Genotoxic effects of antiepileptic drugs. Literature review

Natalia V. Eremina , Aliy K. Zhanataev , Andrey D. Durnev

Ecological Genetics ›› 2022, Vol. 20 ›› Issue (4) : 295 -313.

PDF
Ecological Genetics ›› 2022, Vol. 20 ›› Issue (4) :295 -313. DOI: 10.17816/ecogen109400
Genetic toxicology
research-article

Genotoxic effects of antiepileptic drugs. Literature review

Author information +
History +
PDF

Abstract

Based on the selected criteria data from studies of the genotoxic activity of antiepileptic drugs in eukaryotic test systems in vitro and in vivo, performed by DNA comet assay, chromosomal aberrations and micronuclei assays, published in the period 1995–2022, were selected and summarized.

Among the 20 drugs reviewed, for one drug (N03AA05 Benzobarbital), there are no data on studies of genotoxic activity; for 7 drugs information is presented only as a summary on the FDA and EMA websites without primary data and information on experimental designs. Among the remaining 12 drugs, only three drugs (phenobarbital, valproic acid and levetiracetam) have information on in vivo studies, both by DNA damage assay and by cytogenetic methods. Based on known publications, it is impossible to draw reasonable conclusions about the genotoxic potential of individual drugs. The available data are fragmentary, incomplete and contradictory. It remains to state the facts of detection of genotoxic effects in individual drugs in separate studies. In general, there is no doubt about the potential genotoxic hazard of this group the drugs in.

Additional studies are needed to clarify the data on the genotoxicity of antiepileptic drugs including beyond the standard protocols. In the course of their implementation, one should take into account the possible tissue-specific manifestation of antiepileptics genotoxicity, as indicated by the facts of genotoxic effects detection in tissue cells that are not targets in classical genotoxic studies. The expediency of objectifying approaches when choosing a drug for safe therapy, taking into account information about its genotoxicity, is emphasized, and the prospects for possible studies on antigenotoxic prophylaxis in patients with epilepsy are pointed out.

Keywords

antiepileptic drugs / chromosomal aberrations / micronuclei / DNA damage / genotoxicity

Cite this article

Download citation ▾
Natalia V. Eremina, Aliy K. Zhanataev, Andrey D. Durnev. Genotoxic effects of antiepileptic drugs. Literature review. Ecological Genetics, 2022, 20(4): 295-313 DOI:10.17816/ecogen109400

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

World Health Organization. Epilepsy: a public health imperative. Summary. Geneva: World Health Organization, 2019 (WHO/MSD/MER/19.2). Licence: CC BY-NC-SA 3.0 IGO.

[2]

Fisher RS, Acevedo C, Arzimanoglou A, et al. ILAE official report: a practical clinical definition of epilepsy. Epilepsia. 2014;55(4): 475–482. DOI: 10.1111/epi.12550

[3]

Fisher R.S., Acevedo C., Arzimanoglou A., et al. ILAE official report: a practical clinical definition of epilepsy // Epilepsia. 2014. Vol. 55, No. 4. P. 475–482. DOI: 10.1111/epi.12550

[4]

Falco-Walter J. Epilepsy-definition, classification, pathophysiology, and epidemiology. Semin Neurol. 2020;40(6):617–623. DOI: 10.1055/s-0040-1718719

[5]

Falco-Walter J. Epilepsy-Definition, Classification, Pathophysiology, and Epidemiology // Semin Neurol. 2020. Vol. 40, No. 6. P. 617–623. DOI: 10.1055/s-0040-1718719

[6]

Chen Z, Brodie MJ, Kwan P. What has been the impact of new drug treatments on epilepsy? Curr Opin Neurol. 2020;33(2):185–190. DOI: 10.1097/WCO.0000000000000803

[7]

Chen Z., Brodie M.J., Kwan P. What has been the impact of new drug treatments on epilepsy? // Curr Opin Neurol. 2020. Vol. 33, No. 2. P. 185–190. DOI: 10.1097/WCO.0000000000000803

[8]

Singh G, Driever PH, Sander JW. Cancer risk in people with epilepsy: the role of antiepileptic drugs. Brain. 2005;128(1):7–17. DOI: 10.1093/brain/awh363

[9]

Singh G., Driever P.H., Sander J.W. Cancer risk in people with epilepsy: the role of antiepileptic drugs // Brain. 2005. Vol. 128, No. 1. P. 7–17. DOI: 10.1093/brain/awh363

[10]

Durnev AD, Zhanataev AK, Eremina NV. Geneticheskaya toksikologiya. Moscow: Tipografiya Mittel’ Press, 2022. 286 p. (In Russ.)

[11]

Дурнев А.Д., Жанатаев А.К., Еремина Н.В. Генетическая токсикология. Москва: Типография Миттель Пресс, 2022. 286 с.

