Differential distribution of 5-formylcytosine and 5-carboxylcytosine in human spermatogenic cells and spermatozoa
Olga A. Efimova , Mikhail I. Krapivin , Sergey E. Parfenyev , Irina D. Mekina , Evgeniia M. Komarova , Mariia A. Ishchuk , Andrei V. Tikhonov , Igor Yu. Kogan , Arina V. Golubeva , Eugene V. Daev , Aleksander M. Gzgzyan , Olesya N. Bespalova , Anna A. Pendina
Ecological Genetics ›› 2023, Vol. 21 ›› Issue (1) : 61 -74.
Differential distribution of 5-formylcytosine and 5-carboxylcytosine in human spermatogenic cells and spermatozoa
Background. The epigenome of gametes is formed under the control of the developmental programme and the influence of environmental factors. How cytosine oxidation patterns are formed and altered in human spermatogenesis remains obscure so far.
The aim of the study was to assess 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) patterns in human spermatogenic cells and spermatozoa.
Materials and Methods. The study was performed on testicular biopsy samples of 10 azoospermic patients and ejaculate samples of 5 sperm donors and 8 patients from infertile couples. The microscope slides were prepared for further indirect immunofluorescence to detect 5fC and 5caC and FISH to determine spermatogenic cell ploidy.
Results. 5fC and 5caC were undetectable in mitotic and meiotic chromosomes of spermatogenic cells, and was present exclusively in some spermatogonia and spermatid interphase nuclei as well as in some ejaculated spermatozoa. The frequency of spermatozoa with 5fC and 5caC varied in a wide range and was higher in patients than in sperm donors (p=0,007, p=0,028). The increase in frequency of spermatozoa with 5fC and 5caC was accompanied with the decrease in frequency of morphologically normal and progressively motile spermatozoa.
Conclusions. 5fC and 5caC are differentially distributed in human spermatogenic cells and spermatozoa. The immunocytochemically detected increase of 5fC and 5caC in individual spermatozoa is most likely induced by oxidative stress caused by effects of internal and external factors rather than developmental programme. The evaluation of 5fC and 5caC in spermatozoa can be potentially used as an additional criterion of ejaculate quality.
epigenetics / human spermatogenesis / 5-formylcytosine / 5-carboxylcytosine / azoospermia / testicular tissue / immunofluorescence / fluorescence in situ hybridization (FISH)
| [1] |
Reik W, Surani MA. Germline and Pluripotent Stem Cells. Cold Spring Harb Perspect Biol. 2015;7(11): a019422. DOI: 10.1101/cshperspect.a019422 |
| [2] |
Reik W., Surani M.A. Germline and Pluripotent Stem Cells // Cold Spring Harb Perspect Biol. 2015. Vol. 7, No. 11. P. a019422. DOI: 10.1101/cshperspect.a019422 |
| [3] |
Efimova OA, Pendina AA, Tikhonov AV, Baranov VS. The evolution of ideas on the biological role of 5-methylcytosine oxidative derivatives in the mammalian genome. Russ J Genet Appl Res. 2018;8(1):11–21. DOI: 10.1134/S2079059718010069 |
| [4] |
Efimova O.A., Pendina A.A., Tikhonov A.V., Baranov V.S. The evolution of ideas on the biological role of 5-methylcytosine oxidative derivatives in the mammalian genome // Russ J Genet Appl Res. 2018. Vol. 8, No. 1. P. 11–21. DOI: 10.1134/S2079059718010069 |
| [5] |
Efimova OA, Koltsova AS, Krapivin MI, et al. Environmental Epigenetics and Genome Flexibility: Focus on 5-Hydroxymethylcytosine. Int J Mol Sci. 2020;21(9):3223. DOI: 10.3390/ijms21093223 |
| [6] |
Efimova O.A., Koltsova A.S., Krapivin M.I., et al. Environmental Epigenetics and Genome Flexibility: Focus on 5-Hydroxymethylcytosine // Int J Mol Sci. 2020. Vol. 21, No. 9. P. 3223. DOI: 10.3390/ijms21093223 |
