Relationship between methylation of promoters of apoptosis genes in blood lymphocytes with the frequency of chromosomal aberrations and the dose of radiation

Daria S. Isubakova , Olga S. Tsymbal , Nikolai V. Litviakov , Ivan V. Milto , Ravil M. Takhauov

Ecological Genetics ›› 2022, Vol. 20 ›› Issue (4) : 315 -323.

PDF
Ecological Genetics ›› 2022, Vol. 20 ›› Issue (4) : 315 -323. DOI: 10.17816/ecogen109119
Genetic toxicology
research-article

Relationship between methylation of promoters of apoptosis genes in blood lymphocytes with the frequency of chromosomal aberrations and the dose of radiation

Author information +
History +
PDF

Abstract

BACKGROUND: Impaired apoptosis can have serious consequences: the accumulation of mutant cells, the development of teratogenic effects and malignant neoplasms. In this regard, the study of the mechanisms of changes in the activity of apoptosis due to methylation under the influence of long-term irradiation is urgent.

AIM: The study of the degree of methylation of gene promoters involved in the induction of apoptosis in the personnel of the Siberian Chemical Plant, exposed to long-term technogenic irradiation of ionizing radiation in the course of their professional activities.

MATERIALS AND METHODS: The study was performed on peripheral blood samples of employees of the Siberian Chemical Plant, with a total dose of external exposure from 100 to 300 mSv. Chromosomal aberrations were detected by standard karyotyping of cultured blood lymphocytes. The degree of gene promoters methylation was determined using MethylScreen technology.

RESULTS: The degree of gene methylation BIRC2, CASP3, CASP9, CIDEB, CRADD, DAPK1, DFFA, FADD, GADD45A, LTBR, TNFRSF21, TNFRSF25 ranges from 0.31 to 41.75%. A strong negative correlation was found between the degree of methylation of GADD45A (r = –0.7364, р = 0.009) with an increased frequency of aberrant cells, moderate negative correlation GADD45A (r = –0.6347, р = 0.035) with an increased frequency of dicentric chromosomes, moderate negative correlation CASP9 (r = –0.6606, р = 0.026), and strong negative correlation CIDEB (r = –0.7982, р = 0.003) with an increased frequency of chromatid fragments. A moderate negative correlation of the methylation degree of CASP9 (r = –0.6636, р = 0.026), and CIDEB (r = –0.6636, р = 0.026) with the total dose of external exposure was shown.

CONCLUSIONS: The decrease in the level of apoptosis at doses of 100–300 mSv can be explained by the achievement of the demethylation threshold for the promoters of the proapoptotic genes GADD45A, CASP9, CIDEB. This once again testifies in favor of the threshold model of the dependence of the radiation effect on the radiation dose.

Keywords

DNA methylation / chromosomal aberrations / ionizing radiation / promoter / apoptosis

Cite this article

Download citation ▾
Daria S. Isubakova, Olga S. Tsymbal, Nikolai V. Litviakov, Ivan V. Milto, Ravil M. Takhauov. Relationship between methylation of promoters of apoptosis genes in blood lymphocytes with the frequency of chromosomal aberrations and the dose of radiation. Ecological Genetics, 2022, 20(4): 315-323 DOI:10.17816/ecogen109119

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Goodhead DT. Initial events in the cellular effects of ionizing radiations: clustered damage in DNA. Int J Radiat Biol. 1994;65(1):7–17. DOI: 10.1080/09553009414550021

[2]

Goodhead D.T. Initial events in the cellular effects of ionizing radiations: clustered damage in DNA // Int J Radiat Biol. 1994. Vol. 65, No. 1. P. 7–17. DOI: 10.1080/09553009414550021

[3]

Pendina AA, Grinkevich VV, Kuznetsova TV, Baranov VS. DNA metylation as one of the main mechanisms of gene activity regulation. Ecological genetics. 2004;2(1):27–37. (In Russ.) DOI: 10.17816/ecogen2127-37

[4]

Пендина А.А., Гринкевич В.В., Кузнецова Т.В., и др. Метилирование ДНК — универсальный механизм регуляции активности генов // Экологическая генетика. 2004. Т. 2, № 1. С. 27–37. DOI: 10.17816/ecogen2127-37

[5]

Kozlov VA. Methylation of cellular DNA and pathology of the organism. Medical Immunology (Russia). 2008;10(4–5):307–318. (In Russ.) DOI: 10.15789/1563-0625-2008-4-5-307-318

[6]

Козлов В.А. Метилирование ДНК клетки и патология организма // Медицинская иммунология. 2008. Т. 10, № 4–5. С. 307–318. DOI: 10.15789/1563-0625-2008-4-5-307-318