[12]

Steiblen G, van Benthem J, Johnson G. Strategies in genotoxicology: Acceptance of innovative scientific methods in a regulatory context and from an industrial perspective. Mutat Res Genet Toxicol Environ Mutagen. 2020;853:503171. DOI: 10.1016/j.mrgentox.2020.503171

[13]

Steiblen G., van Benthem J., Johnson G. Strategies in genotoxicology: Acceptance of innovative scientific methods in a regulatory context and from an industrial perspective // Mutat Res Genet Toxicol Environ Mutagen. 2020. Vol. 853. ID 503171. DOI: 10.1016/j.mrgentox.2020.503171

[14]

oecd-ilibrary.org [Internet] OECD Guidelines for the Testing of Chemicals, Section 4. Health Effects. Available from: https://www.oecd-ilibrary.org/environment/oecd-guidelines-for-the-testing-of-chemicals-section-4-health-effects_20745788

[15]

oecd-ilibrary.org [Электронный ресурс] OECD Guidelines for the Testing of Chemicals, Section 4. Health Effects. Доступ по ссылке: https://www.oecd-ilibrary.org/environment/oecd-guidelines-for-the-testing-of-chemicals-section-4-health-effects_20745788

[16]

vidal.ru [Internet]. VIDAL. Spravochnik lekarstvennykh sredstv. Available from: https://www.vidal.ru/drugs/atc (In Russ.)

[17]

vidal.ru [Электронный ресурс]. VIDAL. Справочник лекарственных средств. Доступ по ссылке: https://www.vidal.ru/drugs/atc

[18]

Riedel L, Obe G. Mutagenicity of antiepileptic drugs. II. Phenytoin, primidone and phenobarbital. Mutat Res Genet Toxicol. 1984;138(1):71–74. DOI: 10.1016/0165-1218(84)90087-9

[19]

Riedel L., Obe G. Mutagenicity of antiepileptic drugs. II. Phenytoin, primidone and phenobarbital // Mutat Res Genet Toxicol. 1984. Vol. 138, No. 1. P. 71–74. DOI: 10.1016/0165-1218(84)90087-9

[20]

Müller-Tegethoff K, Kasper P, Müller L. Evaluation studies on the in vitro rat hepatocyte micronucleus assay. Mutat Res Sect Environ Mutagen Relat Subj. 1995;335(3):293–307. DOI: 10.1016/0165-1161(95)00033-x

[21]

Müller-Tegethoff K., Kasper P., Müller L. Evaluation studies on the in vitro rat hepatocyte micronucleus assay // Mutat Res Sect Environ Mutagen Relat Subj. 1995. Vol. 335, No. 3. P. 293–307. DOI: 10.1016/0165-1161(95)00033-x

[22]

Kindig D, Garriott ML, Parton JW, et al. Diphenylhydantoin is not genotoxic in a battery of short-term cytogenetic assays. Teratog Carcinog Mutagen. 1992;12(1):43–50. DOI: 10.1002/tcm.1770120106

[23]

Kindig D., Garriott M.L., Parton J.W., et al. Diphenylhydantoin is not genotoxic in a battery of short-term cytogenetic assays // Teratog Carcinog Mutagen. 1992. Vol. 12, No. 1. P. 43–50. DOI: 10.1002/tcm.1770120106

[24]

International Agency for Research on Cancer (IARC) — Summaries and Evaluations [Internet]. Phenobarbital and its sodium salt (Group 2B). Available from: http://www.inchem.org/documents/iarc/vol79/79-06.html

[25]

International Agency for Research on Cancer (IARC) — Summaries and Evaluations. Phenobarbital and its sodium salt (Group 2B). Доступ по ссылке: http://www.inchem.org/documents/iarc/vol79/79-06.html

[26]

Deutsch WA, Kukreja A, Shane B, Hegde V. Phenobarbital, oxazepam and Wyeth 14,643 cause DNA damage as measured by the Comet assay. Mutagenesis. 2001;16(5):439–442. DOI: 10.1093/mutage/16.5.439

[27]

Deutsch W.A., Kukreja A., Shane B., Hegde V. Phenobarbital, oxazepam and Wyeth 14,643 cause DNA damage as measured by the Comet assay // Mutagenesis. 2001. Vol. 16, No. 5. P. 439–442. DOI: 10.1093/mutage/16.5.439

[28]

Biswas SJ, Pathak S, Khuda-Bukhsh AR. Assessment of the genotoxic and cytotoxic potential of an anti-epileptic drug, phenobarbital, in mice: a time course study. Mutat Res. 2004;563(1):1–11. DOI: 10.1016/j.mrgentox.2004.05.016

[29]

Biswas S.J., Pathak S., Khuda-Bukhsh A.R. Assessment of the genotoxic and cytotoxic potential of an anti-epileptic drug, phenobarbital, in mice: a time course study // Mutat Res. 2004. Vol. 563, No. 1. P. 1–11. DOI: 10.1016/j.mrgentox.2004.05.016

[30]

Sasaki YF, Izumiyama F, Nishidate E, et al. Detection of rodent liver carcinogen genotoxicity by the alkaline single-cell gel electrophoresis (Comet) assay in multiple mouse organs (liver, lung, spleen, kidney, and bone marrow). Mutat Res Genet Toxicol Environ Mutagen. 1997;391(3):201–214. DOI: 10.1016/s1383-5718(97)00072-7

[31]

Sasaki Y.F., Izumiyama F., Nishidate E., et al. Detection of rodent liver carcinogen genotoxicity by the alkaline single-cell gel electrophoresis (Comet) assay in multiple mouse organs (liver, lung, spleen, kidney, and bone marrow) // Mutat Res Genet Toxicol Environ Mutagen. 1997. Vol. 391, No. 3. P. 201–214. DOI: 10.1016/s1383-5718(97)00072-7

