Metabolite profiling of leaves of three Epilobium species

Roman K. Puzanskiy , Pavel D. Smirnov , Sergey A. Vanisov , Maksim D. Dubrovskiy , Alexey L. Shavarda , Maria F. Shishova , Vladislav V. Yemelyanov

Ecological Genetics ›› 2022, Vol. 20 ›› Issue (4) : 279 -293.

PDF (3006KB)
Ecological Genetics ›› 2022, Vol. 20 ›› Issue (4) : 279 -293. DOI: 10.17816/ecogen114743
Genetic basis of ecosystems evolution
research-article

Metabolite profiling of leaves of three Epilobium species

Author information +
History +
PDF (3006KB)

Abstract

BACKGROUND: The ability of plants to adapt to oxygen deficiency is associated with the presence of various adaptations, many of which are mediated by significant changes of metabolism. These changes allow resistant wetland plants to grow even in oxygen-deficient environment.

AIM: The aim of the study was to carry out metabolic profiling of the leaves of the wetland species Epilobium palustre and Epilobium hirsutum, and the mesophyte species Epilobium angustifolium in order to identify the most characteristic metabolome traits of hypoxia-resistant plants.

MATERIALS AND METHODS: Metabolite profiling was performed by GC-MS. Statistical analysis of metabolomics data was processed using R 4.2.1 Funny-Looking Kid.

RESULTS: The resulting profile included about 360 compounds. 70 of these were identified and 50 compounds were determined to a class. Sugars (64) were the most widely represented in the obtained profiles. 16 amino and 20 carboxylic acids, lipids and secondary compounds have been identified. Significant differences were revealed between the profiles of leaf metabolomes of mesophyte E. angustifolium and hydrophytes E. hirsutum and E. palustre. The mesophyte was characterized by high levels of sugars. The metabolomes of wetland Epilobium species practically did not differ from each other and were characterized by the accumulation of amino acids, including GABA shunt intermediates, dicarboxylic acids of the Krebs cycle, and metabolites of glycolysis and lactic acid fermentation, which reflects the stimulation of anaerobic respiration, nitrogen metabolism, and alternative pathways of NAD(P)H reoxidation in wetland plants.

CONCLUSIONS: Traits of metabolic profiles detected in hydrophyte Epilobium species can be used to assess the degree of plant resistance to oxygen deficiency.

Keywords

hypoxia / hydrophytes / mesophyte / metabolomics / GC-MS / Epilobium palustre / E. hirsutum / E. angustifolium

Cite this article

Download citation ▾
Roman K. Puzanskiy, Pavel D. Smirnov, Sergey A. Vanisov, Maksim D. Dubrovskiy, Alexey L. Shavarda, Maria F. Shishova, Vladislav V. Yemelyanov. Metabolite profiling of leaves of three Epilobium species. Ecological Genetics, 2022, 20(4): 279-293 DOI:10.17816/ecogen114743

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Dennis ES, Dolferus R, Ellis M, et al. Molecular strategies for improving waterlogging tolerance in plants. J Exp Bot. 2000;51(342): 89–97. DOI: 10.1093/jexbot/51.342.89

[2]

Dennis E.S., Dolferus R., Ellis M., et al. Molecular strategies for improving waterlogging tolerance in plants // J Exp Bot. 2000. Vol. 51, No. 342. P. 89–97. DOI: 10.1093/jexbot/51.342.89

[3]

Fukao T, Barrera-Figueroa BE, Juntawong P, Peña-Castro JM. Submergence and waterlogging stress in plants: A review highlighting research opportunities and understudied aspects. Front Plant Sci. 2019;10:340. DOI: 10.3389/fpls.2019.00340

[4]

Fukao T., Barrera-Figueroa B.E., Juntawong P., Peña-Castro J.M. Submergence and waterlogging stress in plants: A review highlighting research opportunities and understudied aspects // Front Plant Sci. 2019. Vol. 10. ID 340. DOI: 10.3389/fpls.2019.00340

[5]