| [7] |
Aitken RJ, Gibb Z, Baker MA, et al. Causes and consequences of oxidative stress in spermatozoa. Reprod Fertil Dev. 2016;28(1–2): 1–10. DOI: 10.1071/RD15325 |
| [8] |
Aitken R.J., Gibb Z., Baker M.A., et al. Causes and consequences of oxidative stress in spermatozoa // Reprod Fertil Dev. 2016. Vol. 28, No. 1–2. P. 1–10. DOI: 10.1071/RD15325 |
| [9] |
Gunes S, Arslan MA, Hekim GNT, Asci R. The role of epigenetics in idiopathic male infertility. J Assist Reprod Genet. 2016;33(5): 553–569. DOI: 10.1007/s10815-016-0682-8 |
| [10] |
Gunes S., Arslan M.A., Hekim G.N.T., Asci R. The role of epigenetics in idiopathic male infertility // J Assist Reprod Genet. 2016. Vol. 33, No. 5. P. 553–569. DOI: 10.1007/s10815-016-0682-8 |
| [11] |
Jenkins TG, Aston KI, Meyer TD, et al. Decreased fecundity and sperm DNA methylation patterns. Fertil Steril. 2016;105(1): 51–7.e1–3. DOI: 10.1016/j.fertnstert.2015.09.013 |
| [12] |
Jenkins T.G., Aston K.I., Meyer T.D., et al. Decreased fecundity and sperm DNA methylation patterns // Fertil Steril. 2016. Vol. 105, No. 1. P. 51–7.e1–3. DOI: 10.1016/j.fertnstert.2015.09.013 |
| [13] |
Aston KI, Uren PJ, Jenkins TG, et al. Aberrant sperm DNA methylation predicts male fertility status and embryo quality. Fertil Steril. 2015;104(6):1388–97.e1–5. DOI: 10.1016/j.fertnstert.2015.08.019 |
| [14] |
Aston K.I., Uren P.J., Jenkins T.G., et al. Aberrant sperm DNA methylation predicts male fertility status and embryo quality // Fertil Steril. 2015 Vol. 104, No. 6. P. 1388–97.e1–5. DOI: 10.1016/j.fertnstert.2015.08.019 |
| [15] |
Urdinguio RG, Bayón GF, Dmitrijeva M, et al. Aberrant DNA methylation patterns of spermatozoa in men with unexplained infertility. Hum Reprod. 2015;30(5):1014–1028. DOI: 10.1093/humrep/dev053 |
| [16] |
Urdinguio R.G., Bayon G.F., Dmitrijeva M., et al. Aberrant DNA methylation patterns of spermatozoa in men with unexplained infertility // Hum Reprod. 2015. Vol. 30, No. 5. P. 1014–1028. DOI: 10.1093/humrep/dev053 |
| [17] |
Du Y, Li M, Chen J, et al. Promoter targeted bisulfite sequencing reveals DNA methylation profiles associated with low sperm motility in asthenozoospermia. Hum Reprod. 2016;31(1):24–33. DOI: 10.1093/humrep/dev283 |
| [18] |
Du Y., Li M., Chen J., et al. Promoter targeted bisulfite sequencing reveals DNA methylation profiles associated with low sperm motility in asthenozoospermia // Hum Reprod. 2016 Vol. 31, No. 1. P. 24–33. DOI: 10.1093/humrep/dev283 |
| [19] |
Laqqan MM, Yassin MM. Cigarette heavy smoking alters DNA methylation patterns and gene transcription levels in humans spermatozoa. Environ Sci Pollut Res Int. 2022;29(18):26835–26849. DOI: 10.1007/s11356-021-17786-8 |
| [20] |
Laqqan M.M., Yassin M.M. Cigarette heavy smoking alters DNA methylation patterns and gene transcription levels in humans spermatozoa // Environ Sci Pollut Res Int. 2022. Vol. 29, No. 18. P. 26835–26849. DOI: 10.1007/s11356-021-17786-8 |
| [21] |
Li J, Xu J, Yang T, et al. Genome-wide methylation analyses of human sperm unravel novel differentially methylated regions in asthenozoospermia. Epigenomics. 2022;14(16):951–964. DOI: 10.2217/epi-2022-0122 |
| [22] |
Li J., Xu J., Yang T., et al. Genome-wide methylation analyses of human sperm unravel novel differentially methylated regions in asthenozoospermia // Epigenomics. 2022. Vol. 14, No. 16. P. 951–964. DOI: 10.2217/epi-2022-0122 |
| [23] |
