Using the SSAP analysis for the primary localization of the cdt (cadmium tolerance) mutation in pea linkage group VI

Viktor E Tsyganov , Olga A Kulaeva , Maggie Knox , Aleksey U Borisov , Igor A Tikhonovich , Tomas N Ellis

Ecological Genetics ›› 2012, Vol. 10 ›› Issue (1) : 46 -50.

PDF
Ecological Genetics ›› 2012, Vol. 10 ›› Issue (1) : 46 -50. DOI: 10.17816/ecogen10146-50
Articles
research-article

Using the SSAP analysis for the primary localization of the cdt (cadmium tolerance) mutation in pea linkage group VI

Author information +
History +
PDF

Abstract

To localize the cdt mutation leading to an increased cadmium tolerance in the pea mutant and an increased cadmium accumulation in the biomass, F2 and F3 progenies from crosses between the mutant SGECdt line and the JI 281 line were analyzed. The joint inheritance of 89 SSAP (sequence specific amplified polymorphism) markers, by which the analyzed lines differed, and the mutant trait of cadmium tolerance was performed. The linkage between the trait of cadmium tolerance and 4 SSAP markers: Tps1/146+, Tps1/167+,Tps1/44+ and Tps1/58+, localized in VI pea linkage group, was shown. Thus, prospects of using SSAP analysis for primary localization of a mutation in the linkage group were demonstrated.

Keywords

Pisum sativum L.

Cite this article

Download citation ▾
Viktor E Tsyganov, Olga A Kulaeva, Maggie Knox, Aleksey U Borisov, Igor A Tikhonovich, Tomas N Ellis. Using the SSAP analysis for the primary localization of the cdt (cadmium tolerance) mutation in pea linkage group VI. Ecological Genetics, 2012, 10(1): 46-50 DOI:10.17816/ecogen10146-50

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Кулаева О. А., Цыганов В. Е., 2010. Молекулярно-генетические основы устойчивости высших растений к кадмию и его аккумуляции//Экол. генетика. Т. 8. С. 3-15.

[2]

Чегамирза К., Ковеза О. В., Коновалов Ф. А., Гостимский С. А., 2004. Идентификация и локализация гена chi115 и сцепленных с ним ДНК-маркеров у гороха посевного (Pisum sativum L.)//Генетика. Т. 40. С. 909-915.

[3]

Konovalov F., Toshchakova E., Gostimsky S., 2005. A CAP S marker set for mapping in linkage group III of pea (Pisum sativum L.)//Cell. Mol. Biol. Lett. V. 10. P. 163-171.

[4]

Kumar A., Pearce S. R., McLean K., et al., 1997. The Tyl copia group of retrotransposons in plants: genomic organisation, evolution, and use as molecular markers//Genetica. Vol. 100. P. 205-217.

[5]

Rozov S. M., Borisov A. Y., Tsyganov V. E., Kosterin O. E., 1999. The history of the pea gene map: last revolutions and the new symbiotic genes//Pisum Genet. Vol. 31. P. 55-57.

[6]

Sambrook J., Fritsch E. F., Maniatis T., 1989. Molecular cloning: a laboratory manual (2nd edn.). Cold Spring Harbor N.Y.: Cold Spring Harbor Laboratory Press.

[7]

SanMiguel P., Tikhonov A., Jin Y. K. et al., 1996. Nested retrotransposons in the intergenic regions of the maize genome//Science. Vol. 274. P. 765-768.

[8]

Schulman A. H., Flavell A. J., Ellis T. H., 2004. The application of LTR retrotransposons as molecular markers in plants//Methods Mol. Biol. Vol. 260. P. 145-173.

[9]

Suoniemi A., Anamthawat Jonsson K., Arna T., Schulman A. H., 1996. Retrotransposon BARE-1 is a major, dispersed component of the barley (Hordeum vulgare L.) genome//Plant Mol. Biol. Vol. 30, P. 1321-1329.

[10]

Tsyganov V. E., Pavlova Z. B., Kravchenko L. V. et al., 2000. New gene Crt (curly roots) controlling pea (Pisum sativum L.) root development//Ann. Bot. Vol. 86. P. 975 981.

[11]

Tsyganov V., Belimov A., Borisov A. et al., 2007. A chemically induced new pea (Pisum sativum) mutant SGECdt with increased tolerance to, and accumulation of, cadmium//Ann. Bot. Vol. 99. P. 227-237.

[12]

Vershinin A.V., Allnutt T.R., Knox M.R. et al., 2003. Transposable elements reveal the impact of introgression, rather than transposition, in Pisum diversity, evolution, and domestication//Mol. Biol. Evol. Vol. 20. P. 2067-2075.

[13]

Vos P., Hogers R., Bleeker M. et al., 1995. AFLP: a new technique for DNA fingerprinting//Nucl. Acid Res. Vol. 23. P. 4407-4414.

[14]

Watanabe A., Ito H., Chiba M. et al., 2010. Isolation of novel types of Arabidopsis mutants with altered reactions to cadmium: cadmium gradient agar plates are an effective screen for the heavy metal related mutants//Planta. Vol. 232. P. 825-836.

[15]

Waugh, R., McLean K., Flavell A. J. et al., 1997. Genetic distribution of Bare-1-like retrotransposable elements in the barley genome revealed by sequence specific amplification polymorphisms (SSAP)//Mol. Gen. Genet. Vol. 253. P. 687-694.

RIGHTS & PERMISSIONS

Tsyganov V.E., Kulaeva O.A., Knox M., Borisov A.U., Tikhonovich I.A., Ellis T.N.

AI Summary AI Mindmap
PDF

130

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/