Analysis of the accumulation of homozygosity regions in chickens of the Pushkin breed using data from whole genome genotyping
Natalia V. Dementieva , Yuri S. Shcherbakov , Olga V. Mitrofanova , Anatoly B. Vakhrameev , Vadim K. Khlestkin
Ecological Genetics ›› 2022, Vol. 20 ›› Issue (1) : 31 -39.
Analysis of the accumulation of homozygosity regions in chickens of the Pushkin breed using data from whole genome genotyping
BACKGROUND: The search for genetic factors influencing the formation of the productive qualities of new breeding forms and populations of chickens is an important direction in the study of animal genomes. The knowledge gained can be in demand in projects to create modern domestic highly productive poultry lines.
AIM: To conduct a comparative analysis of the localization of homozygous regions on chicken chromosomes in representatives of four breeds from the Genetic Collection of Rare and Endangered Breeds of Chickens to identify “traces of selection” and search for genes associated with productive traits.
MATERIALS AND METHODS: Based on the bioinformatic analysis of 42275 SNP markers identified using the Illumina Chicken 60K SNP iSelect BeadChip microchip, data were obtained on the distribution of homozygous regions of four populations of chickens at the Genetic Collection of Rare and Endangered Breeds of Chickens (VNIIGRZH, St. Petersburg): Pushkinskaya (n = 20), Cornish (n = 22), Black-and-White Australorp (n = 20), Russian White (n = 23).
RESULTS AND CONCLUSIONS: In chickens of the Pushkin breed, the observed heterozygosity was 0.372 ± 0.004, which is higher than in other populations. According to the inbreeding index, based on the analysis of homozygous regions, the maximum level was found in Cornish chickens. For the Pushkin breed, the accumulation of homozygous regions on chromosomes 1, 2, 6, 8 was noted. The genes annotated in these loci are evidence of intensive selection.
bird breeding / chicken DNA / chicken gene pool / genome-wide polymorphism
| [1] |
vniigen.ru [Internet]. All-Russian research institute of genetics and breeding of farm animals. Available from: https://vniigen.ru/ckp-geneticheskaya-kollekciya-redkix-i-ischezayushhix-porod-kur/ (In Russ.) |
| [2] |
vniigen.ru [интернет]. ВНИИГРЖ — Всероссийский научно-исследовательский институт генетики и разведения сельскохозяйственных животных. Доступ по ссылке: https://vniigen.ru/ckp-geneticheskaya-kollekciya-redkix-i-ischezayushhix-porod-kur/ |
| [3] |
Patent RUS № 3633/17.07.2006. Popov II, Prokhorenko PN, Borisenko EV, et al. Kury: Pushkinskaya. Moscow: FGBU “Gossortkomissiya”, 2007. Available from: https://reestr.gossortrf.ru/sorts/9358991/ (In Russ.) |
| [4] |
Патент РФ № 3633/17.07.2006. Попов И.И., Прохоренко П.Н., Борисенко Е.В., и др. «Куры: Пушкинская». Москва: ФГБУ «Госсорткомиссия», 2007. Доступ по ссылке: https://reestr.gossortrf.ru/sorts/9358991/ |
| [5] |
Zhang Q, Guldbrandtsen B, Bosse M, et al. Runs of homozygosity and distribution of functional variants in the cattle genome. BMC Genomics. 2015;16:542. DOI: 10.1186/s12864-015-1715-x |
| [6] |
Zhang Q., Guldbrandtsen B., Bosse M., et al. Runs of homozygosity and distribution of functional variants in the cattle genome // BMC Genomics. 2015. Vol. 16. ID 542. DOI: 10.1186/s12864-015-1715-x |
| [7] |
Joaquim LB, Chud TCS, Marchesi JAP, et al. Genomic structure of a crossbred Landrace pig population. PLoSOne. 2019;14(2): e0212266. DOI: 10.1371/journal.pone.0212266 |
