Maslennikov. Vol. 7. Novosibirsk: Al’fa-Vista; 2005. P. 82-97. (In Russ.)]

[4]

Пендина А.А., Ефимова О.А., Кузнецова Т.В., Баранов В.С. Болезни геномного импринтинга // Журнал акушерства и женских болезней. – 2007. – Т. 56. – № 1. – С. 73–80. [Pendina AA, Efimova OA, Kuznetsova TV, Baranov VS. Genomic imprinting diseases. Journal of obstetrics and women’s diseases. 2007;56(1):73-80. (In Russ.)]

[5]

Peters J. The role of genomic imprinting in biology and disease: an expanding view. Nat Rev Genet. 2014;15(8):517-530. https://doi.org/10. 1038/nrg3766.

[6]

Ванюшин Б.Ф. Метилирование ДНК и эпигенетика // Генетика. – 2006. – T. 42. – № 9. – С. 1186–1199. [Vanyushin BF. DNA methylation and epigenetics. Russian Journal of Genetics. 2006;42(9):985-997. (In Russ.)]. https://doi.org/10. 1134/S1022795406090055.

[7]

Kirnos MD, Aleksandrushkina NI, Vanyushin BF. [5-Methylcytosine in pyrimidine sequences of plant and animal DNA: specificity of methylation. (In Russ.)]. Biokhimiia. 1981;46(8):1458-1474.

[8]

Dhall A, Chatterjee C. Chemical approaches to understand the language of histone modifications. ACS Chem Biol. 2011;6(10):987-99. https://doi.org/10. 1021/cb200142c.

[9]

Barbin A, Montpellier C, Kokalj-Vokac N, et al. New sites of methylcytosine-rich DNA detected on metaphase chromosomes. Hum Genet. 1994;94(6): 684-692. https://doi.org/10. 1007/bf00206964.

[10]

Montpellier C, Burgeois CA, Kokalj-Vokac N, et al. Detection of methylcytosine-rich heterochromatin on banded chromosomes. Application to cells with various status of DNA methylation. Cancer Genet Cytogenet. 1994;78(1):87-93. https://doi.org/10. 1016/0165-4608(94)90052-3.

[11]

Pfarr W, Webersinke G, Paar C, Wechselberger C. Immunodetection of 5’-methylcytosine on Giemsa-stained chromosomes. Biotechniques. 2005;38(4): 527-528,530. https://doi.org/10. 2144/05384BM01.

[12]

Пендина А.А., Ефимова О.А., Каминская А.Н., и др. Иммуноцитохимический анализ статуса метилирования метафазных хромосом человека // Цитология. – 2005. – Т. 47. – № 8. – С. 731–737. [Pendina AA, Efimova OA, Kaminskaya AN, et al. Immunocytochemical analysis of human metaphase chromosome methylation status. Tsitologiia. 2005;47(8):731-737. (In Russ.)]

[13]

Ефимова О.А., Пендина А.А., Тихонов А.В., и др. Сравнительный иммуноцитохимический анализ профилей метилирования ДНК метафазных хромосом из лимфоцитов взрослых индивидов и плодов человека // Молекулярная медицина. – 2015. – № 3. – С. 17–21. [Efimova OA, Pendina AA, Tikhonov AV, et al. A comparative immunocytochemical analysis of DNA methylation patterns in human metaphase chromosomes of adults and fetuses. Molekulyarnaya meditsina. 2015;(3):17-21. (In Russ.)]

[14]

Kokalj-Vokac N, Zagorac A, Pristovnik M, et al. DNA methylation of the extraembryonic tissues: an in situ study on human metaphase chromosomes. Chromosome Res. 1998;6(3):161-166. https://doi.org/10. 1023/a:1009299331871.

[15]

Efimova OA, Pendina AA, Krapivin MI, et al. Inter-cell and inter-chromosome variability of 5-hydroxymethylcytosine patterns in noncultured human embryonic and extraembryonic cells. Cytogenet Genome Res. 2018;156(3):150-157. https://doi.org/10. 1159/000493906.