[32]

Gonzales AJ, Christensen JG, Preston RJ, et al. Attenuation of G1 checkpoint function by the non-genotoxic carcinogen phenobarbital. Carcinogenesis. 1998;19(7):1173–1183. DOI: 10.1093/carcin/19.7.1173

[33]

Gonzales A.J., Christensen J.G., Preston R.J., et al. Attenuation of G1 checkpoint function by the non-genotoxic carcinogen phenobarbital // Carcinogenesis. 1998. Vol. 19, No. 7. P. 1173–1183. DOI: 10.1093/carcin/19.7.1173

[34]

La Vecchia C, Negri E. A review of epidemiological data on epilepsy, phenobarbital, and risk of liver cancer. Eur J Cancer Prev. 2014;23(1):1–7. DOI: 10.1097/CEJ.0b013e32836014с8

[35]

La Vecchia C., Negri E. A review of epidemiological data on epilepsy, phenobarbital, and risk of liver cancer // Eur J Cancer Prev. 2014. Vol. 23, No. 1. P. 1–7. DOI: 10.1097/CEJ.0b013e32836014с8

[36]

Durnev AD, Zhanataev AK. Relevant aspects of drug genetic toxicology. The Bulletin of the Scientific Centre for Expert Evaluation of Medicinal Products. Regulatory Research and Medicine Evaluation. 2022;12(1): 90–109. (In Russ.) DOI: 10.30895/1991-2919-2022-12-1-90-109

[37]

Дурнев А.Д., Жанатаев А.К. Актуальные аспекты генетической токсикологии лекарственных средств // Ведомости Центра экспертизы средств медицинского применения. 2022. T. 12, № 1. C. 90–109. DOI: 10.30895/1991-2919-2022-12-1-90-109

[38]

Stenchever MA, Allen M. The effect of selected antiepileptic drugs on the chromosomes of human lymphocytes in vitro. Am J Obstet Gynecol. 1973;116(6):867–870. DOI: 10.1016/0002-9378(73)91022-3

[39]

Stenchever M.A., Allen M. The effect of selected antiepileptic drugs on the chromosomes of human lymphocytes in vitro // Am J Obstet Gynecol. 1973. Vol. 116, No. 6. P. 867–870. DOI: 10.1016/0002-9378(73)91022-3

[40]

inchem.org [Internet]. Phenytoin. IARC Monograph. 1996. Vol. 66. 175 p. Available from: https://inchem.org/documents/iarc/vol66/phenytoin.html

[41]

inchem.org [Электронный ресурс]. Phenytoin. IARC Monograph. 1996. Vol. 66. 175 p. Доступ по ссылке: https://inchem.org/documents/iarc/vol66/phenytoin.html

[42]

Erenberk U, Dundaroz R, Gok O, et al. Melatonin attenuates phenytoin sodium-induced DNA damage. Drug Chem Toxicol. 2014;37(2):233–239. DOI: 10.3109/01480545.2013.838777

[43]

Erenberk U., Dundaroz R., Gok O., et al. Melatonin attenuates phenytoin sodium-induced DNA damage // Drug Chem Toxicol. 2014. Vol. 37, No. 2. P. 233–239. DOI: 10.3109/01480545.2013.838777

[44]

Ghiraldini FG, Mello MLS. Micronucleus formation, proliferative status, cell death and DNA damage in ethosuximide-treated human lymphocytes. Cell Biol Int Rep. 2010;17(1):27–31. DOI: 10.1042/CBR20100007

[45]

Ghiraldini F.G., Mello M.L.S. Micronucleus formation, proliferative status, cell death and DNA damage in ethosuximide-treated human lymphocytes // Cell Biol Int Rep. 2010. Vol. 17, No. 1. P. 27–31. DOI: 10.1042/CBR20100007

[46]

Mironov AN, editor. Rukovodstvo po provedeniyu doklinicheskikh issledovanii lekarstvennykh sredstv. Chast’ pervaya. Moscow: Grif i K, 2012. 944 p. (In Russ.)

[47]

Руководство по проведению доклинических исследований лекарственных средств. Часть первая / под ред. А.Н. Миронова. Москва: Гриф и К, 2012. 944 с.

[48]

Herha J, Obe G. Chromosomal damage in epileptics on monotherapy with carbamazepine and diphenylhydantoin. Hum Genet. 1976;34(3):255–263. DOI: 10.1007/BF00295288

[49]

Herha J., Obe G. Chromosomal damage in epileptics on monotherapy with carbamazepine and diphenylhydantoin // Hum Genet. 1976. Vol. 34, No. 3. P. 255–263. DOI: 10.1007/BF00295288

[50]

Awara WM, El-Gohary M, El-Nabi SH, Fadel WA. In vivo and in vitro evaluation of the mutagenic potential of carbamazepine: does melatonin have anti-mutagenic activity? Toxicology. 1998;125(1): 45–52. DOI: 10.1016/s0300-483x(97)00160-1

[51]