| [8] |
Joaquim L.B., Chud T.C.S., Marchesi J.A.P., et al. Genomic structure of a crossbred Landrace pig population // PLOS ONE. 2019. Vol. 14, No. 2. ID e0212266. DOI: 10.1371/journal.pone.0212266 |
| [9] |
Weng Z, Xu Y, Zhong M, et al. Runs of homozygosity analysis reveals population characteristics of yellow-feathered chickens using re-sequencing data. Br Poult Sci. 2021:2003752. DOI: 10.1080/00071668.2021.2003752 |
| [10] |
Weng Z., Xu Y., Zhong M., et al. Runs of homozygosity analysis reveals population characteristics of yellow-feathered chickens using re-sequencing data // Br Poult Sci. 2021. ID 2003752. DOI: 10.1080/00071668.2021.2003752 |
| [11] |
Rostamzadeh Mahdabi E, Esmailizadeh A, Ayatollahi Mehrgardi A, Asadi Fozi M. A genome-wide scan to identify signatures of selection in two Iranian indigenous chicken ecotypes. Genet Sel Evol. 2021;53:72. DOI: 10.1186/s12711-021-00664-9 |
| [12] |
Rostamzadeh Mahdabi E., Esmailizadeh A., Ayatollahi Mehrgardi A., Asadi Fozi M. A genome-wide scan to identify signatures of selection in two Iranian indigenous chicken ecotypes // Genet Sel Evol. 2021. Vol. 53. ID 72. DOI: 10.1186/s12711-021-00664-9 |
| [13] |
Cendron F, Mastrangelo S, Tolone M, et al. Genome-wide analysis reveals the patterns of genetic diversity and population structure of 8 Italian local chicken breeds. Poult Sci. 2021;100(2):441–451. DOI: 10.1016/j.psj.2020.10.023 |
| [14] |
Cendron F., Mastrangelo S., Tolone M., et al. Genome-wide analysis reveals the patterns of genetic diversity and population structure of 8 Italian local chicken breeds // Poult Sci. 2021. Vol. 100, No. 2. P. 441–451. DOI: 10.1016/j.psj.2020.10.023 |
| [15] |
Kirin M, McQuillan R, Franklin CS, et al. Genomic runs of homozygosity record population history and consanguinity. PLoSOne. 2010;5(11): e13996. DOI: 10.1371/journal.pone.0013996 |
| [16] |
Kirin M., McQuillan R., Franklin C.S., et al. Genomic runs of homozygosity record population history and consanguinity // PLoSOne. 2010. Vol. 5, No. 11. ID e13996. DOI: 10.1371/journal.pone.0013996 |
| [17] |
Doekes HP, Bijma P, Windig JJ. How Depressing Is Inbreeding? A Meta-Analysis of 30 Years of Research on the Effects of Inbreeding in Livestock. Genes. 2021;12(6):926. DOI: 10.3390/genes12060926 |
| [18] |
Doekes H.P., Bijma P., Windig J.J. How Depressing is Inbreeding? A Meta-Analysis of 30 Years of Research on the Effects of Inbreeding in Livestock // Genes. 2021. Vol. 12, No. 6. ID 926. DOI: 10.3390/genes12060926 |
| [19] |
Mastrangelo S, Tolone M, Di Gerlando R, et al. Genomic inbreeding estimation in small populations: evaluation of runs of homozygosity in three local dairy cattle breeds. Animal. 2016;10(5):746–754. DOI: 10.1017/S1751731115002943 |
| [20] |
Mastrangelo S., Tolone M., Di Gerlando R., et al. Genomic inbreeding estimation in small populations: evaluation of runs of homozygosity in three local dairy cattle breeds // Animal. 2016. Vol. 10, No. 5. P. 746–754. DOI: 10.1017/S1751731115002943 |
| [21] |
Abdelmanova AS, Dotsev AV, Romanov MN, et al. Unveiling Comparative Genomic Trajectories of Selection and Key Candidate Genes in Egg-Type Russian White and Meat-Type White Cornish Chickens. Biology. 2021;10(9):876. DOI: 10.3390/biology10090876 |
| [22] |
Abdelmanova A.S., Dotsev A.V., Romanov M.N., et al. Unveiling Comparative Genomic Trajectories of Selection and Key Candidate Genes in Egg-Type Russian White and Meat-Type White Cornish Chickens // Biology. 2021. Vol. 10, No. 9. ID 876. DOI: 10.3390/biology10090876 |