Voesenek LACJ, Colmer TD, Pierik R, et al. How plants cope with complete submergence. New Phytol. 2006;170(2):213–226. DOI: 10.1111/j.1469-8137.2006.01692.x

[6]

Voesenek L.A.C.J., Colmer T.D., Pierik R., et al. How plants cope with complete submergence // New Phytol. 2006. Vol. 170, No. 2. P. 213–226. DOI: 10.1111/j.1469-8137.2006.01692.x

[7]

Bailey-Serres J, Voesenek LACJ. Flooding stress: Acclimations and genetic diversity. Annu Rev Plant Biol. 2008;59:313–339. DOI: 10.1146/annurev.arplant.59.032607.092752

[8]

Bailey-Serres J., Voesenek L.A.C.J. Flooding stress: Acclimations and genetic diversity // Annu Rev Plant Biol. 2008. Vol. 59. P. 313–339. DOI: 10.1146/annurev.arplant.59.032607.092752

[9]

Crawford RMM. Studies in plant survival. Anderson DJ, Greic-Smith P, Pitelka FA, editors. Ecological case histories of plant adaptation to adversity. Studies in ecology. Vol. 11. Oxford; London; Edinburgh; Boston; Palo Alto; Melbourne: Blackwell Scientific Publications, 1989. 296 p.

[10]

Crawford R.M.M. Studies in plant survival. Ecological case histories of plant adaptation to adversity. Studies in ecology / D.J. Anderson, P. Greic-Smith, F.A. Pitelka, editors. Vol. 11. Oxford; London; Edinburgh; Boston; Palo Alto; Melbourne: Blackwell Scientific Publications, 1989. 296 p.

[11]

Chirkova TV. Rastenie i anaehrobioz. Vestnik of Saint Petersburg University: Series 3: Biology. 1998;(2):41–52. (In Russ.)

[12]

Чиркова Т.В. Растение и анаэробиоз // Вестник Санкт-Петербургского университета. Серия 3: Биология. 1998. № 2. С. 41–52.

[13]

Vartapetian BB, Jackson MB. Plant adaptations to anaerobic stress. Ann Bot. 1997;79(S1):3–20. DOI: 10.1093/oxfordjournals.aob.a010303

[14]

Vartapetian B.B., Jackson M.B. Plant adaptations to anaerobic stress // Ann Bot. 1997. Vol. 79, No. S1. P. 3–20. DOI: 10.1093/oxfordjournals.aob.a010303

[15]

Chirkova TV, Walter G, Leffer S, Novitskaya LO. Chloroplasts and mitochondria in the leaves of wheat and rice seedlings exposed to anoxia and long-term darkness: Some characteristics of organelle state. Russ J Plant Physiol. 1995;42(3):321–329.

[16]

Chirkova TV, Walter G, Leffer S, Novitskaya LO. Chloroplasts and mitochondria in the leaves of wheat and rice seedlings exposed to anoxia and long-term darkness: Some characteristics of organelle state // Russ J Plant Physiol. 1995. Vol. 42, No. 3. P. 321–329.

[17]

Chirkova T, Yemelyanov V. The study of plant adaptation to oxygen deficiency in Saint Petersburg University. Biol Commun. 2018;63(1):17–31. DOI: 10.21638/spbu03.2018.104

[18]

Chirkova T., Yemelyanov V. The study of plant adaptation to oxygen deficiency in Saint Petersburg University // Biol Commun. 2018. Vol. 63, No. 1. P. 17–31. DOI: 10.21638/spbu03.2018.104

[19]

Blokhina OB, Chirkova TV, Fagerstedt KV. Anoxic stress leads to hydrogen peroxide formation in plant cells. J Exp Bot. 2001;52(359):1179–1190. DOI: 10.1093/jexbot/52.359.1179

[20]

Blokhina O.B., Chirkova T.V., Fagerstedt K.V. Anoxic stress leads to hydrogen peroxide formation in plant cells // J Exp Bot. 2001. Vol. 52, No. 359. P. 1179–1190. DOI: 10.1093/jexbot/52.359.1179

[21]