Awara W.M., El-Gohary M., El-Nabi S.H., Fadel W.A. In vivo and in vitro evaluation of the mutagenic potential of carbamazepine: does melatonin have anti-mutagenic activity? // Toxicology. 1998. Vol. 125, No. 1. P. 45–52. DOI: 10.1016/s0300-483x(97)00160-1

[52]

Sinués B, Gazulla J, Bernal ML, et al. Six mutagenicity assays in exposure biomonitoring of patients receiving carbamazepine for epilepsy or trigeminal neuralgia. Mutat Res Sect Environ Mutagen Relat Subj. 1995;334(2):259–265. DOI: 10.1016/0165-1161(95)90019-5

[53]

Sinués B., Gazulla J., Bernal M.L., et al. Six mutagenicity assays in exposure biomonitoring of patients receiving carbamazepine for epilepsy or trigeminal neuralgia // Mutat Res Sect Environ Mutagen Relat Subj. 1995. Vol. 334, No. 2. P. 259–265. DOI: 10.1016/0165-1161(95)90019-5

[54]

Celik A. The assessment of genotoxicity of carbamazepine using cytokinesis-block (CB) micronucleus assay in cultured human blood lymphocytes. Drug Chem Toxicol. 2006;29(2):227–236. DOI: 10.1080/01480540600566832

[55]

Celik A. The assessment of genotoxicity of carbamazepine using cytokinesis-block (CB) micronucleus assay in cultured human blood lymphocytes // Drug Chem Toxicol. 2006. Vol. 29, No. 2. P. 227–236. DOI: 10.1080/01480540600566832

[56]

Pavone A, Cardile V. An in vitro study of new antiepileptic drugs and astrocytes. Epilepsia. 2003;44(s10):34–39. DOI: 10.1046/j.1528-1157.44.s10.5.x

[57]

Pavone A., Cardile V. An in vitro study of new antiepileptic drugs and astrocytes // Epilepsia. 2003. Vol. 44, No. s10. P. 34–39. DOI: 10.1046/j.1528-1157.44.s10.5.x

[58]

Atlı Şekeroğlu Z, Kefelioğlu H, Kontaş Yedier S, et al. Oxcarbazepine-induced cytotoxicity and genotoxicity in human lymphocyte cultures with or without metabolic activation. Toxicol Mech Methods. 2017;27(3):201–206. DOI: 10.1080/15376516.2016.1273430

[59]

Atlı Şekeroğlu Z., Kefelioğlu H., Kontaş Yedier S., et al. Oxcarbazepine-induced cytotoxicity and genotoxicity in human lymphocyte cultures with or without metabolic activation // Toxicol Mech Methods. 2017. Vol. 27, No. 3. P. 201–206. DOI: 10.1080/15376516.2016.1273430

[60]

Akbar H, Khan A, Mohammadzai I, et al. The genotoxic effect of oxcarbazepine on mice blood lymphocytes. Drug Chem Toxicol. 2018;41(2):135–140. DOI: 10.1080/01480545.2017.1321011

[61]

Akbar H., Khan A., Mohammadzai I., et al. The genotoxic effect of oxcarbazepine on mice blood lymphocytes // Drug Chem Toxicol. 2018. Vol. 41, No. 2. P. 135–140. DOI: 10.1080/01480545.2017.1321011

[62]

Novartis [Internet]. Trileptan label [cited 2022 Jun 6]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/021014s026,021285s021lbl.pdf

[63]

Novartis [Электронный ресурс]. Trileptan label [дата обращения 20.06.2022]. Доступ по ссылке: https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/021014s026,021285s021lbl.pdf

[64]

Suarez-Torres JD, Orozco CA, Ciangherotti CE. The numerical probability of carcinogenicity to humans of some pharmaceutical drugs: Alkylating agents, topoisomerase inhibitors or poisons, and DNA intercalators. Fundam Clin Pharmacol. 2021;35(6):1069–1089. DOI: 10.1111/fcp.126

[65]

Suarez-Torres J.D., Orozco C.A., Ciangherotti C.E. The numerical probability of carcinogenicity to humans of some pharmaceutical drugs: Alkylating agents, topoisomerase inhibitors or poisons, and DNA intercalators // Fundam Clin Pharmacol. 2021. Vol. 35, No. 6. P. 1069–1089. DOI: 10.1111/fcp.126

[66]

Andreazza AC, Kauer-Sant’Anna M, Frey BN, et al. Effects of mood stabilizers on DNA damage in an animal model of mania. J Psychiatry Neurosci. 2008;33(6):516–524.

[67]

Andreazza A.C., Kauer-Sant’Anna M., Frey B.N., et al. Effects of mood stabilizers on DNA damage in an animal model of mania // J Psychiatry Neurosci. 2008. Vol. 33, No. 6. P. 516–524.

[68]

Khan S, Jena G. Sodium valproate, a histone deacetylase inhibitor ameliorates cyclophosphamide-induced genotoxicity and cytotoxicity in the colon of mice. J Basic Clin Physiol Pharmacol. 2014;25(4):1–11. DOI: 10.1515/jbcpp-2013-0134.

[69]

Khan S., Jena G. Sodium valproate, a histone deacetylase inhibitor ameliorates cyclophosphamide-induced genotoxicity and cytotoxicity in the colon of mice // J Basic Clin Physiol Pharmacol. 2014. Vol. 25, No. 4. P. 1–11. DOI: 10.1515/jbcpp-2013-0134.