| [23] |
Peripolli E, Munari DP, Silva MVGB, et al. Runs of homozygosity: current knowledge and applications in livestock. Animal Genetics. 2016;48(3):255–271. DOI: 10.1111/age.12526 |
| [24] |
Peripolli E., Munari D.P., Silva M.V.G.B., et al. Runs of homozygosity: current knowledge and applications in livestock // Animal Genetics. 2016. Vol. 48, No. 3. P. 255–271. DOI: 10.1111/age.12526 |
| [25] |
Alexander D.H., Novembre J., Lange K. Fast model-based estimation of ancestryin unrelated individuals. Genome Res. 2009, 19(9): 1655–1664. DOI: 10.1101/gr.094052.109 |
| [26] |
Alexander D.H., Novembre J., Lange K. Fast model-based estimation of ancestryin unrelated individuals // Genome Res. 2009. Vol. 19, No. 9. P. 1655–1664. DOI: 10.1101/gr.094052.109 |
| [27] |
Tao Z, Zhu C, Song W, et al. Inductive expression of the NOD1 signalling pathway in chickens infected with Salmonella pullorum. Br Poult Sci. 2017;58(3):242–250. DOI: 10.1080/00071668.2017.1280771 |
| [28] |
Tao Z., Zhu C., Song W., et al. Inductive expression of the NOD1 signalling pathway in chickens infected with Salmonella pullorum // Br Poult Sci. 2017. Vol. 58, No. 3. P. 242–250. DOI: 10.1080/00071668.2017.1280771 |
| [29] |
Abadjieva D, Ankova D, Grigorova S, Kistanova E. The effect of Artichoke (Cynara scolymus L.) on the expression of calcium-binding proteins in the eggshell gland of laying hens. Pol J Vet Sci. 2021;24(1):127–133. DOI: 10.24425/pjvs.2021.136801 |
| [30] |
Abadjieva D., Ankova D., Grigorova S., Kistanova E. The effect of Artichoke (Cynara scolymus L.) on the expression of calcium-binding proteins in the eggshell gland of laying hens // Pol J Vet Sci. 2021. Vol. 24, No. 1. P. 127–133. DOI: 10.24425/pjvs.2021.136801 |
| [31] |
Halgrain M, Bernardet N, Crepeau M, et al. Eggshell decalcification and skeletal mineralization during chicken embryonic development: defining candidate genes in the chorioallantoic membrane. Poult Sci. 2022;101(2):101622. DOI: 10.1016/j.psj.2021.101622 |
| [32] |
Halgrain M., Bernardet N., Crepeau M., et al. Eggshell decalcification and skeletal mineralization during chicken embryonic development: defining candidate genes in the chorioallantoic membrane // Poult Sci. 2022. Vol. 101, No. 2. ID 101622. DOI: 10.1016/j.psj.2021.101622 |
| [33] |
Miczán V, Kelemen K, Glavinics JR, et al. NECAB1 and NECAB2 are Prevalent Calcium-Binding Proteins of CB1/CCK-Positive GABAergic Interneurons. Cereb Cortex. 2021;31(3):1786–1806. DOI: 10.1093/cercor/bhaa326 |
| [34] |
Miczán V., Kelemen K., Glavinics J.R., et al. NECAB1 and NECAB2 are Prevalent Calcium-Binding Proteins of CB1/CCK-Positive GABAergic Interneurons // Cereb Cortex. 2021. Vol. 31, No. 3. P. 1786–1806. DOI: 10.1093/cercor/bhaa326 |
| [35] |
Peng Y, Song Y, Wang H. Systematic Elucidation of the Aneuploidy Landscape and Identification of Aneuploidy Driver Genes in Prostate Cancer. Front Cell Dev Biol. 2022;9:723466. DOI: 10.3389/fcell.2021.723466 |
| [36] |
Peng Y., Song Y., Wang H. Systematic Elucidation of the Aneuploidy Landscape and Identification of Aneuploidy Driver Genes in Prostate Cancer // Front Cell Dev Biol. 2022. Vol. 9. ID 723466. DOI: 10.3389/fcell.2021.723466 |
| [37] |
Morioka S, Nigorikawa K, Okada E, et al. TMEM55a localizes to macrophage phagosomes to downregulate phagocytosis. J Cell Sci. 2018;131(5): jcs213272. DOI: 10.1242/jcs.213272 |
| [38] |