Blokhina O, Virolainen E, Fagerstedt KV. Antioxidants, oxidative damage and oxygen deprivation stress: A review. Ann Bot. 2003;91(2):179–194. DOI: 10.1093/aob/mcf118

[22]

Blokhina O., Virolainen E., Fagerstedt K.V. Antioxidants, oxidative damage and oxygen deprivation stress: A review // Ann Bot. 2003. Vol. 91, No. 2. P. 179–194. DOI: 10.1093/aob/mcf118

[23]

Blokhina O, Fagerstedt KV. Reactive oxygen species and nitric oxide in plant mitochondria: Origin and redundant regulatory systems. Physiol Plant. 2010;138(4):447–462. DOI: 10.1111/j.1399-3054.2009.01340.x

[24]

Blokhina O., Fagerstedt K.V. Reactive oxygen species and nitric oxide in plant mitochondria: Origin and redundant regulatory systems // Physiol Plant. 2010. Vol. 138, No. 4. P. 447–462. DOI: 10.1111/j.1399-3054.2009.01340.x

[25]

Chirkova TV, Novitskaya LO, Blokhina OB. Lipid peroxidation and antioxidant systems under anoxia in plants differing in their tolerance to oxygen deficiency. Russ J Plant Physiol. 1998;45(1):55–62.

[26]

Chirkova T.V., Novitskaya L.O., Blokhina O.B. Lipid peroxidation and antioxidant systems under anoxia in plants differing in their tolerance to oxygen deficiency // Russ J Plant Physiol. 1998. Vol. 45, No. 1. P. 55–62.

[27]

Blokhina OB, Fagerstedt KV, Chirkova TV. Relationships between lipid peroxidation and anoxia tolerance in a range of species during post-anoxic reaeration. Physiol Plant. 1999;105(4):625–632. DOI: 10.1034/j.1399-3054.1999.105405.x

[28]

Blokhina O.B., Fagerstedt K.V., Chirkova T.V. Relationships between lipid peroxidation and anoxia tolerance in a range of species during post-anoxic reaeration // Physiol Plant. 1999. Vol. 105, No. 4. P. 625–632. DOI: 10.1034/j.1399-3054.1999.105405.x

[29]

Shikov AE, Lastochkin VV, Chirkova TV, et al. Post-anoxic oxidative injury is more severe than oxidative stress induced by chemical agents in wheat and rice plants. Acta Physiol Plant. 2022;44(9):90. DOI: 10.1007/s11738-022-03429-z

[30]

Shikov A.E., Lastochkin V.V., Chirkova T.V., et al. Post-anoxic oxidative injury is more severe than oxidative stress induced by chemical agents in wheat and rice plants // Acta Physiol Plant. 2022. Vol. 44, No. 9. ID90. DOI: 10.1007/s11738-022-03429-z

[31]

Sweetlove LJ, Dunford R, Ratcliffe RG, Kruger NJ. Lactate metabolism in potato tubers deficient in lactate dehydrogenase activity. Plant Cell Environ. 2000;23(8):873–881. DOI: 10.1046/j.1365-3040.2000.00605.x

[32]

Sweetlove L.J., Dunford R., Ratcliffe R.G., Kruger N.J. Lactate metabolism in potato tubers deficient in lactate dehydrogenase activity // Plant Cell Environ. 2000. Vol. 23, No. 8. P. 873–881. DOI: 10.1046/j.1365-3040.2000.00605.x

[33]

Licausi F, Perata P. Low oxygen signaling and tolerance in plants. Adv Bot Res. 2009;50:139–198. DOI: 10.1016/S0065-2296(08)00804-5

[34]

Licausi F., Perata P. Low oxygen signaling and tolerance in plants // Adv Bot Res. 2009. Vol. 50. P. 139–198. DOI: 10.1016/S0065-2296(08)00804-5

[35]

van Dongen JT, Frohlich A, Ramirez-Aguilar SJ, et al. Transcript and metabolite profiling of the adaptive response to mild decreases in oxygen concentration in the roots of arabidopsis plants. Ann Bot. 2009;103(2):269–280. DOI: 10.1093/aob/mcn126