[7]

Kuz’mina NS, Myazin AE, Lapteva NSh, Rubanovich AV. Izuchenie aberrantnogo metilirovaniya v leikotsitakh krovi likvidatorov avarii na CHaEhS. Radiation biology. Radioecology. 2014;54(2):127–139. (In Russ.) DOI: 10.7868/S0869803114020064

[8]

Кузьмина Н.С., Мязин А.Е., Лаптева Н.Ш., Рубанович А.В. Изучение аберрантного метилирования в лейкоцитах крови ликвидаторов аварии на ЧАЭС // Радиационная биология. Радиоэкология. 2014. Т. 54, № 2. С. 127–139. DOI: 10.7868/S0869803114020064

[9]

Kuzmina NS, Lapteva NSh, Rusinova GG, et al. Dose dependence of hypermethylation of gene promoters in blood leukocytesin humans occupationally exposed to external γ-radiation. Radiation biology. Radioecology. 2018;58(6):581–588. (In Russ.) DOI: 10.1134/S0869803118060073

[10]

Кузьмина Н.С., Лаптева Н.Ш., Русинова Г.Г., и др. Дозовая зависимость гиперметилирования промоторов генов в лейкоцитах крови лиц, подвергшихся внешнему воздействию γ-излучения // Радиационная биология. Радиоэкология. 2018. Т. 58, № 6. С. 581–588. DOI: 10.1134/S0869803118060073

[11]

Kim J-G, Bae J-H, Kim J-A, et al. Combination effect of epigenetic regulation and ionizing radiation in colorectal cancer cells. PLoS One. 2014;9(8): e105405. DOI: 10.1371/journal.pone.0105405

[12]

Kim J.-G., Bae J.-H., Kim J.-A., et al. Combination effect of epigenetic regulation and ionizing radiation in colorectal cancer cells // PLoS One. 2014. Vol. 9, No. 8. ID e105405. DOI: 10.1371/journal.pone.0105405

[13]

Takhauov RM, Karpov AB, Zerenkov AG, et al. Mediko-dozimetricheskii registr personala Sibirskogo khimicheskogo kombinata — baza dlya otsenki ehffektov khronicheskogo oblucheniya. Radiation biology. Radioecology. 2015;55(5):467–473. (In Russ.) DOI: 10.7868/S0869803115050124

[14]

Тахауов Р.М., Карпов А.Б., Зеренков А.Г., и др. Медико-дозиметрический регистр персонала Сибирского химического комбината — база для оценки эффектов хронического облучения // Радиационная биология. Радиоэкология. 2015. Т. 55, № 5. С. 467–473. DOI: 10.7868/S0869803115050124

[15]

Erdtmann L, Franck N, Lerat H, et al. The hepatitis C virus NS2 protein is an inhibitor of CIDE-B-induced apoptosis. J Biol Chem. 2003;278(20):18256–18264. DOI: 10.1074/jbc.M209732200

[16]

Erdtmann L., Franck N., Lerat H., et al. The hepatitis C virus NS2 protein is an inhibitor of CIDE-B-induced apoptosis // J Biol Chem. 2003. Vol. 278, No. 20. P. 18256–18264. DOI: 10.1074/jbc.M209732200

[17]

Cai H, Yao W, Li L, et al. Cell-death-inducing DFFA-like effector B contributes to the assembly of hepatitis C virus (HCV) particles and interacts with HCV NS5A. Sci Rep. 2016;6:27778. DOI: 10.1038/srep27778

[18]

Cai H., Yao W., Li L., et al. Cell-death-inducing DFFA-like effector B contributes to the assembly of hepatitis C virus (HCV) particles and interacts with HCV NS5A // Sci Rep. 2016. Vol. 6. ID 27778. DOI: 10.1038/srep27778

[19]

Yu M, Wang H, Zhao J, et al. Expression of CIDE proteins in clear cell renal cell carcinoma and their prognostic significance. Mol Cell Biochem. 2013;378(1):145–151. DOI: 10.1007/s11010-013-1605-y

[20]

Yu M., Wang H., Zhao J., et al. Expression of CIDE proteins in clear cell renal cell carcinoma and their prognostic significance // Mol Cell Biochem. 2013. Vol. 378, No. 1. P. 145–151. DOI: 10.1007/s11010-013-1605-y

[21]

Fialkova V, Vidomanova E, Balharek T, et al. DNA methylation as mechanism of apoptotic resistance development in endometrial cancer patients. Gen Physiol Biophys. 2017;36(5):521–529. DOI: 10.4149/gpb_2017032