Morioka S., Nigorikawa K., Okada E., et al. TMEM55a localizes to macrophage phagosomes to downregulate phagocytosis // J Cell Sci. 2018. Vol. 131, No. 5. ID jcs213272. DOI: 10.1242/jcs.213272 |
| [39] |
Kim HJ, Kim J. OTUD6A Is an Aurora Kinase A-Specific Deubiquitinase. Int J Mol Sci. 2021;22(4):1936. DOI: 10.3390/ijms22041936 |
| [40] |
Kim H.J., Kim J. OTUD6A Is an Aurora Kinase A-Specific Deubiquitinase // Int J Mol Sci. 2021. Vol. 22, No. 4. ID 1936. DOI: 10.3390/ijms22041936 |
| [41] |
Davoodi P, Ehsani A, Vaez Torshizi R, Masoudi AA. New insights into genetics underlying of plumage color. Anim Genet. 2022;53(1):80–93. DOI: 10.1111/age.13156 |
| [42] |
Davoodi P., Ehsani A., Vaez Torshizi R., Masoudi A.A. New insights into genetics underlying of plumage color // Anim Genet. 2022. Vol. 53, No. 1. P. 80–93. DOI: 10.1111/age.13156 |
| [43] |
Shi Y, Wang Y, Jiang H, et al. Mitochondrial dysfunction induces radioresistance in colorectal cancer by activating [Ca2+]m-PDP1-PDH-histone acetylation retrograde signaling. Cell Death Dis. 2021;12:837. DOI: 10.1038/s41419-021-03984-2 |
| [44] |
Shi Y., Wang Y., Jiang H., et al. Mitochondrial dysfunction induces radioresistance in colorectal cancer by activating [Ca2+]m-PDP1-PDH-histone acetylation retrograde signaling // Cell Death Dis. 2021. Vol. 12. ID 837. DOI: 10.1038/s41419-021-03984-2 |
| [45] |
Kobierecka PA, Wyszyńska AK, Gubernator J, et al. Chicken Anti-Campylobacter Vaccine – Comparison of Various Carriers and Routes of Immunization. Front Microbiol. 2016;7:740. DOI: 10.3389/fmicb.2016.00740 |
| [46] |
Kobierecka P.A., Wyszyńska A.K., Gubernator J., et al. Chicken Anti-Campylobacter Vaccine – Comparison of Various Carriers and Routes of Immunization // Front Microbiol. 2016. Vol. 7. ID 740. DOI: 10.3389/fmicb.2016.00740 |
| [47] |
Mao HG, Xu XL, Cao HY, et al. H-FABP gene expression and genetic association with meat quality traits in domestic pigeons (Columba livia). Br Poult Sci. 2021;62(2):172–179. DOI: 10.1080/00071668.2020.1839016 |
| [48] |
Mao H.G., Xu X.L., Cao H.Y., et al. H-FABP gene expression and genetic association with meat quality traits in domestic pigeons (Columba livia) // Br Poult Sci. 2021. Vol. 62, No. 2. P. 172–179. DOI: 10.1080/00071668.2020.1839016 |
| [49] |
Guo Y, Cheng L, Li X, et al. Transcriptional regulation of CYP19A1 expression in chickens: ESR1, ESR2 and NR5A2 form a functional network. Gen Comp Endocrinol. 2022;315:113939. DOI: 10.1016/j.ygcen.2021.113939 |
| [50] |
Guo Y., Cheng L., Li X., et al. Transcriptional regulation of CYP19A1 expression in chickens: ESR1, ESR2 and NR5A2 form a functional network // Gen Comp Endocrinol. 2022. Vol. 315. ID 113939. DOI: 10.1016/j.ygcen.2021.113939 |
| [51] |
Shcherbakova A, Tiemann B, Buettner FFR, Bakker H. Distinct C-mannosylation of netrin receptor thrombospondin type 1 repeats by mammalian DPY19L1 and DPY19L3. PNAS USA. 2017;114(10): 2574–2579. DOI: 10.1073/pnas.1613165114 |
| [52] |
Shcherbakova A., Tiemann B., Buettner F.F.R., Bakker H. Distinct C-mannosylation of netrin receptor thrombospondin type 1 repeats by mammalian DPY19L1 and DPY19L3 // PNAS USA. 2017. Vol. 114, No. 10. P. 2574–2579. DOI: 10.1073/pnas.1613165114 |
| [53] |
Tong H, Liu X, Li T, et al. INTS8 accelerates the epithelial-to-mesenchymal transition in hepatocellular carcinoma by upregulating the TGF-β signaling pathway. Cancer Manag Res. 2019;11: 1869–1879. DOI: 10.2147/CMAR.S184392 |
| [54] |