[36]

van Dongen J.T., Frohlich A., Ramirez-Aguilar S.J., et al. Transcript and metabolite profiling of the adaptive response to mild decreases in oxygen concentration in the roots of arabidopsis plants // Ann Bot. 2009. Vol. 103, No. 2. P. 269–280. DOI: 10.1093/aob/mcn126

[37]

Rocha M, Licausi F, Araujo WL, et al. Glycolysis and the tricarboxylic acid cycle are linked by alanine aminotransferase during hypoxia induced by waterlogging of Lotus japonicas. Plant Physiol. 2010;152(3):1501–1513. DOI: 10.1104/pp.109.150045

[38]

Rocha M., Licausi F., Araujo W.L., et al. Glycolysis and the tricarboxylic acid cycle are linked by alanine aminotransferase during hypoxia induced by waterlogging of Lotus japonicas // Plant Physiol. 2010. Vol. 152, No. 3. P. 1501–1513. DOI: 10.1104/pp.109.150045

[39]

Barding GA Jr, Fukao T, Beni S, et al. Differential metabolic regulation governed by the rice SUB1A gene during submergence stress and identification of alanylglycine by 1H NMR spectroscopy. J Proteome Res. 2012;11(1):320–330. DOI: 10.1021/pr200919b

[40]

Barding G.A. Jr., Fukao T., Beni S., et al. Differential metabolic regulation governed by the rice SUB1A gene during submergence stress and identification of alanylglycine by 1H NMR spectroscopy // J Proteome Res. 2012. Vol. 11, No. 1. P. 320–330. DOI: 10.1021/pr200919b

[41]

Antonio C, Päpke C, Rocha M, et al. Regulation of primary metabolism in response to low oxygen availability as revealed by carbon and nitrogen isotope redistribution. Plant Physiol. 2016;170(1):43–56. DOI: 10.1104/pp.15.00266

[42]

Antonio C., Päpke C., Rocha M., et al. Regulation of primary metabolism in response to low oxygen availability as revealed by carbon and nitrogen isotope redistribution // Plant Physiol. 2016. Vol. 170, No. 1. P. 43–56. DOI: 10.1104/pp.15.00266

[43]

Herzog M, Fukao T, Winkel A, et al. Physiology, gene expression, and metabolome of two wheat cultivars with contrasting submergence tolerance. Plant Cell Environ. 2018;41(7):1632–1644. DOI: 10.1111/pce.13211

[44]

Herzog M., Fukao T., Winkel A., et al. Physiology, gene expression, and metabolome of two wheat cultivars with contrasting submergence tolerance // Plant Cell Environ. 2018. Vol. 41, No. 7. P. 1632–1644. DOI: 10.1111/pce.13211

[45]

Hasler-Sheetal H, Fragner L, Holmer M, Weckwerth W. Diurnal effects of anoxia on the metabolome of the seagrass Zostera marina. Metabolomics. 2015;11(5):1208–1218. DOI: 10.1007/s11306-015-0776-9

[46]

Hasler-Sheetal H., Fragner L., Holmer M., Weckwerth W. Diurnal effects of anoxia on the metabolome of the seagrass Zostera marina // Metabolomics. 2015. Vol. 11, No. 5. P. 1208–1218. DOI: 10.1007/s11306-015-0776-9

[47]

Parveen M, Miyagi A, Kawai-Yamada M, et al. Metabolic and biochemical responses of Potamogeton anguillanus Koidz. (Potamogetonaceae) to low oxygen conditions. J Plant Physiol. 2019;232: 171–179. DOI: 10.1016/j.jplph.2018.11.023

[48]

Parveen M., Miyagi A., Kawai-Yamada M., et al. Metabolic and biochemical responses of Potamogeton anguillanus Koidz. (Potamogetonaceae) to low oxygen conditions // J. Plant Physiol. 2019. Vol. 232. P. 171–179. DOI: 10.1016/j.jplph.2018.11.023

[49]

Locke AM, Barding GA Jr, Sathnur S, et al. Rice SUB1A constrains remodelling of the transcriptome and metabolome during submergence to facilitate post-submergence recovery. Plant Cell Environ. 2018;41(4):721–736. DOI: 10.1111/pce.13094

