High hydrostatic pressure influence on viability and mutagenesis of Salmonella Typhimurium

Nazira Sunagatovna Karamova , Pavel Valer’evich Zelenikhin , Vladimir Dmitrievich Kiselev , Anastasiya Alexandrovna Lipatnikova , Olga Nikolaevna Ilinskaya

Ecological Genetics ›› 2015, Vol. 13 ›› Issue (4) : 99 -107.

PDF
Ecological Genetics ›› 2015, Vol. 13 ›› Issue (4) : 99 -107. DOI: 10.17816/ecogen13499-107
Articles
research-article

High hydrostatic pressure influence on viability and mutagenesis of Salmonella Typhimurium

Author information +
History +
PDF

Abstract

Background: pressure is a well-known physical environmental parameter. Nevertheless, the basic principles of microbial survival under high hydrostatic pressure (HHP), especially genetic response to pressure, are still poorly understood. The purpose of this study was to investigate the influence of HHP ranging from 50 to 800 MPa on viability and mutagenesis of Salmonella typhimurium. Materials and methods. The standard plate count method (counting the total number of colony forming units (CFUs) on the plate) and the propidium iodide (PI) flow cytometric assay were used to determine the bacterial viability after HHP treatment. Ability of HHP to induce gene mutations was examined by the Ames assay employing Salmonella typhimurium TA100 and TA98. Results. The results obtained showed that survival of S. typhimurium cells considerably decreased when bacteria were exposed to a pressure of 200 MPa and above. Herewith, the survival index calculated according to the total number of CFUs was up to six orders of magnitude lower than that obtained by the flow cytometric analysis under the same HHP. This fact can be explained by the entrance of the some part of bacterial population into the viable but nonculturable (VBNC) state. The pressure of 50 MPa was found to cause a 1.9-fold increase in the number of His+ revertants of S. typhimurium TA98 in Ames test. Conclusion. Our results demonstrate that HPP of 200 MPa and above significantly inhibits the viability of S. typhimurium cells as well as triggers the induction of VBNC state. The results of Ames test suggest that HHP of 50 MPa can induce gene mutations in bacterial cells. The possible mechanisms of HHP effects on cells viability as well as genetic response of bacteria under HHP are discussed.

Keywords

Salmonella typhimurium / high hydrostatic pressure / Salmonella typhimurium / viability, viable but nonculturable state, mutagenesis, Ames assay

Cite this article

Download citation ▾
Nazira Sunagatovna Karamova, Pavel Valer’evich Zelenikhin, Vladimir Dmitrievich Kiselev, Anastasiya Alexandrovna Lipatnikova, Olga Nikolaevna Ilinskaya. High hydrostatic pressure influence on viability and mutagenesis of Salmonella Typhimurium. Ecological Genetics, 2015, 13(4): 99-107 DOI:10.17816/ecogen13499-107

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Голод Н. А., Лойко Н. Г., Мулюкин А. Л. и др. (2009) Адаптация молочнокислых бактерий к неблагоприятным для роста условиям. Микробиология. Т. 78 (3): С. 317-335.

[2]

Жук А. С. (2010) Экспериментальная модель оценки последствий воздействия стрессорных факторов окружающей среды: Магистерская диссертация. Санкт-Петербург.

[3]

Кряжевских Н. А., Демкина Е. В., Манучарова Н. А. и др. (2012) Реактивация покоящихся и некультивируемых форм бактерий из древних почв и мерзлых подпочвенных отложений. Микробиология. Т. 81 (4): С. 474-485.

[4]

Юдин И. П. (2007) Современные подходы к оценке жизнеспособности бактерий с акцентом на феномене некультурабельности. Annals of Mechnicov Institute. № 3: С. 8-16.

[5]

Aertsen A., De Spiegeleer P., Vanoirbeek K. et al. (2005) Induction of oxidative stress by high hydrostatic pressure in Escherichia coli. Appl. Environ. Microbiol. V. 71 (5): P. 2226-2231.

[6]

Aertsen A., Houdt R., Vanoirbeek К., et al. (2004) An SOS Response Induced by High Pressure in Escherichia coli. J. Bacteriol. V. 186 (18): P. 6133-6141.

[7]

Aertsen A., Meersman F., Hendrickx M. E. et al. (2009) Biotechnology under high pressure: applications and implications. Trends in Biotechnology. V. 27 (7): P. 434-441.

[8]

Alpas H., Kalchayanand N., Bozoglu F. et al. (1999) Variation in resistance to hydrostatic pressure among strains of foodborne pathogens. Appl. Environ. Microbiol. V. 65: P. 4248-4251.