Tong H., Liu X., Li T., et al. INTS8 accelerates the epithelial-to-mesenchymal transition in hepatocellular carcinoma by upregulating the TGF-β signaling pathway // Cancer Manag Res. 2019. Vol. 11. ID 1869–1879. DOI: 10.2147/CMAR.S184392 |
| [55] |
Li D, Pan Z, Zhang K, et al. Identification of the Differentially Expressed Genes of Muscle Growth and Intramuscular Fat Metabolism in the Development Stage of Yellow Broilers. Genes. 2020;11(3):244. DOI: 10.3390/genes11030244 |
| [56] |
Li D., Pan Z., Zhang K., et al. Identification of the Differentially Expressed Genes of Muscle Growth and Intramuscular Fat Metabolism in the Development Stage of Yellow Broilers // Genes. 2020. Vol. 11, No. 3. ID 244. DOI: 10.3390/genes11030244 |
| [57] |
Dinh E, Rival T, Carrier A, et al. TP53INP1 exerts neuroprotection under ageing and Parkinson’s disease-related stress condition. Cell Death Dis. 2021;12:460. DOI: 10.1038/s41419-021-03742-4 |
| [58] |
Dinh E., Rival T., Carrier A., et al. TP53INP1 exerts neuroprotection under ageing and Parkinson’s disease-related stress condition // Cell Death Dis. 2021. Vol. 12. ID 460. DOI: 10.1038/s41419-021-03742-4 |
| [59] |
Chen Q, Wang Y, Liu Z, et al. Transcriptomic and proteomic analyses of ovarian follicles reveal the role of VLDLR in chicken follicle selection. BMC Genomics. 2020;21(1):486. DOI: 10.1186/s12864-020-06855-w |
| [60] |
Chen Q., Wang Y., Liu Z., et al. Transcriptomic and proteomic analyses of ovarian follicles reveal the role of VLDLR in chicken follicle selection // BMC Genomics. 2020. Vol. 21, No. 1. ID 486. DOI: 10.1186/s12864-020-06855-w |
| [61] |
Luo W, Chen J, Li L, et al. c-Myc inhibits myoblast differentiation and promotes myoblast proliferation and muscle fibre hypertrophy by regulating the expression of its target genes, miRNAs and lincRNAs. Cell Death Differ. 2019;26(3):426–442. DOI: 10.1038/s41418-018-0129-0 |
| [62] |
Luo W., Chen J., Li L., et al. c-Myc inhibits myoblast differentiation and promotes myoblast proliferation and muscle fibre hypertrophy by regulating the expression of its target genes, miRNAs and lincRNAs // Cell Death Differ. 2019. Vol. 26, No. 3. P. 426–442. DOI: 10.1038/s41418-018-0129-0 |
| [63] |
Bello SF, Xu H, Guo L, et al. Hypothalamic and ovarian transcriptome profiling reveals potential candidate genes in low and high egg production of white Muscovy ducks (Cairina moschata). Poult Sci. 2021;100(9):101310. DOI: 10.1016/j.psj.2021.101310 |
| [64] |
Bello S.F., Xu H., Guo L., et al. Hypothalamic and ovarian transcriptome profiling reveals potential candidate genes in low and high egg production of white Muscovy ducks (Cairina moschata) // Poult Sci. 2021. Vol. 100, No. 9. ID 101310. DOI: 10.1016/j.psj.2021.101310 |
| [65] |
Xing S, Liu R, Zhao G, Groenen MAM, et al. Time Course Transcriptomic Study Reveals the Gene Regulation During Liver Development and the Correlation With Abdominal Fat Weight in Chicken. Front Genet. 2021;12:723519. DOI: 10.3389/fgene.2021.723519 |
| [66] |
Xing S., Liu R., Zhao G., Groenen M.A.M., et al. Time Course Transcriptomic Study Reveals the Gene Regulation During Liver Development and the Correlation with Abdominal Fat Weight in Chicken // Front Genet. 2021. Vol. 12. ID 723519. DOI: 10.3389/fgene.2021.723519 |
| [67] |
Vilchez Larrea S, Valsecchi WM, Fernández Villamil SH, Lafon Hughes LI. First body of evidence suggesting a role of a tankyrase-binding motif (TBM) of vinculin (VCL) in epithelial cells. PeerJ. 2021;9: e11442. DOI: 10.7717/peerj.1144 |
