The productivity potential of some corn hybrids of the VIR collection for starch extraction during deep grain processing
Vladivir G. Golgshtein , Liliya P. Nosovskaya , Larisa V. Adikaeva , Magomed A. Bazgiev , Kulsum Sh. Badurgova , Aslanbek I. Buzurtanov , Valentina I. Khoreva , Vladislav N. Boyko , Alexander A. Grushin , Selminaz F. Israfilova , Irina V. Fil , Eduard B. Khatefov
Ecological Genetics ›› 2023, Vol. 21 ›› Issue (1) : 19 -31.
The productivity potential of some corn hybrids of the VIR collection for starch extraction during deep grain processing
BACKGROUND: The study of the VIR corn collection in order to search for economically valuable sources and donors is topical.
MATERIALS AND METHODS: Studies of the biochemical components of grain during its deep processing were carried out on 27 hybrids from Germany, presented in the VIR collection. Valuable results have been obtained using the method of IR spectrometry and deep processing of grain in laboratory conditions, which make it possible to identify samples of interest for the production of native starch and its by-products.
RESULTS: The starch yield of more than 65% solids (% DM) grain dry matter is established for the following hybrids: KHV 7262, KHV 6431, KHV 6331, KHV 5440, Karpatis, DS 21209C, DS 21215B, DS 21212A, DS 21205B, DS 22188D. The maximum starch yield, more than 70% grain DM, is set for DS 21205B hybrids. The maximum yield of the embryo was set for the hybrid KHV 4126 up to 10% DM of the grain, the yield of starch during the processing of the grain of this hybrid was 61.2% DM. The highest yield of gluten, 18% or more, was established during the processing of hybrids DS 23190B and DS 21203B. The pulp yield of more than 15% CB was obtained by processing grain DS 22182C. Based on the results obtained, the following hybrids are proposed as the starting material for corn breeding for deep grain processing: KHV 7262, KHV 5440, DS 21209C, DS 21215B, DS 21212A, DS 21205B, DS 22188D.
CONCLUSIONS: Of greatest interest as a starting material is hybrid DS 21205B, during the processing of which starch was extracted in an amount of more than 70% grain DM.
legume-rhizobial symbiosis / Nod factors / signal pathway / calcium / inositol phosphates / phospholipase C
| [1] |
Watson SA. Description, development, structure, and composition of the corn kernel. Ed. by P.J. White, L.A. Johnson. Corn: Chemistry and Technology. 2nd ed. American Association of Cereal Chemists Inc., St. Paul. 2003. P. 69–106. |
| [2] |
Watson S.A. Description, development, structure, and composition of the corn kernel. Ed by P.J. White, L.A. Johnson. Corn: Chemistry and Technology. 2nd ed. American Association of Cereal Chemists Inc., St. Paul 2003. P. 69–106. |
| [3] |
Sinha AK, Kumar V, Makkar HSP, et al. Non-starch polysaccharides and their role in fish nutrition — a review. Food Chemistry. 2011;127:1409–1426. |
| [4] |
Sinha A.K., Kumar V., Makkar H.S.P., et al. Non-starch polysaccharides and their role in fish nutrition — a review // Food Chemistry. 2011. Vol. 127. P. 1409–1426. |
| [5] |
Zhang R, Ma S, Li L, et al. Comprehensive utilization of corn starch processing by-products: A review. Grain & Oil Science and Technology. 2021;4(3):89–107. DOI: 10.1016/j.gaost.2021.08.003 |
| [6] |
Zhang R., Ma S., Li L., et al. Comprehensive utilization of corn starch processing by-products: A review // Grain & Oil Science and Technology. 2021. Vol. 4, No. 3. P. 89–107. DOI: 10.1016/j.gaost.2021.08.003 |
| [7] |
Kompleksnaya programma razvitiya biotekhnologii v Rossiiskoi Federatsii na period do 2020 goda. Moscow, 2012. P. 8–28. (In Russ.) [cited 2023 March 17]. Available from: https://legalacts.ru/doc/vp-p8-2322-kompleksnaja-programma-razvitija-biotekhnologii-v-rossiiskoi/ |
| [8] |
Комплексная программа развития биотехнологий в Российской Федерации на период до 2020 года. Москва: 2012. С. 8–28. Режим доступа: https://legalacts.ru/doc/vp-p8-2322-kompleksnaja-programma-razvitija-biotekhnologii-v-rossiiskoi/ Дата обращения: 17.03.2023. |
