The efficiency of molecular markers of the SKr suppressor gene that determines the crossability of common wheat with rye

Igor V. Porotnikov , Valentina P. Puykkenen , Olga Yu. Antonova , Olga P. Mitrofanova

Ecological Genetics ›› 2022, Vol. 20 ›› Issue (3) : 203 -214.

PDF
Ecological Genetics ›› 2022, Vol. 20 ›› Issue (3) : 203 -214. DOI: 10.17816/ecogen110867
Genetic basis of ecosystems evolution
research-article

The efficiency of molecular markers of the SKr suppressor gene that determines the crossability of common wheat with rye

Author information +
History +
PDF

Abstract

BACKGROUND: Among the genes involved in the control of crossing between common wheat and rye, the dominant suppressor SKr (Suppressor of crossability) having the major effect on inhibiting crossability is the most studied. DNA-markers have been developed for this gene. There are cases of successful application of some of them in wheat breeding, but there is practically no information about their diagnostic efficiency in screening of ex situ collections.

MATERIALS AND METHODS: To evaluate the effectiveness of SKr markers Xcfb341, TGlc2, gene12 и gene13 to identify forms with high crossability with rye, we studied 103 bread wheat accessions from the VIR collection with different seed set (0–93%) after pollinated with rye.

RESULTS: Efficiency in detection crossable forms (upper 15%) was demonstrated by markers Xcfb341, TGlc2 and gene12. No significant allele-trait association was found for gene13 marker. Ten haplotypes were identified based on four markers. Five haplotypes were revealed for accessions from China, while two of them were associated with “high crossability”. Eleven accessions including the line L6-HSR were heterogenic in markers. For this line the relationship of diagnostic fragments with the crossability level observed in the field has been experimentally confirmed.

CONCLUSIONS: The SKr gene markers studied can be used for accessions searching at ex situ collections that potentially have high crossability with rye, for controlling the retention of recessive skr alleles when regenerating seed accessions, as well as in breeding programs.

Keywords

Triticum aestivum / Secale cereale / accessions of VIR collection / crossability of bread wheat with rye / DNA-markers / haplotypes

Cite this article

Download citation ▾
Igor V. Porotnikov, Valentina P. Puykkenen, Olga Yu. Antonova, Olga P. Mitrofanova. The efficiency of molecular markers of the SKr suppressor gene that determines the crossability of common wheat with rye. Ecological Genetics, 2022, 20(3): 203-214 DOI:10.17816/ecogen110867

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Mujeeb-Kazi A, Kazi AG, Dundas I, et al. Genetic diversity for wheat improvement as a conduit to food security. Adv Agron. 2013;122(4):179–257. DOI: 10.1016/B978-0-12-417187-9.00004-8

[2]

Mujeeb-Kazi A., Kazi A.G., Dundas I., et al. Genetic diversity for wheat improvement as a conduit to food security // Adv Agron. 2013. Vol. 122, No. 4. P. 179–257. DOI: 10.1016/B978-0-12-417187-9.00004-8

[3]

Moskal K, Kowalik S, Podyma W, et al. The Pros and Cons of rye chromatin introgression into wheat genome. Agronomy. 2021;11(3):456. DOI: 10.3390/agronomy11030456

[4]

Moskal K., Kowalik S., Podyma W., et al. The Pros and Cons of Rye Chromatin Introgression into Wheat Genome // Agronomy. 2021. Vol. 11, No. 3. ID456. DOI: 10.3390/agronomy11030456

[5]

Lein A. Die genetische Grundlage der Kreuzbarkeit zwischen Weizen und Roggen. Zeitschrift für Induktive Abstammungs und Vererbungslehre. 1943;81(1):28–61. (In German). DOI: 10.1007/BF01847441

[6]

Lein A. Die genetische Grundlage der Kreuzbarkeit zwischen Weizen und Roggen // Zeitschrift für Induktive Abstammungs und Vererbungslehre. 1943. Vol. 81, No. 1. P. 28–61. DOI: 10.1007/BF01847441

[7]

Lange W, Wojciechowska B. The crossing of common wheat (Triticum aestivum L.) with cultivated rye (Secale cereale L.). I. Crossability, pollen grain germination and pollen tube growth. Euphytica. 1976;25(1):609–620. DOI: 10.1007/BF00041598