[22]

Fialkova V., Vidomanova E., Balharek T., et al. DNA methylation as mechanism of apoptotic resistance development in endometrial cancer patients // Gen Physiol Biophys. 2017. Vol. 36, No. 5. P. 521–529. DOI: 10.4149/gpb_2017032

[23]

Shalini S, Dorstyn L, Dawar S, Kumar S. Old, new and emerging functions of caspases. Cell Death Differ. 2015;22:526–539. DOI: 10.1038/cdd.2014.216

[24]

Shalini S., Dorstyn L., Dawar S., Kumar S. Old, new and emerging functions of caspases // Cell Death Differ. 2015. Vol. 22. P. 526–539. DOI: 10.1038/cdd.2014.216

[25]

Vasin MV, Ushakov IB. Potential ways of increase in bogy resistance to damaging actionof ionizing radiation with the aids of radiomitigators. Uspekhi sovremennoi biologii. 2019;139(3):235–253. (In Russ.) DOI: 10.1134/S0042132419030098

[26]

Васин М.В., Ушаков И.Б. Потенциальные пути повышения устойчивости организма к поражающему действию ионизирующего излучения с помощью радиомитигаторов // Успехи современной биологии. 2019. Т. 139, № 3. С. 235–253. DOI: 10.1134/S0042132419030098

[27]

Zhang Y, Dimtchev A, Dritschilo A, Jung M. Ionizing Radiation-induced Apoptosis in Ataxia-Telangiectasia Fibroblasts: Roles of caspase-9 and cellular inhibitor of apoptosis protein-1. J Biol Chem. 2001;276(31):28842–28848. DOI: 10.1074/jbc.M010525200

[28]

Zhang Y., Dimtchev A., Dritschilo A., Jung M. Ionizing Radiation-induced Apoptosis in Ataxia-Telangiectasia Fibroblasts: Roles of caspase-9 and cellular inhibitor of apoptosis protein-1 // J Biol Chem. 2001. Vol. 276, No. 31. P. 28842–28848. DOI: 10.1074/jbc.M010525200

[29]

Andollo N, Boyano MD, Andrade R, et al. Structural and functional preservation of specific sequences of DNA and mRNA in apoptotic bodies from ES cells. Apoptosis. 2005;10(2):417–428. DOI: 10.1007/s10495-005-0815-5

[30]

Andollo N., Boyano M.D., Andrade R., et al. Structural and functional preservation of specific sequences of DNA and mRNA in apoptotic bodies from ES cells // Apoptosis. 2005. Vol. 10, No. 2. P. 417–428. DOI: 10.1007/s10495-005-0815-5

[31]

Tamura RE, de Vasconcellos JF, Sarkar D, et al. GADD45 proteins: central players in tumorigenesis. Curr Mol Med. 2012;12(5):634–651. DOI: 10.2174/156652412800619978

[32]

Tamura R.E., de Vasconcellos J.F., Sarkar D., et al. GADD45 proteins: central players in tumorigenesis // Curr Mol Med. 2012. Vol. 12, No. 5. P. 634–651. DOI: 10.2174/156652412800619978

[33]

Liebermann DA, Tront JS, Sha X, et al. GADD45 stress sensors in malignancy and leukemia. Crit Rev Oncog. 2011;16(1–2):129–140. DOI: 10.1615/critrevoncog.v16.i1-2.120

[34]

Liebermann D.A., Tront J.S., Sha X., et al. GADD45 stress sensors in malignancy and leukemia // Crit Rev Oncog. 2011. Vol. 16, No. 1–2. P. 129–140. DOI: 10.1615/critrevoncog.v16.i1-2.120

[35]

Yang Z, Song L, Huang C. GADD45 proteins as critical signal transducers linking NF-kappaB to MAPK cascades. Cancer Drug Targets. 2009;9(8):915–30. DOI: 10.2174/156800909790192383

[36]

Yang Z., Song L., Huang C. GADD45 proteins as critical signal transducers linking NF-kappaB to MAPK cascades // Cancer Drug Targets. 2009. Vol. 9, No. 8. P. 915–30. DOI: 10.2174/156800909790192383

[37]

Liebermann DA, Hoffman B. GADD45 in the response of hematopoietic cells to genotoxic stress. Blood Cells Mol Dis. 2007;39(3): 329–335. DOI: 10.1016/j.bcmd.2007.06.006

[38]

Liebermann D.A., Hoffman B. GADD45 in the response of hematopoietic cells to genotoxic stress // Blood Cells Mol Dis. 2007. Vol. 39, No. 3. P. 329–335. DOI: 10.1016/j.bcmd.2007.06.006