| [68] |
Vilchez Larrea S., Valsecchi W.M., Fernández Villamil S.H., Lafon Hughes L.I. First body of evidence suggesting a role of a tankyrase-binding motif (TBM) of vinculin (VCL) in epithelial cells // PeerJ. 2021. Vol. 9. ID e11442. DOI: 10.7717/peerj.1144 |
| [69] |
Chen G, Sun J, Xie M, et al. PLAU Promotes Cell Proliferation and Epithelial-Mesenchymal Transition in Head and Neck Squamous Cell Carcinoma. Front Genet. 2021;12:651882. DOI: 10.3389/fgene.2021.651882 |
| [70] |
Chen G., Sun J., Xie M., et al. PLAU Promotes Cell Proliferation and Epithelial-Mesenchymal Transition in Head and Neck Squamous Cell Carcinoma // Front Genet. 2021. Vol. 12. ID 651882. DOI: 10.3389/fgene.2021.651882 |
| [71] |
Wingo AP, Velasco ER, Florido A, et al. Expression of the PPM1F Gene Is Regulated by Stress and Associated With Anxiety and Depression. Biol Psychiatry. 2018;83(3):284–295. DOI: 10.1016/j.biopsych.2017.08.013 |
| [72] |
Wingo A.P., Velasco E.R., Florido A., et al. Expression of the PPM1F Gene Is Regulated by Stress and Associated With Anxiety and Depression // Biol Psychiatry. 2018. Vol. 83, No. 3. P. 284–295. DOI: 10.1016/j.biopsych.2017.08.013 |
| [73] |
Shi CY, Kingston ER, Kleaveland B, et al. The ZSWIM8 ubiquitin ligase mediates target-directed microRNA degradation. Science. 2020;370(6523): eabc9359. DOI: 10.1126/science.abc9359 |
| [74] |
Shi C.Y., Kingston E.R., Kleaveland B., et al. The ZSWIM8 ubiquitin ligase mediates target-directed microRNA degradation // Science. 2020. Vol. 370, No. 6523. ID eabc9359. DOI: 10.1126/science.abc9359 |
| [75] |
Zhong Y, Chen L, Li J, et al. Integration of summary data from GWAS and eQTL studies identified novel risk genes for coronary artery disease. Medicine (Baltimore). 2021;100(11): e24769. DOI: 10.1097/MD.0000000000024769 |
| [76] |
Zhong Y., Chen L., Li J., et al. Integration of summary data from GWAS and eQTL studies identified novel risk genes for coronary artery disease // Medicine (Baltimore). 2021. Vol. 100, No. 11. ID e24769. DOI: 10.1097/MD.0000000000024769 |
| [77] |
Ruan W, Yang Y, Yu Q, et al. FUT11 is a target gene of HIF1α that promotes the progression of hepatocellular carcinoma. Cell Biol Int. 2021;45(11):2275–2286. DOI: 10.1002/cbin.11675 |
| [78] |
Ruan W., Yang Y., Yu Q., et al. FUT11 is a target gene of HIF1α that promotes the progression of hepatocellular carcinoma // Cell Biol Int. 2021. Vol. 45, No. 11. P. 2275–2286. DOI: 10.1002/cbin.11675 |
| [79] |
van Eldik W, Beqqali A, Monshouwer-Kloots J, et al. Cytoskeletal heart-enriched actin-associated protein (CHAP) is expressed in striated and smooth muscle cells in chick and mouse during embryonic and adult stages. Int J Dev Biol. 2011;55:649–655. DOI: 10.1387/ijdb.103207wv |
| [80] |
van Eldik W., Beqqali A., Monshouwer-Kloots J., et al. Cytoskeletal heart-enriched actin-associated protein (CHAP) is expressed in striated and smooth muscle cells in chick and mouse during embryonic and adult stages // Int J Dev Biol. 2011. Vol. 55. P. 649–655. DOI: 10.1387/ijdb.103207wv |
| [81] |
Zhang Z, Du H, Yang C, et al. Comparative transcriptome analysis reveals regulators mediating breast muscle growth and development in three chicken breeds. Anim Biotechnol. 2019;30(3):233–241. DOI: 10.1080/10495398.2018.1476377 |
| [82] |