| [9] |
Yu JK, Moon YS. Corn Starch: Quality and Quantity Improvement for Industrial Uses. Plants. 2022;11:92. DOI: 10.3390/plants11010092 |
| [10] |
Yu J.K., Moon Y.S. Corn Starch: Quality and Quantity Improvement for Industrial Uses // Plants. 2022. Vol. 11. P. 92. DOI: 10.3390/plants11010092 |
| [11] |
Pollak LM, Scott MP. Breeding for grain quality traits. Maydica. 2005;50:247–257. |
| [12] |
Pollak L.M., Scott M.P. Breeding for grain quality traits // Maydica. 2005. Vol. 50. P. 247–257. |
| [13] |
Burrell MM. Starch: The need for improved quality or quantity — An overview. Journal of Experimental Botany. 2003;54:451–456. DOI: 10.2134/agronj1958.00021962005000010003x |
| [14] |
Burrell M.M. Starch: The need for improved quality or quantity — An overview // Journal of Experimental Botany. 2003. Vol. 54. P. 451–456. DOI: 10.2134/agronj1958.00021962005000010003x |
| [15] |
Kaur B, Ariffin F, Bhat R, Karim AA. Progress in starch modification in the last decade. Food Hydrocolloids. 2012;26:398–404. DOI: 10.1016/j.foodhyd.2011.02.016 |
| [16] |
Kaur B., Ariffin F., Bhat R., Karim A.A. Progress in starch modification in the last decade // Food Hydrocolloids. 2012. Vol. 26. P. 398–404 DOI: 10.1016/j.foodhyd.2011.02.016 |
| [17] |
Pajic Z, Radosavljevic M, Filipovic M, et al. Breeding of specialty maize for industrial purposes. Genetika. 2010;42:57–66. DOI: 10.2298/GENSR1001057P |
| [18] |
Pajic Z., Radosavljevic M., Filipovic M., et al. Breeding of specialty maize for industrial purposes // Genetika. 2010. Vol. 42. P. 57–66. DOI: 10.2298/GENSR1001057P |
| [19] |
Jeon JS, Ryoo N, Hahn TR, et al. Starch biosynthesis in cereal endosperm. Plant Physiol Biochem. 2010;48:383–392. DOI: 10.1016/j.plaphy.2010.03.006 |
| [20] |
Jeon, J.S., Ryoo N., Hahn T.R., et al. Starch biosynthesis in cereal endosperm // Plant Physiol Biochem. 2010. Vol. 48. P. 383–392. DOI: 10.1016/j.plaphy.2010.03.006 |
| [21] |
James MG, Denyer K, Myer AM. Starch synthesis in the cereal endosperm. Current Opinion in Plant Biology. 2003;6:215–222. DOI: 10.1016/s1369-5266(03)00042-6 |
| [22] |
James M.G., Denyer K., Myer A.M. Starch synthesis in the cereal endosperm // Current Opinion in Plant Biology. 2003. Vol. 6. P. 215–222. DOI: 10.1016/s1369-5266(03)00042-6 |
| [23] |
Tetlow IJ. Starch biosynthesis in developing seeds. Seed Science Research. 2011;21:5–32. DOI: 10.1017/S0960258510000292 |
| [24] |
Tetlow I.J. Starch biosynthesis in developing seeds // Seed Science Research. 2011. Vol. 21. P. 5–32. DOI: 10.1017/S0960258510000292 |
| [25] |
Nelson O, Pan D. Starch synthesis in maize endosperms. Annu Rev Plant Physiol Plant Molecular Biology.1995;46:475–496. DOI: 10.1146/annurev.pp.46.060195.002355 |
| [26] |
Nelson O., Pan D. Starch synthesis in maize endosperms // Annu Rev Plant Physiol Plant Molecular Biology.1995. Vol. 46. P. 475–496. DOI: 10.1146/annurev.pp.46.060195.002355 |
| [27] |
Tayade R, Kulkarni KP, Jo H, et al. Insight into the prospects for the improvement of seed starch in legume — A Review. Frontiers in Plant Science. 2019;10:1213. DOI: 10.3389/fpls.2019.01213 |
| [28] |
Tayade R., Kulkarni K.P., Jo H., et al. Insight into the prospects for the improvement of seed starch in legume — A Review // Frontiers in Plant Science. 2019. Vol. 10. P. 1213. DOI: 10.3389/fpls.2019.01213 |
| [29] |
Srichuwong S, Jane JL. Physicochemical properties of starch affected by molecular composition and structures: A review. Food Science and Biotechnology. 2007;16:663–674. |
| [30] |
Srichuwong S., Jane J.L. Physicochemical properties of starch affected by molecular composition and structures: A review // Food Science and Biotechnology. 2007. Vol. 16. P. 663–674. |
| [31] |
Hung PV, Maeda T, Morita N. Study on physicochemical characteristics of waxy and high-amylose wheat starches in comparison with normal wheat starch. Starch–Stärke. 2007;59:125–131. DOI: 10.1002/star.200600577 |