[70]

Abdella EM, Galaly SR, Mohammed HM, Khadrawy SM. Protective role of vitamin E against valproic acid-induced cytogenotoxicity and hepatotoxicity in mice. J Basic Appl Zool. 2014;67(4):127–139. DOI: 10.1016/j.jobaz.2014.03.003

[71]

Abdella E.M., Galaly S.R., Mohammed H.M., Khadrawy S.M. Protective role of vitamin E against valproic acid-induced cytogenotoxicity and hepatotoxicity in mice // J Basic Appl Zool. 2014. Vol. 67, No. 4. P. 127–139. DOI: 10.1016/j.jobaz.2014.03.003

[72]

Ahmad T, Shekh K, Khan S, et al. Pretreatment with valproic acid, a histone deacetylase inhibitor, enhances the sensitivity of the peripheral blood micronucleus assay in rodents. Mutat Res Genet Toxicol Environ Mutagen. 2013;751(1):19–26. DOI: 10.1016/j.mrgentox.2012.10.009

[73]

Ahmad T., Shekh K., Khan S., et al. Pretreatment with valproic acid, a histone deacetylase inhibitor, enhances the sensitivity of the peripheral blood micronucleus assay in rodents // Mutat Res Genet Toxicol Environ Mutagen. 2013. Vol. 751, No. 1. P. 19–26. DOI: 10.1016/j.mrgentox.2012.10.009

[74]

Fucic A, Stojković R, Miškov S, et al. Transplacental genotoxicity of antiepileptic drugs: animal model and pilot study on mother/newborn cohort. Reprod Toxicol. 2010;30(4):613–618. DOI: 10.1016/j.reprotox.2010.08.008

[75]

Fucic A., Stojković R., Miškov S., et al. Transplacental genotoxicity of antiepileptic drugs: animal model and pilot study on mother/newborn cohort // Reprod Toxicol. 2010. Vol. 30, No. 4. P. 613–618. DOI: 10.1016/j.reprotox.2010.08.008

[76]

Denli M, Aydin HI. Genotoxicity evaluation in female patients on valproic acid monotherapy using alkaline single cell gel electrophoresis (Comet assay). East J Med. 2000;5(2):61–65.

[77]

Denli M., Aydin H.I. Genotoxicity evaluation in female patients on valproic acid monotherapy using alkaline single cell gel electrophoresis (Comet assay) // East J Med. 2000. Vol. 5, No. 2. P. 61–65.

[78]

Khan S, Ahmad T, Parekh CV, et al. Investigation on sodium valproate induced germ cell damage, oxidative stress and genotoxicity in male Swiss mice. Reprod Toxicol. 2011;32(4):385–394. DOI: 10.1016/j.reprotox.2011.09.007.

[79]

Khan S., Ahmad T., Parekh C.V., et al. Investigation on sodium valproate induced germ cell damage, oxidative stress and genotoxicity in male Swiss mice // Reprod Toxicol. 2011. Vol. 32, No. 4. P. 385–394. DOI: 10.1016/j.reprotox.2011.09.007.

[80]

Luo Y, Wang H, Zhao X, et al. Valproic acid causes radiosensitivity of breast cancer cells via disrupting the DNA repair pathway. Toxicol Res (Camb). 2016;5(3):859–870. DOI: 10.1039/c5tx00476d

[81]

Luo Y., Wang H., Zhao X., et al. Valproic acid causes radiosensitivity of breast cancer cells via disrupting the DNA repair pathway // Toxicol Res (Camb). 2016. Vol. 5, No. 3. P. 859–870. DOI: 10.1039/c5tx00476d

[82]

Tian Y, Liu G, Wang H, et al. Valproic acid sensitizes breast cancer cells to hydroxyurea through inhibiting RPA2 hyperphosphorylation-mediated DNA repair pathway. DNA Repair. 2017;58:1–12. DOI: 10.1016/j.dnarep.2017.08.002

[83]

Tian Y., Liu G., Wang H., et al. Valproic acid sensitizes breast cancer cells to hydroxyurea through inhibiting RPA2 hyperphosphorylation-mediated DNA repair pathway // DNA Repair. 2017. Vol. 58. P. 1–12. DOI: 10.1016/j.dnarep.2017.08.002

[84]

Sakai A, Sasaki K, Muramatsu D, et al. A Bhas 42 cell transformation assay on 98 chemicals: the characteristics and performance for the prediction of chemical carcinogenicity. Mutat Res Genet Toxicol Environ Mutagen. 2010;702(1):100–122. DOI: 10.1016/j.mrgentox.2010.07.007

[85]

Sakai A., Sasaki K., Muramatsu D., et al. A Bhas 42 cell transformation assay on 98 chemicals: the characteristics and performance for the prediction of chemical carcinogenicity // Mutat Res Genet Toxicol Environ Mutagen. 2010. Vol. 702, No. 1. P. 100–122. DOI: 10.1016/j.mrgentox.2010.07.007

[86]

Lamictal [Internet]. Lamictal label [cited 2022 Jun 6]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/020241s058,020764s051,022251s022lbl.pdf.