Zhang Z, Wang J, Shi F, et al. Genome-wide alternation and effect of DNA methylation in the impairments of steroidogenesis and spermatogenesis after PM2.5 exposure. Environ Int. 2022;169:107544. DOI: 10.1016/j.envint.2022.107544 |
| [24] |
Zhang Z., Wang J., Shi F., et al. Genome-wide alternation and effect of DNA methylation in the impairments of steroidogenesis and spermatogenesis after PM2.5 exposure // Environ Int. 2022. Vol. 169. P. 107544. DOI: 10.1016/j.envint.2022.107544 |
| [25] |
Tahiliani M, Koh KP, Shen Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009;324(5929):930–935. DOI: 10.1126/science.1170116 |
| [26] |
Tahiliani M., Koh K.P., Shen Y., et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1 // Science. 2009. Vol. 324, No. 5929. P. 930–935. DOI: 10.1126/science.1170116 |
| [27] |
Ito S, Shen L, Dai Q, et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science. 2011;333(6047):1300–1303. DOI: 10.1126/science.1210597 |
| [28] |
Ito S., Shen L., Dai Q., et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine // Science. 2011. Vol. 333, No. 6047. P. 1300–1303. DOI: 10.1126/science.1210597 |
| [29] |
Branco MR, Ficz G, Reik W. Uncovering the role of 5-hydroxymethylcytosine in the epigenome. Nat Rev Genet. 2011;13(1):7–13. DOI: 10.1038/nrg3080 |
| [30] |
Branco M.R., Ficz G., Reik W. Uncovering the role of 5-hydroxymethylcytosine in the epigenome // Nat Rev Genet. 2011. Vol. 13, No. 1. P. 7–13. DOI: 10.1038/nrg3080 |
| [31] |
Pfeifer GP, Kadam S, Jin SG. 5-hydroxymethylcytosine and its potential roles in development and cancer. Epigenetics Chromatin. 2013;6(1):10. DOI: 10.1186/1756-8935-6-10 |
| [32] |
Pfeifer G.P., Kadam S., Jin S.G. 5-hydroxymethylcytosine and its potential roles in development and cancer // Epigenetics Chromatin. 2013. Vol. 6, No. 1. P. 10. DOI: 10.1186/1756-8935-6-10 |
| [33] |
Efimova OA, Pendina AA, Tikhonov AV, et al. Oxidized form of 5-methylcytosine — 5-hydroxymethylcytosine: a new insight into the biological significance in the mammalian genome. Russ J Genet Appl Res. 2015;5:75–81. DOI: 10.1134/S2079059715020033 |
| [34] |
Efimova O.A., Pendina A.A., Tikhonov A.V., et al. Oxidized form of 5-methylcytosine-5-hydroxymethylcytosine: a new insight into the biological significance in the mammalian genome // Russ J Genet Appl Res. 2015. Vol. 5. P. 75–81. DOI: 10.1134/S2079059715020033 |
| [35] |
Efimova OA, Pendina AA, Tikhonov AV, et al. Genome-wide 5-hydroxymethylcytosine patterns in human spermatogenesis are associated with semen quality. Oncotarget. 2017;8(51):88294–88307. DOI: 10.18632/oncotarget.18331 |
| [36] |
Efimova O.A., Pendina A.A., Tikhonov A.V., et al. Genome-wide 5-hydroxymethylcytosine patterns in human spermatogenesis are associated with semen quality // Oncotarget. 2017. Vol. 8, No. 51. P. 88294–88307. DOI: 10.18632/oncotarget.18331 |
| [37] |
Zheng H, Zhou X, Li DK, et al. Genome-wide alteration in DNA hydroxymethylation in the sperm from bisphenol A-exposed men. PLoS One. 2017;12(6): e0178535. DOI: 10.1371/journal.pone.0178535 |
| [38] |
Zheng H., Zhou X., Li D.K., et al. Genome-wide alteration in DNA hydroxymethylation in the sperm from bisphenol A-exposed men // PLoS One. 2017. Vol. 12, No. 6. P. e0178535. DOI: 10.1371/journal.pone.0178535 |
| [39] |
Nettersheim D, Heukamp LC, Fronhoffs F, et al. Analysis of TET expression/activity and 5mC oxidation during normal and malignant germ cell development. PLoS One. 2013;8(12): e82881. DOI: 10.1371/journal.pone.0082881 |
| [40] |
Nettersheim D., Heukamp L.C., Fronhoffs F., et al. Analysis of TET expression/activity and 5mC oxidation during normal and malignant germ cell development // PLoS One. 2013. Vol. 8, No. 12. P. e82881. DOI: 10.1371/journal.pone.0082881 |