[8]

Lange W., Wojciechowska B. The crossing of common wheat (Triticum aestivum L.) with cultivated rye (Secale cereale L.). I. Crossability, pollen grain germination and pollen tube growth // Euphytica. 1976. Vol. 25, No. 1. P. 609–620. DOI: 10.1007/BF00041598

[9]

Zeven AC. Crossability percentages of some 1400 bread wheat varieties and lines with rye. Euphytica. 1987;36(1):299–319. DOI: 10.1007/BF00730677

[10]

Zeven A.C. Crossability percentages of some 1400 bread wheat varieties and lines with rye // Euphytica. 1987. Vol. 36, No. 1. P. 299–319. DOI: 10.1007/BF00730677

[11]

Bouguennec A, Lesage VS, Gateau I, et al. Transfer of recessive skr crossability trait into well-adapted French wheat cultivar Barok through marker-assisted backcrossing method. Cereal Res Commun. 2018;46(4):604–615. DOI: 10.1556/0806.46.2018.043

[12]

Bouguennec A., Lesage V.S., Gateau I., et al. Transfer of recessive skr crossability trait into well-adapted French wheat cultivar Barok through marker-assisted backcrossing method // Cereal Res Commun. 2018. Vol. 46, No. 4. P. 604–615. DOI: 10.1556/0806.46.2018.043

[13]

Pershina LA, Trubacheeva NV. Interspecific incompatibility in the wide hybridization of plants and ways to overcome it. Russian Journal of Genetics: Applied Research. 2017;7(4):358–368. DOI: 10.1134/S2079059717040098

[14]

Pershina L.A., Trubacheeva N.V. Interspecific incompatibility in the wide hybridization of plants and ways to overcome it // Russian Journal of Genetics: Applied Research. 2017. Vol. 7, No. 4. P. 358–368. DOI: 10.1134/S2079059717040098

[15]

Pisarev VE. Amfidiploidy “yarovaya pshenitsa × yarovaya rozh”. Proceedings on Applied Botany, Genetics and Breeding. 1960;32(2):37–55. (In Russ.)

[16]

Писарев В.Е. Амфидиплоиды «яровая пшеница × яровая рожь» // Труды по прикладной ботанике, генетике и селекции. 1960. Т. 32, № 2. С. 37–55.

[17]

Riley R, Chapman V. The inheritance in wheat of crossability with rye. Genet Res. 1967;9(3):259–267. DOI: 10.1017/S0016672300010569

[18]

Riley R., Chapman V. The inheritance in wheat of crossability with rye // Genet Res. 1967. Vol. 9, No. 3. P. 259–267. DOI: 10.1017/S0016672300010569

[19]

Rigin BV. Skreshchivaemost’ pshenitsy s rozh’yu. Proceedings on Applied Botany, Genetics and Breeding. 1976;58(1):12–34. (In Russ.)

[20]

Ригин Б.В. Скрещиваемость пшеницы с рожью // Труды по прикладной ботанике, генетике и селекции. 1976. Т. 58, № 1. С. 12–34.

[21]

Krolow KD. Untersuchungen über die Kreuzbarkeit zwischen Weizen and Roggen. Z. Pflanzenzüchtung. 1970;64:44–72. (In German)

[22]

Krolow K.D. Untersuchungen über die Kreuzbarkeit zwischen Weizen and Roggen // Z. Pflanzenzüchtung. 1970. Vol. 64. P. 44–72.

[23]

Laugerotte J, Baumann U, Sourdille P. Genetic control of compatibility in crosses between wheat and its wild or cultivated relatives. Plant Biotechnol J. 2022;20(5):812–832. DOI: 10.1111/pbi.13784

[24]

Laugerotte J., Baumann U., Sourdille P. Genetic control of compatibility in crosses between wheat and its wild or cultivated relatives // Plant Biotechnol J. 2022. Vol. 20, No. 5. P. 812–832. DOI: 10.1111/pbi.13784

[25]