| [32] |
Hung P.V., Maeda T., Morita N. Study on physicochemical characteristics of waxy and high-amylose wheat starches in comparison with normal wheat starch // Starch–Stärke. 2007. Vol. 59. P. 125–131. DOI: 10.1002/star.200600577 |
| [33] |
Zuber MS, Grogan CO, Deatherage WL, et al. Breeding High Amylose. Corn. 1958;50(1):9–12. |
| [34] |
Zuber M.S., Grogan C.O., Deatherage W.L., et al. Breeding High Amylose // Corn. 1958. Vol. 50, No. 1. P. 9–12. |
| [35] |
Abu-Ghannam N, Balboa E. Biotechnological, food, and health care applications. Chapter 9. Ed. by C.M. Galanakis. Sustainable Recovery and Reutilization of Cereal Processing by-Products. Woodhead Publishing Inc., Cambridge. 2018. P. 253–278. |
| [36] |
Abu-Ghannam N., Balboa E. Biotechnological, food, and health care applications. Chapter 9. Ed. by C.M. Galanakis. Technology and Nutrition, Sustainable Recovery and Reutilization of Cereal Processing by-Products. Woodhead Publishing Inc., Cambridge. 2018. P. 253–278. |
| [37] |
Gol’dshtein V, Lukin N, Radin O. Pobochnye produkty krakhmalopatochnogo proizvodstva — kormovye komponenty. Kombikorma. 2018;7(8);54–56. DOI: 10.25741/2413-287X-2018-07-3-012 |
| [38] |
Гольдштейн В., Лукин Н., Радин О. Побочные продукты крахмалопаточного производства — кормовые компоненты // Комбикорма. 2018. Т. 7, № 8. С. 54–56. DOI 10.25741/2413-287X-2018-07-3-012 |
| [39] |
Somavat P, Liu W, Singh V. Wet milling characteristics of corn mutants using modified processes and improving starch yields from high amylose corn. Food and Bioproducts Processing. 2021;126: 104–112. DOI: 10.1016/j.fbp.2020.12.015 |
| [40] |
Somavat P., Liu W., Singh V. Wet milling characteristics of corn mutants using modified processes and improving starch yields from high amylose corn // Food and Bioproducts Processing. 2021. Vol. 126. P. 104–112. DOI: 10.1016/j.fbp.2020.12.015 |
| [41] |
Gonikova MR, Horeva VI, Gol’dshtejn VG. Study of economically valuable traits and technological properties in maize from the Zea mays L. Collection of VIR. Proceedings on Applied Botany, Genetics and Breeding. 2020;181(4):56–64. DOI: 10.30901/2227-8834-2020-4-56-64 |
| [42] |
Гоникова М.Р., Хорева В.И., Гольдштейн В.Г., и др. Изучение хозяйственно ценных признаков и технологических свойств коллекции Zea Mays L. ВИР // Труды по прикладной ботанике, генетике и селекции. 2020. Т. 181, № 4. С. 56–64. DOI: 10.30901/2227-8834-2020-4-56-64 |
| [43] |
GOST 32902–2014. Starch and starch products. Terms and definitions. Available from: https://docs.cntd.ru/document/1200115857 |
| [44] |
ГОСТ 32902–2014. Крахмал и крахмалопродукты. Термины и определения. МКС 67.180.20. Дата введения 2015–06–01. Режим доступа: https://docs.cntd.ru/document/1200115857 Дата обращения: 17.03.2023. |
| [45] |
Shmaraev GE, Matveeva GV. Izuchenie i podderzhanie obraztsov kollektsii kukuruzy. Metodicheskie rekomendatsii. Leningrad. VIR; 1985. 49 p. |
| [46] |
Шмараев Г.Е., Матвеева Г.В. Изучение и поддержание образцов коллекции кукурузы. Методические рекомендации. Ленинград: ВИР, 1985. 49 с. |
| [47] |
Sotchenko VS. Celektsiya. Semenovodstvo. Tekhnologiya vozdelyvaniya kukuruzy. Materials of the Scientific and practical conference dedicated to the 25th anniversary of the Wildebeest Research Institute of Corn. 2012 Nov 11–12; Pyatigorsk. RASHN GNU VNII kukuruzy; 2012. 320 p. |
| [48] |
Сотченко В.С., ред. Cелекция. Семеноводство. Технология возделывания кукурузы. Материалы научно-практической конференции, посвященной 25-летию ГНУ ВНИИ кукурузы. Ноябрь 11–12, Пятигорск. РАСХН ГНУ ВНИИ кукурузы; 2012. 320 с. |
| [49] |
Kukekov VG, editor. Shirokii unifitsirovannyi klassifikator SEHV i mezhdunarodnyi klassifikator SEHV vidov Zea mays L. Leningrad: B.i.; 1977. 70 p. |
| [50] |
Широкий унифицированный классификатор СЭВ и международный классификатор СЭВ видов Zea mays L. / под ред. В.Г. Кукекова. Ленинград: [Б.и.], 1977. 70 с. |
Eco-Vector
/
| 〈 |
|
〉 |