[50]

Locke A.M., Barding G.A. Jr., Sathnur S., et al. Rice SUB1A constrains remodelling of the transcriptome and metabolome during submergence to facilitate post-submergence recovery // Plant Cell Environ. 2018. Vol. 41, No. 4. P. 721–736. DOI: 10.1111/pce.13094

[51]

Coutinho ID, Henning LMM, Döpp SA, et al. Identification of primary and secondary metabolites and transcriptome profile of soybean tissues during different stages of hypoxia. Data in Brief. 2018;21:1089–1100. DOI: 10.1016/j.dib.2018.09.122

[52]

Coutinho I.D., Henning L.M.M., Döpp S.A., et al. Identification of primary and secondary metabolites and transcriptome profile of soybean tissues during different stages of hypoxia // Data in Brief. 2018. Vol. 21. P. 1089–1100. DOI: 10.1016/j.dib.2018.09.122

[53]

theplantlist.org [Internet]. The Plant List [cited 2022 Nov 20]. Available at: http://theplantlist.org/1.1/browse/A/Onagraceae/Epilobium/

[54]

theplantlist.org [Электронный ресурс]. The Plant List [дата обращения: 20.11.2022]. Доступ по ссылке: http://theplantlist.org/1.1/browse/A/Onagraceae/Epilobium/

[55]

mobot.org [Internet]. Angiosperm phylogeny website, version 14 [cited 2022 Nov 20]. Available at: http://www.mobot.org/MOBOT/Research/APweb/orders/myrtalesweb2.htm#Onagraceae

[56]

mobot.org [Электронный ресурс]. Angiosperm phylogeny website, version 14 [дата обращения: 20.11.2022]. Доступ по ссылке: http://www.mobot.org/MOBOT/Research/APweb/orders/myrtalesweb2.htm#Onagraceae

[57]

Maevskii PF. Flora srednei polosy evropeiskoi chasti Rossii. 11th edition. Moscow: Tovarishchestvo nauchnykh izdanii KMK, 2014. 635 p. (In Russ.)

[58]

Маевский П.Ф. Флора средней полосы европейской части России. 11-е изд. Москва: Товарищество научных изданий КМК, 2014. 635 с.

[59]

Ronzhina DA. Ecological differentiation between invasive and native species of the genus Epilobium in riparian ecosystems is associated with plant functional traits. Russ J Biol Invas. 2020;(1):38–51. (In Russ.)

[60]

Ронжина Д.А. Экологическая дифференциация инвазионных и аборигенных видов рода Epilobium в прибрежно-водных экосистемах связана с функциональными особенностями растений // Российский журнал биологических инвазий. 2020. № 1. С. 38–51.

[61]

Chirkov YI. Osnovy agrometeorologii. Leningrad: Gidrometeoizdat, 1988. 248 p. (In Russ.)

[62]

Чирков Ю.И. Основы агрометеорологии. Ленинград: Гидрометеоиздат, 1988. 248 с.

[63]

Puzanskiy RK, Yemelyanov VV, Shavarda AL, et al. Age- and organ-specific differences of potato (Solanum phureja) plants metabolome. Russ J Plant Physiol. 2018;65(6):813–823. DOI: 10.1134/S1021443718060122

[64]

Puzanskiy R.K., Yemelyanov V.V., Shavarda A.L., et al. Age- and organ-specific differences of potato (Solanum phureja) plants metabolome // Russ J Plant Physiol. 2018. Vol. 65, No. 6. P. 813–823. DOI: 10.1134/S1021443718060122

[65]

Lai Z, Tsugawa H, Wohlgemuth G, et al. Identifying metabolites by integrating metabolome databases with mass spectrometry cheminformatics. Nat Methods. 2018;15:53–56. DOI: 10.1038/nmeth.4512

[66]

Lai Z., Tsugawa H., Wohlgemuth G., et al. Identifying metabolites by integrating metabolome databases with mass spectrometry cheminformatics // Nat Methods. 2018. Vol. 15. P. 53–56. DOI: 10.1038/nmeth.4512