[87]

Lamictal [Электронный ресурс]. Lamictal label [дата обращения: 20.06.2022]. Доступ по ссылке: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/020241s058,020764s051,022251s022lbl.pdf.

[88]

Makawy AIE, Mabrouk DM, Ibrahim FA, Ahmed KA. Genotoxic, biochemical and histopathological studies to assessment the topiramate hepatorenal toxicity in mice. Drug Chem Toxicol. 2022;45(1):103–112. DOI: 10.1080/014805

[89]

Makawy A.I.E., Mabrouk D.M., Ibrahim F.A., Ahmed K.A. Genotoxic, biochemical and histopathological studies to assessment the topiramate hepatorenal toxicity in mice // Drug Chem Toxicol. 2022. Vol. 45, No. 1. P. 103–112. DOI: 10.1080/014805

[90]

NDA 020505-S-050 Topamax [Internet]. Topamax (topiramate) tablets label [cited 2022 Jun 6]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/020844s041lbl.pdf

[91]

NDA 020505-S-050 Topamax [Электронный ресурс]. Topamax (topiramate) tablets label [дата обращения 20.06.2022]. Доступ по ссылке: https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/020844s041lbl.pdf

[92]

Neurontin (gabapentin) [Internet]. Highlights of prescribing information [cited 2022 Jun 6]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/020235s064_020882s047_021129s046lbl.pdf

[93]

Neurontin (gabapentin) [Электронный ресурс]. Highlights of prescribing information [дата обращения 20.06.2022]. Доступ по ссылке: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/020235s064_020882s047_021129s046lbl.pdf

[94]

Neurontin and Associated names [Internet]. Annex I. List of the names, pharmaceutical forms, strengths of the medicinal products, route of administration, marketing authorisation holders in the member states [cited 2022 Jun 6]. Available from: https://www.ema.europa.eu/en/documents/referral/neurontin-article-30-referral-annex-i-ii-iii_en.pdf

[95]

Neurontin and Associated names [Электронный ресурс]. Annex I. List of the names, pharmaceutical forms, strengths of the medicinal products, route of administration, marketing authorisation holders in the member states [дата обращения 20.06.2022]. Доступ по ссылке: https://www.ema.europa.eu/en/documents/referral/neurontin-article-30-referral-annex-i-ii-iii_en.pdf

[96]

El-shorbagy H.M., Hamida H. Genotoxic and mutagenic studies of the antiepileptic drug levetiracetam in pregnant rats and their fetuses. Int J Pharm Pharm Sci. 2016;8(2):82–88.

[97]

El-shorbagy H.M., Hamida H. Genotoxic and mutagenic studies of the antiepileptic drug levetiracetam in pregnant rats and their fetuses // Int J Pharm Pharm Sci. 2016. Vol. 8, No. 2. P. 82–88.

[98]

Baysal M, Ilgin S, Kilic G, et al. Reproductive toxicity after levetiracetam administration in male rats: Evidence for role of hormonal status and oxidative stress. PLoS One. 2017;12(4):e0175990. DOI: 10.1371/journal.pone.0175990

[99]

Baysal M., Ilgin S., Kilic G., et al. Reproductive toxicity after levetiracetam administration in male rats: Evidence for role of hormonal status and oxidative stress // PLoS One. 2017. Vol. 12, No. 4. ID e0175990. DOI: 10.1371/journal.pone.0175990

[100]

Tural S, Tekcan A, Elbistan M, et al. Genotoxic effects of prenatal exposure to levetiracetam during pregnancy on rat offsprings. In Vivo. 2015;29(1):77–81.

[101]

Tural S., Tekcan A., Elbistan M., et al. Genotoxic effects of prenatal exposure to levetiracetam during pregnancy on rat offsprings // In Vivo. 2015. Vol. 29, No. 1. P. 77–81.

[102]

Keppra, INN-Levetiracetam [Internet]. Scientific discussion [cited 2022 Jun 6]. Available from: https://www.ema.europa.eu/en/documents/scientific-discussion/keppra-epar-scientific-discussion_en.pdf

[103]

Keppra, INN-Levetiracetam [Электронный ресурс]. Scientific discussion [дата обращения 20.06.2022]. Доступ по ссылке: https://www.ema.europa.eu/en/documents/scientific-discussion/keppra-epar-scientific-discussion_en.pdf

[104]

Center for drug evaluation and research. Application number: 202834orig1s000 [Internet]. Pharmacology review(s) Perampanel. Tertiary Pharmacology Review [cited 2022 Jun 6]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2012/202834Orig1s000PharmR.pdf

[105]

Center for drug evaluation and research. Application number: 202834orig1s000 [Электронный ресурс]. Pharmacology review(s) Perampanel. Tertiary Pharmacology Review [дата обращения 20.06.2022]. Доступ по ссылке: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2012/ 202834Orig1s000PharmR.pdf

[106]

Witczak M, Kociszewska I, Wilczyński J, et al. Evaluation of chromosome aberrations, sister chromatid exchange and micronuclei in cultured cord-blood lymphocytes of newborns of women treated for epilepsy during pregnancy. Mutat Res Genet Toxicol Environ Mutagen. 2010;701(2):111–117. DOI: 10.1016/j.mrgentox.2010.05.003