| [41] |
Kruger TF, Menkveld R, Stander FS, et al. Sperm morphologic features as a prognostic factor in in vitro fertilization. Fertil Steril. 1986;46(6):1118–1123. DOI: 10.1016/s0015-0282(16)49891-2 |
| [42] |
Kruger T.F., Menkveld R., Stander F.S., et al. Sperm morphologic features as a prognostic factor in in vitro fertilization // Fertil Steril. 1986. Vol. 46, No. 6. P. 1118–1123. DOI: 10.1016/s0015-0282(16)49891-2 |
| [43] |
Pendina AA, Efimova OA, Chiryaeva OG, et al. A comparative cytogenetic study of miscarriages after IVF and natural conception in women aged under and over 35 years. J Assist Reprod Genet. 2014;31(2):149–155. DOI: 10.1007/s10815-013-0148-1 |
| [44] |
Pendina A.A., Efimova O.A., Chiryaeva O.G., et al. A comparative cytogenetic study of miscarriages after IVF and natural conception in women aged under and over 35 years // J Assist Reprod Genet. 2014. Vol. 31, No. 2. P. 149–155. DOI: 10.1007/s10815-013-0148-1 |
| [45] |
Efimova OA, Pendina AA, Tikhonov AV, et al. Chromosome hydroxymethylation patterns in human zygotes and cleavage-stage embryos. Reproduction. 2015;149(3):223–233. DOI: 10.1530/REP-14-0343 |
| [46] |
Efimova O.A., Pendina A.A., Tikhonov A.V., et al. Chromosome hydroxymethylation patterns in human zygotes and cleavage-stage embryos // Reproduction. 2015. Vol. 149, No. 3. P. 223–233. DOI: 10.1530/REP-14-0343 |
| [47] |
Pendina AA, Efimova OA, Tikhonov AV, et al. Immunofluorescence Staining for Cytosine Modifications Like 5-Methylcytosine and Its Oxidative Derivatives and FISH. In: Fluorescence in situ hybridization (FISH). Ed. by T. Liehr. Berlin: Heidelberg: Springer; 2017. P. 337–346. DOI: 10.1007/978-3-662-52959-1_35 |
| [48] |
Pendina A.A., Efimova O.A., Tikhonov A.V., et al. Immunofluorescence Staining for Cytosine Modifications Like 5-Methylcytosine and Its Oxidative Derivatives and FISH. In: Fluorescence in situ hybridization (FISH). Ed. by T. Liehr. Berlin: Heidelberg: Springer, 2017. P. 337–346. DOI: 10.1007/978-3-662-52959-1_35 |
| [49] |
Efimova OA, Pendina AA, Krapivin MI, et al. Inter-Cell and Inter-Chromosome Variability of 5-Hydroxymethylcytosine Patterns in Noncultured Human Embryonic and Extraembryonic Cells. Cytogenet Genome Res. 2018;156(3):150–157. DOI: 10.1159/000493906 |
| [50] |
Efimova O.A., Pendina A.A., Krapivin M.I., et al. Inter-Cell and Inter-Chromosome Variability of 5-Hydroxymethylcytosine Patterns in Noncultured Human Embryonic and Extraembryonic Cells // Cytogenet Genome Res. 2018. Vol. 156, No. 3. P. 150–157. DOI: 10.1159/000493906 |
| [51] |
Negoescu A, Lorimier P, Labat-Moleur F, et al. In situ apoptotic cell labeling by the TUNEL method: improvement and evaluation on cell preparations. J Histochem Cytochem. 1996;44(9):959–968. DOI: 10.1177/44.9.8773561 |
| [52] |
Negoescu A., Lorimier P., Labat-Moleur F., et al. In situ apoptotic cell labeling by the TUNEL method: improvement and evaluation on cell preparations // J Histochem Cytochem. 1996. Vol. 44, No. 9. P. 959–968. DOI: 10.1177/44.9.8773561 |
| [53] |
World Health Organization. Laboratory manual for the examination and processing of human semen, sixth edition. Geneva: World Health Organization; 2021. 276 p. |
| [54] |
World Health Organization. Laboratory manual for the examination and processing of human semen, sixth edition. Geneva: World Health Organization, 2021. 276 p. |
| [55] |
Seisenberger S, Peat JR, Hore TA, et al. Reprogramming DNA methylation in the mammalian life cycle: building and breaking epigenetic barriers. Philos Trans R Soc Lond B Biol Sci. 2013;368(1609):20110330. DOI: 10.1098/rstb.2011.0330 |