[67]

Hummel J, Selbig J, Walther D, Kopka J. The Golm Metabolome Database: a Database for GC-MS based metabolite profiling. Nielsen J, Jewett MC, editors. Metabolomics. Vol. 18: Topics in Current Genetics. Berlin; Heidelberg: Springer. 2007. P. 75–95. DOI: 10.1007/4735_2007_0229

[68]

Hummel J., Selbig J., Walther D., Kopka J. The Golm Metabolome Database: a Database for GC-MS based metabolite profiling. Metabolomics. Vol. 18: Topics in Current Genetics / J. Nielsen, M.C. Jewett, editors. Berlin; Heidelberg: Springer. 2007. P. 75–95. DOI: 10.1007/4735_2007_0229

[69]

r-project.org [Internet]. R Core Team. R: The R Project for Statistical Computing [cited 2022 Nov 20]. Available at: https://www.r-project.org/

[70]

r-project.org [Электронный ресурс]. R Core Team. R: The R Project for Statistical Computing [дата обращения: 20.11.2022]. Доступ по ссылке: https://www.r-project.org/

[71]

CRAN.R-project.org [Internet]. Komsta L. outliers: Tests for Outliers. R package version 0.15, 2022 [cited 2022 Nov 20]. Available at: https://CRAN.R-project.org/package=outliers

[72]

CRAN.R-project.org [Электронный ресурс]. Komsta L. outliers: Tests for Outliers. R package version 0.15, 2022 [дата обращения: 20.11.2022]. Доступ по ссылке: https://CRAN.R-project.org/package=outliers

[73]

bioconductor.org [Internet]. Hastie T, Tibshirani R, Narasimhan B, Chu G. Impute: Imputation for microarray data. R package version 1.70.0. 2022. Available at: https://bioconductor.org/packages/release/bioc/html/impute.html

[74]

bioconductor.org [Электронный ресурс]. Hastie T., Tibshirani R., Narasimhan B., Chu G. Impute: Imputation for microarray data. R package version 1.70.0. 2022. Доступ по ссылке: https://bioconductor.org/packages/release/bioc/html/impute.html

[75]

Stacklies W, Redestig H, Scholz M, et al. pcaMethods — a Bioconductor package providing PCA methods for incomplete data. Bioinformatics. 2007;23(9):1164–1167. DOI: 10.1093/bioinformatics/btm069

[76]

Stacklies W., Redestig H., Scholz M., et al. pcaMethods — a Bioconductor package providing PCA methods for incomplete data // Bioinformatics. 2007. Vol. 23, No. 9. P. 1164–1167. DOI: 10.1093/bioinformatics/btm069

[77]

Thevenot EA, Roux A, Xu Y, et al. Analysis of the human adult urinary metabolome variations with age, body mass index and gender by implementing a comprehensive workflow for univariate and OPLS statistical analyses. J Proteome Res. 2015;14(8):3322–3335. DOI: 10.1021/acs.jproteome.5b00354

[78]

Thevenot E.A., Roux A., Xu Y., et al. Analysis of the human adult urinary metabolome variations with age, body mass index and gender by implementing a comprehensive workflow for univariate and OPLS statistical analyses // J Proteome Res. 2015. Vol. 14, No. 8. P. 3322–3335. DOI: 10.1021/acs.jproteome.5b00354

[79]

Brereton RG, Lloyd GR. Partial least squares discriminant analysis: taking the magic away. J Chemom. 2013;28(4):213–225. DOI: 10.1002/cem.2609

[80]

Brereton R.G., Lloyd G.R. Partial least squares discriminant analysis: taking the magic away // J Chemom. 2013. Vol. 28, No. 4. P. 213–225. DOI: 10.1002/cem.2609

[81]

Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics. 2016;32(18):2847–2849. DOI: 10.1093/bioinformatics/btw313

[82]

Gu Z., Eils R., Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data // Bioinformatics. 2016. Vol. 32, No. 18. P. 2847–2849. DOI: 10.1093/bioinformatics/btw313