[107]

Witczak M., Kociszewska I., Wilczyński J., et al. Evaluation of chromosome aberrations, sister chromatid exchange and micronuclei in cultured cord-blood lymphocytes of newborns of women treated for epilepsy during pregnancy // Mutat Res Genet Toxicol Environ Mutagen. 2010. Vol. 701, No. 2. P. 111–117. DOI: 10.1016/j.mrgentox.2010.05.003

[108]

Klonopin [Internet]. KLONOPIN tablets label [cited 2022 Jun 6]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/017533s059lbl.pdf

[109]

Klonopin [Электронный ресурс]. KLONOPIN tablets label [дата обращения 20.06.2022]. Доступ по ссылке: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/017533s059lbl.pdf

[110]

Inovelon, INN-rufinamide [Internet]. Scientifec discussion [cited 2022 Jun 6]. Available from: https://www.ema.europa.eu/en/documents/scientific-discussion/inovelon-epar-scientific-discussion_en.pdf

[111]

Inovelon, INN-rufinamide [Электронный ресурс]. Scientifec discussion [дата обращения 20.06.2022]. Доступ по ссылке: https://www.ema.europa.eu/en/documents/scientific-discussion/inovelon-epar-scientific-discussion_en.pdf

[112]

Europian Medicine Agency [Internet]. Zebinix EPAR Assessement report. Procedure No. EMEA/H/C/000988/X/0050/G [cited 2022 Jun 6]. Available from: https://www.ema.europa.eu/en/documents/variation-report/zebinix-h-c-988-x-0050-g-epar-assessment-report-extension_en.pdf

[113]

Europian Medicine Agency [Электронный ресурс]. Zebinix EPAR Assessement report. Procedure No. EMEA/H/C/000988/X/0050/G [дата обращения 20.06.2022]. Доступ по ссылке: https://www.ema.europa.eu/en/documents/variation-report/zebinix-h-c-988-x-0050-g-epar-assessment-report-extension_en.pdf

[114]

Zonegran, INN-Zonisamide [Internet]. Scientific discussion [cited 2022 Jun 6]. Available from: https://www.ema.europa.eu/en/documents/scientific-discussion/zonegran-epar-scientific-discussion_en.pdf

[115]

Zonegran, INN-Zonisamide [Электронный ресурс]. Scientific discussion [дата обращения 20.06.2022]. Доступ по ссылке: https://www.ema.europa.eu/en/documents/scientific-discussion/zonegran-epar-scientific-discussion_en.pdf

[116]

Lyrica, INN-Pregabalin [Internet]. Scientific discussion [cited 2022 Jun 6]. Available from: https://www.ema.europa.eu/en/documents/scientific-discussion/lyrica-epar-scientific-discussion_en.pdf

[117]

Lyrica, INN-Pregabalin [Электронный ресурс]. Scientific discussion [дата обращения 20.06.2022]. Доступ по ссылке: https://www.ema.europa.eu/en/documents/scientific-discussion/lyrica-epar-scientific-discussion_en.pdf

[118]

Briviact, INN-brivaracetam [Internet]. Assessement report. Procedure No. EMEA/H/C/003898/0000 [cited 2022 Jun 6]. Available from: https://www.ema.europa.eu/en/documents/assessment-report/briviact-epar-public-assessment-report_en.pdf

[119]

Briviact, INN-brivaracetam [Электронный ресурс]. Assessement report. Procedure No. EMEA/H/C/003898/0000 [дата обращения 20.06.2022]. Доступ по ссылке: https://www.ema.europa.eu/en/documents/assessment-report/briviact-epar-public-assessment-report_en.pdf

[120]

Brivaracetam [Internet]. Pharmacology review [cited 2022 Jun 6]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2016/205836Orig1s000_205837Orig1s000_205838Orig1s000PharmR.pdf

[121]

Brivaracetam [Электронный ресурс]. Pharmacology review [дата обращения 20.06.2022]. Доступ по ссылке: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2016/205836Orig1s000_205837Orig1s000_205838Orig1s000PharmR.pdf

[122]

Vimpat (lacosamide) [Internet]. Highlights of prescribing information [cited 2022 Jun 6]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/022253s046s048,022254s036s038,022255s027s030lbl.pdf

[123]

Vimpat (lacosamide) [Электронный ресурс]. Highlights of prescribing information [дата обращения 20.06.2022]. Доступ по ссылке: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/022253s046s048,022254s036s038,022255s027s030lbl.pdf

[124]

Vimpat, INN-lacosamide [Internet]. Assessment report [cited 2022 Jun 6]. Available from: https://www.ema.europa.eu/en/documents/assessment-report/vimpat-epar-public-assessment-report_en.pdf

[125]

Vimpat, INN-lacosamide [Электронный ресурс]. Assessment report [дата обращения 20.06.2022]. Доступ по ссылке: https://www.ema.europa.eu/en/documents/assessment-report/vimpat-epar-public-assessment-report_en.pdf

[126]

Aguiar CCT, Almeida AB, Araújo PVP, et al. Oxidative stress and epilepsy: literature review. Oxid Med Cell Longev. 2012;2012:795259. DOI: 10.1155/2012/795259

[127]