[16]

Кузнецова Т.В., Логинова Ю.А., Чиряева О.Г., и др. Цитогенетические методы // Медицинские лабораторные технологии: руководство по клинической лабораторной диагностике. В 2 т. / Под ред. А.И. Карпищенко. – 3-е изд., перераб. и доп. – М.: ГЭОТАР-Медиа, 2013. – Т. 2. – С. 623–657. [Kuznetzova TV, Loginova YuA, Chiryaeva OG, et al. Tsitogeneticheskie metody. In: Medical laboratory technologies. Ed. by A.I. Karpishchenko. 3rd ed., revised and updated. Moscow: GEOTAR-Media; 2013. Vol. 2. P. 623-657. (In Russ.)]

[17]

Di Cerbo V, Mohn F, Ryan DP, et al. Acetylation of histone H3 at lysine 64 regulates nucleosome dynamics and facilitates transcription. Elife. 2014;3: e01632. https://doi.org/10. 7554/eLife.01632.

[18]

Khuong MT, Fei J, Ishii H, Kadonaga JT. Prenucleosomes and active chromatin. Cold Spring Harb Symp Quant Biol. 2015;80:65-72. https://doi.org/10. 1101/sqb.2015. 80. 027300.

[19]

Bonenfant D, Towbin H, Coulot M, et al. Analysis of dynamic changes in post-translational modifications of human histones during cell cycle by mass spectrometry. Mol Cell Proteomics. 2007;6(11):1917-1932. https://doi.org/10. 1074/mcp.M700070-MCP200.

[20]

Valls E, Sánchez-Molina S, Martínez-Balbás MA. Role of histone modifications in marking and activating genes through mitosis. J Biol Chem. 2005;280(52):42592-600. https://doi.org/10. 1074/jbc.M507407200.

[21]

Родионов А.B. Генетическая активность ДНК G- и R-блоков митотических хромосом человека // Генетика. – 1985. – Т. 21. – № 12. – С. 2057–2065. [Rodionov AB. Geneticheskaya aktivnost’ DNK G- i R-blokov mitoticheskikh khromosom cheloveka. Genetika. 1985;21(12):2057-2065. (In Russ.)]

[22]

Bickmore WA, Sumner AT. Mammalian chromosome banding – an expression of genome organization. Trends Genet. 1989;5(5):144-148. https://doi.org/10. 1016/0168-9525(89)90055-3.

[23]

Oyer JA, Chu A, Brar S, Turker MS. Aberrant epigenetic silencing is triggered by a transient reduction in gene expression. PLoS One. 2009;4(3):e4832. https://doi.org/10. 1371/journal.pone.0004832.

[24]

You SH, Lim HW, Sun Z, et al. Nuclear receptor co-repressors are required for the histone-deacetylase activity of HDAC3 in vivo. Nat Struct Mol Biol. 2013;20(2):182-187. https://doi.org/10. 1038/nsmb.2476.

[25]

Butler KV, Chiarella AM, Jin J, Hathaway NA. Targeted gene repression using novel bifunctional molecules to harness endogenous histone deacetylation activity. ACS Synth Biol. 2018;7(1):38-45. https://doi.org/10. 1021/acssynbio.7b00295.

[26]

Cicala C, Martinelli E, McNally JP, et al. The integrin alpha4beta7 forms a complex with cell-surface CD4 and defines a T-cell subset that is highly susceptible to infection by HIV-1. Proc Natl Acad Sci USA. 2009;106(49): 20877-82. https://doi.org/10. 1073/pnas.0911796106.

Funding

Scholarship of the President of the Russian FederationСтипендия Президента РФ()

RIGHTS & PERMISSIONS

Efimova O.A., Pendina A.A., Lezhnina Y.G., Tikhonov A.V., Chiryaeva O.G., Petrova L.I., Dudkina V.S., Koltsova A.S., Krapivin M.I., Petrovskaia-Kaminskaia A.V., Talantova O.E., Kuznetzova T.V., Baranov V.S.

AI Summary AI Mindmap
PDF (2331KB)

51

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/