[83]

Korotkevich G, Sukhov V, Sergushichev A. Fast gene set enrichment analysis. bioRxiv. 2019;1–40. DOI: 10.1101/060012

[84]

Korotkevich G., Sukhov V., Sergushichev A. Fast gene set enrichment analysis // bioRxiv. 2019. P. 1–40. DOI: 10.1101/060012

[85]

Kanehisa M, Furumichi M, Sato Y, et al. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 2022; gkac963. DOI: 10.1093/nar/gkac963

[86]

Kanehisa M., Furumichi M., Sato Y., et al. KEGG for taxonomy-based analysis of pathways and genomes // Nucleic Acids Res. 2022. ID gkac963. DOI: 10.1093/nar/gkac963

[87]

bioconductor.org [Internet]. Tenenbaum D, Maintainer B. KEGGREST: Client-side REST access to the Kyoto Encyclopedia of Genes and Genomes (KEGG). 2022. R package version 1.36.2. Available at: https://www.bioconductor.org/packages/release/bioc/html/KEGGREST.html

[88]

bioconductor.org [Электронный ресурс]. Tenenbaum D., Maintainer B. KEGGREST: Client-side REST access to the Kyoto Encyclopedia of Genes and Genomes (KEGG). 2022. R package version 1.36.2. Доступ по ссылке: https://www.bioconductor.org/packages/release/bioc/html/KEGGREST.html

[89]

Shannon P, Markiel A, Ozier O, et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–2504. DOI: 10.1101/gr.1239303

[90]

Shannon P., Markiel A., Ozier O., et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks // Genome Res. 2003. Vol. 13, No. 11. P. 2498–2504. DOI: 10.1101/gr.1239303

[91]

Xu Y, Fu X. Reprogramming of plant central metabolism in response to abiotic stresses: A metabolomics view. Int J Mol Sci. 2022;23(10):5716. DOI: 10.3390/ijms23105716

[92]

Xu Y., Fu X. Reprogramming of plant central metabolism in response to abiotic stresses: A metabolomics view // Int J Mol Sci. 2022. Vol. 23, No. 10. ID5716. DOI: 10.3390/ijms23105716

[93]

Shingaki-Wells RN, Huang S, Taylor NL, et al. Differential molecular responses of rice and wheat coleoptiles to anoxia reveal novel metabolic adaptations in amino acid metabolism for tissue tolerance. Plant Physiol. 2011;156(4):1706–1724. DOI: 10.1104/pp.111.175570

[94]

Shingaki-Wells R.N., Huang S., Taylor N.L., et al. Differential molecular responses of rice and wheat coleoptiles to anoxia reveal novel metabolic adaptations in amino acid metabolism for tissue tolerance // Plant Physiol. 2011. Vol. 156, No. 4. P. 1706–1724. DOI: 10.1104/pp.111.175570

[95]

Mustroph A, Barding GA Jr, Kaiser KA, et al. Characterization of distinct root and shoot responses to low-oxygen stress in Arabidopsis with a focus on primary C- and N-metabolism. Plant Cell Environ. 2014;37(10):2366–2380. DOI: 10.1111/pce.12282

[96]

Mustroph A., Barding G.A. Jr., Kaiser K.A., et al. Characterization of distinct root and shoot responses to low-oxygen stress in Arabidopsis with a focus on primary C- and N-metabolism // Plant Cell Environ. 2014. Vol. 37, No. 10. P. 2366–2380. DOI: 10.1111/pce.12282

[97]

Fukushima A, Kuroha T, Nagai K, et al. Metabolite and phytohormone profiling illustrates metabolic reprogramming as an escape strategy of deepwater rice during partially submerged stress. Metabolites. 2020;10(2):68. DOI: 10.3390/metabo10020068

[98]

Fukushima A., Kuroha T., Nagai K., et al. Metabolite and phytohormone profiling illustrates metabolic reprogramming as an escape strategy of deepwater rice during partially submerged stress // Metabolites. 2020. Vol. 10, No. 2. ID 68. DOI: 10.3390/metabo10020068