Aguiar C.C.T., Almeida A.B., Araújo P.V.P., et al. Oxidative stress and epilepsy: literature review // Oxid Med Cell Longev. 2012. Vol. 2012. ID795259. DOI: 10.1155/2012/795259

[128]

Adelöw C, Ahlbom A, Feychting M, et al. Epilepsy as a risk factor for cancer. J Neurol Neurosurg Psychiatry. 2006;77(6):784–786. DOI: 10.1136/jnnp.2005.083931

[129]

Adelöw C., Ahlbom A., Feychting M., et al. Epilepsy as a risk factor for cancer // J Neurol Neurosurg Psychiatry. 2006. Vol. 77, No. 6. P. 784–786. DOI: 10.1136/jnnp.2005.083931

[130]

Kardoost M, Hajizadeh-Saffar E, Ghorbanian MT, et al. Genotoxicity assessment of antiepileptic drugs (AEDs) in human embryonic stem cells. Epilepsy Res. 2019;158:106232. DOI: 10.1016/j.eplepsyres.2019.106232

[131]

Kardoost M., Hajizadeh-Saffar E., Ghorbanian M.T., et al. Genotoxicity assessment of antiepileptic drugs (AEDs) in human embryonic stem cells // Epilepsy Res. 2019. Vol. 158. ID 106232. DOI: 10.1016/j.eplepsyres.2019.106232

[132]

Reynolds EH, Green R. Valproate and folate: Congenital and developmental risks. Epilepsy Behav. 2020;108:107068. DOI: 10.1016/j.yebeh.2020.107068

[133]

Reynolds E.H., Green R. Valproate and folate: Congenital and developmental risks // Epilepsy Behav. 2020. Vol. 108. ID 107068. DOI: 10.1016/j.yebeh.2020.107068

[134]

Fenech M. Cytokinesis-block micronucleus assay evolves into a cytome assay of chromosomal instability, mitotic dysfunction and cell death. Mutat Res Fund Mol M. 2006;600(1–2):58–66. DOI: 10.1016/j.mrfmmm.2006.05.028.

[135]

Fenech M. Cytokinesis-block micronucleus assay evolves into a cytome assay of chromosomal instability, mitotic dysfunction and cell death // Mutat Res Fund Mol M. 2006. Vol. 600, No. 1–2. P. 58–66. DOI: 10.1016/j.mrfmmm.2006.05.028.

[136]

de Oliveira PA, Lino FL, Cappelari SE, et al. Effects of gamma-decanolactone on seizures induced by PTZ-kindling in mice. Exp Brain Res. 2008;187(1):161–166. DOI: 10.1007/s00221-008-1295-y

[137]

de Oliveira P.A., Lino F.L., Cappelari S.E., et al. Effects of gamma-decanolactone on seizures induced by PTZ-kindling in mice // Exp Brain Res. 2008. Vol. 187, No. 1. P. 161–166. DOI: 10.1007/s00221-008-1295-y

[138]

Matos G, Ribeiro DA, Alvarenga TA, et al. Behavioral and genetic effects promoted by sleep deprivation in rats submitted to pilocarpine-induced status epilepticus. Neurosci Lett. 2012;515(2):137–140. DOI: 10.1016/j.neulet.2012.03.030

[139]

Matos G., Ribeiro D.A., Alvarenga T.A., et al. Behavioral and genetic effects promoted by sleep deprivation in rats submitted to pilocarpine-induced status epilepticus // Neurosci Lett. 2012. Vol. 515, No. 2. P. 137–140. DOI: 10.1016/j.neulet.2012.03.030

[140]

Coelho VR, Vieira CG, de Souza LP, et al. Antiepileptogenic, antioxidant and genotoxic evaluation of rosmarinic acid and its metabolite caffeic acid in mice. Life Sci. 2015;122:65–71. DOI: 10.1016/j.lfs.2014.11.009

[141]

Coelho V.R., Vieira C.G., de Souza L.P., et al. Antiepileptogenic, antioxidant and genotoxic evaluation of rosmarinic acid and its metabolite caffeic acid in mice // Life Sci. 2015. Vol. 122. P. 65–71. DOI: 10.1016/j.lfs.2014.11.009

[142]

Mahmoud A.N., Shata A., Kattawy H. Phenytoin: Is it genotoxic in isolated cultured human lymphocytes without metabolic activation by S9? African Journal of Pharmacy and Pharmacology, 2016;10(41):865–872

[143]

Mahmoud A.N., Shata A., Kattawy H. Phenytoin: Is it genotoxic in isolated cultured human lymphocytes without metabolic activation by S9? // African Journal of Pharmacy and Pharmacology, 2016;10(41):865–872

[144]

Lazzarotto L, Pflüger P, Regner GG, et al. Lacosamide improves biochemical, genotoxic, and mitochondrial parameters after PTZ-kindling model in mice. Fundam Clin Pharmacol. 2020;35(2):351–363. DOI: 10.1111/fcp.12598

[145]

Lazzarotto L., Pflüger P., Regner G.G., et al. Lacosamide improves biochemical, genotoxic, and mitochondrial parameters after PTZ-kindling model in mice // Fundam Clin Pharmacol. 2020. Vol. 35. No. 2. P. 351–363. DOI: 10.1111/fcp.12598

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

257

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/