Tixier MH, Sourdille P, Charmet G, et al. Detection of QTLs for crossability in wheat using a doubled-haploid population. Theor Appl Genet. 1998;97(7):1076–1082. DOI: 10.1007/s001220050994

[26]

Tixier M.H., Sourdille P., Charmet G., et al. Detection of QTLs for crossability in wheat using a doubled-haploid population // Theor Appl Genet. 1998. Vol. 97, No. 7. P. 1076–1082. DOI: 10.1007/s001220050994

[27]

Alfares W, Bouguennec A, Balfourier F, et al. Fine mapping and marker development for the crossability gene SKr on chromosome 5BS of hexaploid wheat (Triticum aestivum L.). Genetics. 2009;183(2):469–481. DOI: 10.1534/genetics.109.107706

[28]

Alfares W., Bouguennec A., Balfourier F., et al. Fine mapping and marker development for the crossability gene SKr on chromosome 5BS of hexaploid wheat (Triticum aestivum L.) // Genetics. 2009. Vol. 183, No. 2. P. 469–481. DOI: 10.1534/genetics.109.107706

[29]

Qureshi N, Bariana H, Forrest K, et al. Fine mapping of the chromosome 5B region carrying closely linked rust resistance genes Yr47 and Lr52 in wheat. Theor Appl Genet. 2017;130(3): 495–504. DOI: 10.1007/s00122-016-2829-5

[30]

Qureshi N., Bariana H., Forrest K., et al. Fine mapping of the chromosome 5B region carrying closely linked rust resistance genes Yr47 and Lr52 in wheat // Theor Appl Genet. 2017. Vol. 130, No. 3. P. 495–504. DOI: 10.1007/s00122-016-2829-5

[31]

Ruud AK, Windju S, Belova T, et al. Mapping of SnTox3 – Snn3 as a major determinant of field susceptibility to Septoria nodorum leaf blotch in the SHA3/CBRD × Naxos population. Theor Appl Genet. 2017;130(7):1361–1374. DOI: 10.1007/s00122-017-2893-5

[32]

Ruud A.K., Windju S., Belova T., et al. Mapping of SnTox3 – Snn3 as a major determinant of field susceptibility to Septoria nodorum leaf blotch in the SHA3/CBRD × Naxos population // Theor Appl Genet. 2017. Vol. 130, No. 7. P. 1361–1374. DOI: 10.1007/s00122-017-2893-5

[33]

Bertin I, Fish L, Foote TN, et al. Development of consistently crossable wheat genotypes for alien wheat gene transfer through fine-mapping of the Kr1 locus. Theor Appl Genet. 2009;119(8): 1371–1381. DOI: 10.1007/s00122-009-1141-z.

[34]

Bertin I., Fish L., Foote T.N., et al. Development of consistently crossable wheat genotypes for alien wheat gene transfer through fine-mapping of the Kr1 locus // Theor Appl Genet. 2009. Vol. 119, No. 8. P. 1371–1381. DOI: 10.1007/s00122-009-1141-z.

[35]

Rekhmetulin RM. Ispol’zovanie form myagkoi pshenitsy AM 808 i MA 808 v skreshchivanii s rozh’yu. Doklady VASKHNIL. 1988;9:7–10. (In Russ.)

[36]

Рехметулин Р.М. Использование форм мягкой пшеницы АМ 808 и МА 808 в скрещивании с рожью // Доклады ВАСХНИЛ. 1988. Т. 9. С. 7–10.

[37]

Surikov IM, Kissel’ NI. Nasledovanie khoroshei skreshchivaemosti ozimoi pshenitsy s rozh’yu. Cytology and genetics. 1980;14(4):71–73. (In Russ.)

[38]

Суриков И.М., Киссель Н.И. Наследование хорошей скрещиваемости озимой пшеницы с рожью // Цитология и генетика. 1980. Т. 14, № 4. С. 71–73.

[39]

Pyukkenen VP. Kollektsiya myagkoi pshenitsy po priznaku khoroshei skreshchivaemosti s rozh’yu. Geneticheskie resursy kul’turnykh rastenii v XXI veke: sostoyanie, problemy, perspektivy. Proceedings of the II Vavilov’s international conference. 2007 Nov 26–30; Saint Petersburg. Saint Petersburg: VIR, 2007. P. 585–588. (In Russ.)