[99]

Dacrema M, Sommella E, Santarcangelo C, et al. Metabolic profiling, in vitro bioaccessibility and in vivo bioavailability of a commercial bioactive Epilobium angustifolium L. extract. Biomed Pharmacother. 2020;131:110670. DOI: 10.1016/j.biopha.2020.110670

[100]

Dacrema M., Sommella E., Santarcangelo C., et al. Metabolic profiling, in vitro bioaccessibility and in vivo bioavailability of a commercial bioactive Epilobium angustifolium L. extract // Biomed Pharmacother. 2020. Vol. 131. ID110670. DOI: 10.1016/j.biopha.2020.110670

[101]

Ak G, Zengin G, Mahomoodally MF, et al. Shedding light into the connection between chemical components and biological effects of extracts from Epilobium hirsutum: Is it a potent source of bioactive agents from natural treasure? Antioxidants. 2021;10(9):1389. DOI: 10.3390/antiox10091389

[102]

Ak G., Zengin G., Mahomoodally M.F., et al. Shedding light into the connection between chemical components and biological effects of extracts from Epilobium hirsutum: Is it a potent source of bioactive agents from natural treasure? // Antioxidants. 2021. Vol. 10, No. 9. ID 1389. DOI: 10.3390/antiox10091389

[103]

Matysik J, Alia A, Bhalu B, Mohanty P. Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Curr Sci. 2002;82(5):525–532.

[104]

Matysik J., Alia A., Bhalu B., Mohanty P. Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants // Curr Sci. 2002. Vol. 82, No. 5. P. 525–532.

[105]

Tamang BG, Fukao T. Plant adaptation to multiple stresses during submergence and following desubmergence. Int J Mol Sci. 2015;16(12):30164–30180. DOI: 10.3390/ijms161226226

[106]

Tamang B.G., Fukao T. Plant adaptation to multiple stresses during submergence and following desubmergence // Int J Mol Sci. 2015. Vol. 16, No. 12. P. 30164–30180. DOI: 10.3390/ijms161226226

[107]

Shikov AE, Chirkova TV, Yemelyanov VV. Post-anoxia in plants: reasons, consequences, and possible mechanisms. Russ J Plant Physiol. 2020;67(1):45–59. DOI: 10.1134/S1021443720010203

[108]

Shikov A.E., Chirkova T.V., Yemelyanov V.V. Post-anoxia in plants: reasons, consequences, and possible mechanisms // Russ J Plant Physiol. 2020. Vol. 67, No. 1. P. 45–59. DOI: 10.1134/S1021443720010203

[109]

Yemelyanov VV, Lastochkin VV, Prikazyuk EG, Chirkova TV. Activities of catalase and peroxidase in wheat and rice plants under conditions of anoxia and post-anoxic aeration. Russ J Plant Physiol. 2022;69(6):117. DOI: 10.1134/S1021443722060036

[110]

Yemelyanov V.V., Lastochkin V.V., Prikazyuk E.G., Chirkova T.V. Activities of catalase and peroxidase in wheat and rice plants under conditions of anoxia and post-anoxic aeration // Russ J Plant Physiol. 2022. Vol. 69, No. 6. P. 117. DOI: 10.1134/S1021443722060036

[111]

Shelp BJ, Bown AW, McLean MD. Metabolism and functions of gamma-aminobutyric acid. Trends Plant Sci. 1999;4(11): 446–452. DOI: 10.1016/S1360-1385(99)01486-7

[112]

Shelp B.J., Bown A.W., McLean M.D. Metabolism and functions of gamma-aminobutyric acid // Trends Plant Sci. 1999. Vol. 4, No. 11. P. 446–452. DOI: 10.1016/S1360-1385(99)01486-7

Funding

Российский научный фондRussian Science Foundation(22-24-00484)

RIGHTS & PERMISSIONS

Puzanskiy R.K., Smirnov P.D., Vanisov S.A., Dubrovskiy M.D., Shavarda A.L., Shishova M.F., Yemelyanov V.V.

AI Summary AI Mindmap
PDF (3006KB)

58

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/