[39]

Gupta M, Gupta SK, Hoffman B, Liebermann DA. GADD45a and GADD45b protect hematopoietic cells from UV-induced apoptosis via distinct signaling pathways, including p38 activation and JNK inhibition. J Biol Chem. 2006;281(26):17552–17558. DOI: 10.1074/jbc.M600950200

[40]

Gupta M., Gupta S.K., Hoffman B., Liebermann D.A. GADD45a and GADD45b protect hematopoietic cells from UV-induced apoptosis via distinct signaling pathways, including p38 activation and JNK inhibition // J Biol Chem. 2006. Vol. 281, No. 26. P. 17552–17558. DOI: 10.1074/jbc.M600950200

[41]

Gupta M, Gupta SK, Balliet AG, et al. Hematopoietic cells from GADD45a- and GADD45b-deficient mice are sensitized to genotoxic-stress-induced apoptosis. Oncogene. 2005;24(48):7170–7179. DOI: 10.1038/sj.onc.1208847

[42]

Gupta M., Gupta S.K., Balliet A.G., et al. Hematopoietic cells from GADD45a- and GADD45b-deficient mice are sensitized to genotoxic-stress-induced apoptosis // Oncogene. 2005. Vol. 24, No. 48. P. 7170–7179. DOI: 10.1038/sj.onc.1208847

[43]

Barreto G, Schäfer A, Marhold J, et al. Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature. 2007;445:671–675. DOI: 10.1038/nature05515

[44]

Barreto G., Schäfer A., Marhold J., et al. Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation // Nature. 2007. Vol. 445. P. 671–675. DOI: 10.1038/nature05515

[45]

Fornace AJ Jr, Alamo I Jr, Hollander MC. DNA damage-inducible transcripts in mammalian cells. PNAS. 1988;85(23):8800–8804. DOI: 10.1073/pnas.85.23.8800

[46]

Fornace A.J. Jr, Alamo I. Jr, Hollander M.C. DNA damage-inducible transcripts in mammalian cells // PNAS. 1988. Vol. 85, No. 23. P. 8800–8804. DOI: 10.1073/pnas.85.23.8800

[47]

Hollander MC, Alamo I, Jackman J, et al. Analysis of the mammalian gadd45 gene and its response to DNA damage. J Biol Chem. 1993;268(32):24385–24393. DOI: 10.1016/S0021-9258(20)80537-7

[48]

Hollander M.C., Alamo I., Jackman J., et al. Analysis of the mammalian gadd45 gene and its response to DNA damage // J Biol Chem. 1993. Vol. 268, No. 32. P. 24385–24393. DOI: 10.1016/S0021-9258(20)80537-7

[49]

Shaposhnikov MV, Plyusnina EN, Plyusnin SN, et al. Analysis of gene expression patterns as a method for detecting low doses of ionizing radiation, formaldehyde and dioxins. Theoretical and Applied Ecology. 2013;(2):25–33. (In Russ.) DOI: 10.25750/1995-4301-2013-2-025-033

[50]

Шапошников М.В., Плюснина Е.Н., Плюснин С.Н., и др. Анализ экспрессии генов как метод детектирования малых доз ионизирующих излучений, формальдегида и диоксинов // Теоретическая и прикладная экология. 2013. № 2. С. 25–33. DOI: 10.25750/1995-4301-2013-2-025-033

[51]

Goldberg Z, Schwietert CW, Lehner B, et al. Effects of low-dose ionizing radiation on gene expression in human skin biopsies. Int J Radiat Oncol Biol Phys. 2004;58(2):567–574. DOI: 10.1016/j.ijrobp.2003.09.033

[52]

Goldberg Z., Schwietert C.W., Lehner B., et al. Effects of low-dose ionizing radiation on gene expression in human skin biopsies // Int J Radiat Oncol Biol Phys. 2004. Vol. 58, No. 2. P. 567–574. DOI: 10.1016/j.ijrobp.2003.09.033

[53]

Litvyakov NV, Takhauov RM, Ageeva AM, et al. Caspase-3 activity of blood lymphocytes in radiation exposed persons. Medical Radiology and Radiation Safety. 2009;54(6):41–48. (In Russ.)

[54]

Литвяков Н.В., Тахауов Р.М., Агеева А.М., и др. Активность каспазы-3 в лимфоцитах крови у лиц, подвергавшихся облучению // Медицинская радиология и радиационная безопасность. 2009. Т. 54, No. 6. С. 41–48.

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

65

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/