[40]

Пюккенен В.П. Коллекция мягкой пшеницы по признаку хорошей скрещиваемости с рожью. Генетические ресурсы культурных растений в XXI веке: состояние, проблемы, перспективы // Тезисы докладов II Вавиловской международной конференции; ноябрь 26–30, 2007; Санкт-Петербург. Санкт-Петербург: ВИР, 2007. С. 585–588.

[41]

Rekhmetulin RM. Skreshchivaemost’ Argentinskikh sortov yarovoi myagkoi pshenitsy s diploidnoi i tetraploidnoi rozh’yu. Sbornik nauchnykh trudov po prikladnoi botanike, genetike i selektsii. 1987;111:77–81. (In Russ.)

[42]

Рехметулин Р.М. Скрещиваемость Аргентинских сортов яровой мягкой пшеницы с диплоидной и тетраплоидной рожью // Сборник научных трудов по прикладной ботанике, генетике и селекции. 1987. Т. 111. С. 77–81.

[43]

Rui M, Zheng DS, Fan L. The crossability percentages of 96 bread wheat landraces and cultivars from Japan with rye. Euphytica. 1995;92(3):301–306. DOI: 10.1007/BF00037112

[44]

Rui M., Zheng D.S., Fan L. The crossability percentages of 96 bread wheat landraces and cultivars from Japan with rye // Euphytica. 1995. Vol. 92, No. 3. P. 301–306. DOI: 10.1007/BF00037112

[45]

Rubets VS. Biologicheskie osobennosti tritikale kak osnova sovershenstvovaniya selektsionnogo protsessa [dissertation]. Moscow: RGAU-MSKhA im. K.A. Timiryazeva, 2016. (In Russ.)

[46]

Рубец В.С. Биологические особенности тритикале как основа совершенствования селекционного процесса: дис. … д-ра биол. наук. Москва: РГАУ-МСХА им. К.А. Тимирязева, 2016.

[47]

Merezhko AF, Erokhin LM, Yudin AE. Ehffektivnyi metod opyleniya zernovykh kul’tur: metodicheskie ukazaniya. Leningrad: VNIIR im. N.I. Vavilova, 1973. (In Russ.)

[48]

Мережко А.Ф., Ерохин Л.М., Юдин А.Е. Эффективный метод опыления зерновых культур: методические указания. Ленинград: ВНИИР им. Н.И. Вавилова, 1973.

[49]

Antonova OYu, Klimenko NS, Rybakov DA, et al. SSR analysis of modern Russian potato varieties using DNA samples of nomenclatural standards. Plant Biotechnology and Breeding. 2020;3(4):77–96. (In Russ.) DOI: 10.30901/2658-6266-2020-4-o2

[50]

Антонова О.Ю., Клименко Н.С., Рыбаков Д.А., и др. SSR-анализ современных российских сортов картофеля с использованием ДНК номенклатурных стандартов // Биотехнология и селекция растений. 2020. Т. 3, № 4. С. 77–96. DOI: 10.30901/2658-6266-2020-4-o2

[51]

Zaitsev GN. Matematicheskaya statistika v ehksperimental’noi botanike. Metodika biometricheskikh raschetov. Moscow: Nauka, 1963. 356 p. (In Russ.)

[52]

Зайцев Г.Н. Математическая статистика в экспериментальной ботанике. Методика биометрических расчетов. Москва: Наука, 1963. 356 с.

[53]

Martynov S, Dobrotvorskaya T, Dobrotvorskiy D. Genetic Resources Information System for Wheat and Triticale. GRIS [Internet]. 2016 [cited: 2022 Feb 9]. Available from: http://wheatpedigree.net

[54]

Martynov S., Dobrotvorskaya T., Dobrotvorskiy D. Genetic resources information system for wheat and triticale (GRIS). 2016 [дата обращения: 02.09.2022]. Доступ по ссылке: http://wheatpedigree.net

Funding

Работа выполнена в рамках государственного задания согласно тематическому плану ВИР по проектамThe study was implemented within the framework of the state mission delegated to VIR under Projects(0481-2022-0001; № 0481-2022-0008)

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

82

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/