[9]

Colwell R. R. (2000) Bacterial death revisited. In: Grimes D. J. editor. Nonculturable microorganisms in the environment. Washington, D. C.: ASM Press; p. 325-342.

[10]

Fernandes P. M., Domitrovic T., Kao C. M. et al. (2004) Genomic expression pattern in Saccharomyces cerevisiae cells in response to high hydrostatic pressure. FEBS Lett. V. 556 (1-3): P. 153-160.

[11]

Gao X., Li J., and Ruan K. C. (2001) Barotolerant Escherichia coli induced by high hydrostatic pressure. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai). V. 33: P. 77-81.

[12]

Gross J. A. (1965) Pressure-induced color mutation of Euglena gracilis. Science. V. 147 (3659): P. 741-742.

[13]

Hauben K. J., Bartlett D. H., Soontjens C. C. et al. (1997) Escherichia coli mutants resistant to inactivation by high hydrostatic pressure. Appl. Environ. Microbiol. V. 63 (3): P. 945-950.

[14]

High-pressure microbiology (2008) Editors Michiels Ch., Bartlett D. H., Aertsen A. Washington: ASM Press.

[15]

High-pressure techniques in chemistry and physics. A practical approach (1997) Editors Holzapfel W. B., Isaacs N. S. Oxford, New York, Tokyo: Oxford University Press.

[16]

Jannasch H. W., Taylor C. D. (1984) Deep-sea microbiology. Annu. Rev. Microbiol. V. 38: P. 487-514.

[17]

Karatzas K. A., Bennik M. H. (2002) Characterization of a Listeria monocytogenes Scott A isolate with high tolerance towards high hydrostatic pressure. Appl. Environ. Microbiol. V. 68: P. 3183-3189.

[18]

Kato C., Li L., Nogi Y. et al. (1998) Extremely barophilic bacteria isolated from the Mariana Trench, Challenger Deep, at a depth of 11,000 meters. Appl. Environ. Microbiol. V. 64 (4): P. 1510-1513.

[19]

Meersman F., McMillan P. F. (2014) High hydrostatic pressure: a probing tool and a necessary parameter in biophysical chemistry. Chem. Commun. V. 50: P. 766-775.

[20]

Mortelmans K., Zeiger E. (2000) The Ames Salmonella/microsome mutagenicity assay. Mutat. Res. V. 455 (1-2): P. 29-60.

[21]

Mota M. J., Lopes R. L., Delgadillo I. et al. (2013) Microorganisms under high pressure - Adaptation, growth and biotechnological potential. Biotechnol. Adv. V. 31 (8): P. 1426-1434.

[22]

Nogi Y., Kato, C., Horikoshi K. (1998) Taxonomic studies of deep-sea barophilic Shewanella strains and description of Shewanella violacea sp. nov. Arch. Microbiol. V.170 (5): P. 331-338.

[23]

Oger Ph. J., Jebbar M. (2010) The many ways of coping with pressure. Res. Microbiol. V. 161 (10): P. 799-809.

[24]

Radman M. (2001) Fidelity and infidelity. Nature. V. 413 (15): P. 413-115.

[25]

Ritz M., Tholozan J. L., Fedeeighi M. et al. (2001) Morphological and physiological characterization of Listeria monocytogenes subjected to high hydrostatic pressure. Appl. Environ. Microbiol. V. 67 (5): P. 2240-2247.

[26]

Rosin M. P., Zimmerman A. M. (1977) The induction of cytoplasmic petite mutants of Saccharomyces cerevisiae by hydrostatic pressure. J. Cell Sci. V. 26: P. 373-385.

[27]

Vanlint D., Mitchell R., Bailey E. et al. (2011) Rapid acquisition of gigapascal-high-pressure resistance by Escherichia coli. mBio. V. 2 (1): P 00130-10.

[28]

Wächtershäuser G. (2006) From volcanic origins of chemoautotrophic life to Bacteria, Archaea and Eukarya. Phil. Tran. R. Soc. B. V. 361: P. 1787-1808.

[29]

Winter R., Jeworrek C. (2009) Effect of pressure on membranes. Soft Matter. V. 5 (17): P. 3157-73.

[30]

Zeng X., Birrien J. L., Fouquet Y. et al. (2009) Pyrococcus CH1, an obligate piezophilic hyperthermophile: extending the upper pressure-temperature limits for life. The ISME journal. V. 3 (7): P. 873-876.

RIGHTS & PERMISSIONS

Karamova N.S., Zelenikhin P.V., Kiselev V.D., Lipatnikova A.A., Ilinskaya O.N.

AI Summary AI Mindmap
PDF

152

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/