| [56] |
Seisenberger S., Peat J.R., Hore T.A., et al. Reprogramming DNA methylation in the mammalian life cycle: building and breaking epigenetic barriers // Philos Trans R Soc Lond B Biol Sci. 2013. Vol. 368, No. 1609. P. 20110330. DOI: 10.1098/rstb.2011.0330 |
| [57] |
Marcho C, Cui W, Mager J. Epigenetic dynamics during preimplantation development. Reproduction. 2015;150(3):R109–R120. DOI: 10.1530/REP-15-0180 |
| [58] |
Marcho C., Cui W., Mager J. Epigenetic dynamics during preimplantation development // Reproduction. 2015. Vol. 150, No. 3. P. R109–R120. DOI: 10.1530/REP-15-0180 |
| [59] |
Fulka H, Mrazek M, Tepla O, Fulka J Jr. DNA methylation pattern in human zygotes and developing embryos. Reproduction. 2004;128(6):703–708. DOI: 10.1530/rep.1.00217 |
| [60] |
Fulka H., Mrazek M., Tepla O., Fulka J.Jr. DNA methylation pattern in human zygotes and developing embryos // Reproduction. 2004. Vol. 128, No. 6. P. 703–708. DOI: 10.1530/rep.1.00217 |
| [61] |
Pendina AA, Efimova OA, Fedorova ID, et al. DNA methylation patterns of metaphase chromosomes in human preimplantation embryos. Cytogenet Genome Res. 2011;132(1–2):1–7. DOI: 10.1159/000318673 |
| [62] |
Pendina A.A., Efimova O.A., Fedorova I.D., et al. DNA methylation patterns of metaphase chromosomes in human preimplantation embryos // Cytogenet Genome Res. 2011. Vol. 132, No. 1–2. P. 1–7. DOI: 10.1159/000318673 |
| [63] |
Madugundu GS, Cadet J, Wagner JR. Hydroxyl-radical-induced oxidation of 5-methylcytosine in isolated and cellular DNA. Nucleic Acids Res. 2014;42(11):7450–7460. DOI: 10.1093/nar/gku334 |
| [64] |
Madugundu G.S., Cadet J., Wagner J.R. Hydroxyl-radical-induced oxidation of 5-methylcytosine in isolated and cellular DNA // Nucleic Acids Res. 2014. Vol. 42, No. 11. P. 7450–7460. DOI: 10.1093/nar/gku334 |
| [65] |
Cadet J, Wagner JR. Radiation-induced damage to cellular DNA: Chemical nature and mechanisms of lesion formation. Radiation Physics and Chemistry. 2016;128:54–59. DOI: 10.1016/j.radphyschem.2016.04.018 |
| [66] |
Cadet J., Wagner J.R. Radiation-induced damage to cellular DNA: Chemical nature and mechanisms of lesion formation // Radiation Physics and Chemistry. 2016. Vol. 128. P. 54–59. DOI: 10.1016/j.radphyschem.2016.04.018 |
| [67] |
Alahmar AT. Role of Oxidative Stress in Male Infertility: An Updated Review. J Hum Reprod Sci. 2019;12(1):4–18. DOI: 10.4103/jhrs.JHRS_150_18 |
| [68] |
Alahmar A.T. Role of Oxidative Stress in Male Infertility: An Updated Review // J Hum Reprod Sci. 2019. Vol. 12, No. 1. P. 4–18. DOI: 10.4103/jhrs.JHRS_150_18 |
| [69] |
Ni K, Dansranjavin T, Rogenhofer N, et al. TET enzymes are successively expressed during human spermatogenesis and their expression level is pivotal for male fertility. Hum Reprod. 2016;31(7):1411–1424. DOI: 10.1093/humrep/dew096 |
| [70] |
Ni K., Dansranjavin T., Rogenhofer N., et al. TET enzymes are successively expressed during human spermatogenesis and their expression level is pivotal for male fertility // Hum Reprod. 2016. Vol. 31, No. 7. P. 1411–1424. DOI: 10.1093/humrep/dew096 |
| [71] |
Sakkas D, Alvarez JG. Sperm DNA fragmentation: mechanisms of origin, impact on reproductive outcome, and analysis. Fertil Steril. 2010;93(4):1027–1036. DOI: 10.1016/j.fertnstert.2009.10.046 |
| [72] |
Sakkas D., Alvarez J.G. Sperm DNA fragmentation: mechanisms of origin, impact on reproductive outcome, and analysis // Fertil Steril. 2010. Vol. 93, No. 4. P. 1027–1036. DOI: 10.1016/j.fertnstert.2009.10.046 |
Eco-Vector
/
| 〈 |
|
〉 |