Zhang Z., Du H., Yang C., et al. Comparative transcriptome analysis reveals regulators mediating breast muscle growth and development in three chicken breeds // Anim Biotechnol. 2019. Vol. 30, No. 3. P. 233–241. DOI: 10.1080/10495398.2018.1476377 |
| [83] |
Bottje W, Kong B-W, Reverter A, et al. Progesterone signalling in broiler skeletal muscle is associated with divergent feed efficiency. BMC Syst Biol. 2017;11:29. DOI: 10.1186/s12918-017-0396-2 |
| [84] |
Bottje W., Kong B.-W., Reverter A., et al. Progesterone signalling in broiler skeletal muscle is associated with divergent feed efficiency // BMC Syst Biol. 2017. Vol. 11. ID 29. DOI: 10.1186/s12918-017-0396-2 |
| [85] |
Chen L, He Q, Liu Y, et al. PPP3CB Inhibits Migration of G401 Cells via Regulating Epithelial-to-Mesenchymal Transition and Promotes G401 Cells Growth. Int J Mol Sci. 2019;20(2):275. DOI: 10.3390/ijms20020275 |
| [86] |
Chen L., He Q., Liu Y., et al. PPP3CB Inhibits Migration of G401 Cells via Regulating Epithelial-to-Mesenchymal Transition and Promotes G401 Cells Growth // Int J Mol Sci. 2019. Vol. 20, No. 2. ID 275. DOI: 10.3390/ijms20020275 |
| [87] |
Guo K, Lin X, Li Y, et al. Proteomic analysis of chicken embryo fibroblast cells infected with recombinant H5N1 avian influenza viruses with and without NS1 eIF4GI binding domain. Oncotarget. 2017;9:8350–8367. DOI: 10.18632/oncotarget.23615 |
| [88] |
Guo K., Lin X., Li Y., et al. Proteomic analysis of chicken embryo fibroblast cells infected with recombinant H5N1 avian influenza viruses with and without NS1 eIF4GI binding domain // Oncotarget. 2017. Vol. 9. P. 8350–8367. DOI: 10.18632/oncotarget.23615 |
| [89] |
Ríos H, Paganelli AR, Fosser NS. The role of PDLIM1, a PDZ-LIM domain protein, at the ribbon synapses in the chicken retina. J Comp Neurol. 2020;528(11):1820–1832. DOI: 10.1002/cne.24855 |
| [90] |
Ríos H., Paganelli A.R., Fosser N.S. The role of PDLIM1, a PDZ-LIM domain protein, at the ribbon synapses in the chicken retina // J Comp Neurol. 2020. Vol. 528, No. 11. P. 1820–1832. DOI: 10.1002/cne.24855 |
| [91] |
Zhang X, Yan Y, Lin W, et al. Circular RNA Vav3 sponges gga-miR-375 to promote epithelial-mesenchymal transition. RNA Biol. 2019;16(1):118–132. DOI: 10.1080/15476286.2018.1564462 |
| [92] |
Zhang X., Yan Y., Lin W., et al. Circular RNA Vav3 sponges gga-miR-375 to promote epithelial-mesenchymal transition // RNA Biol. 2019. Vol. 16, No. 1. P. 118–132. DOI: 10.1080/15476286.2018.1564462 |
| [93] |
Yuan J, Li S, Sheng Z, et al. Genome-wide run of homozygosity analysis reveals candidate genomic regions associated with environmental adaptations of Tibetan native chickens. BMC Genomics. 2022;23:91. DOI: 10.1186/s12864-021-08280-z |
| [94] |
Yuan J., Li S., Sheng Z., et al. Genome-wide run of homozygosity analysis reveals candidate genomic regions associated with environmental adaptations of Tibetan native chickens // BMC Genomics. 2022. Vol. 23. ID 91. DOI: 10.1186/s12864-021-08280-z |
| [95] |
Mitrofanova OV, Dementieva NV, Fedorova ES, et al. Assessment of variability of egg production traits based on analysis of SNP markers and search for traces of selection in the genome of Russian white chickens. Ecological genetics. 2020;18(4):423–432. DOI: 10.17816/ecogen46405 |
| [96] |
Митрофанова О.В., Дементьева Н.В., Федорова Е.С., и др. Оценка вариабельности признаков яйценоскости на основе анализа SNP-маркеров и поиск следов селекции в геноме кур русской белой породы // Экологическая генетика. 2020. Т. 18, № 4. C. 423–432. DOI: 10.17816/ecogen46405 |
/
| 〈 |
|
〉 |