Solvation chemistry in liquid electrolytes for rechargeable lithium batteries at low temperatures

Houzhen Li , Chuncheng Yan , Shuhua Wang

EcoEnergy ›› 2025, Vol. 3 ›› Issue (2) : 387 -421.

PDF
EcoEnergy ›› 2025, Vol. 3 ›› Issue (2) : 387 -421. DOI: 10.1002/ece2.94
REVIEW

Solvation chemistry in liquid electrolytes for rechargeable lithium batteries at low temperatures

Author information +
History +
PDF

Abstract

Over the past few decades, significant advancements have been made in the development of low-temperature liquid electrolytes for lithium batteries (LBs). Ongoing exploration of liquid electrolytes is crucial for further enhancing the performance of these batteries. Solvation chemistry plays a dominant role in determining the properties of the electrolyte, significantly affecting LBs performance at low temperatures (LTs). This review introduces solvation structures and their impact, discussing how these structures promote fast desolvation processes and contribute to the improvement of battery performance. Additionally, various solvent strategies are highlighted to refine solvation chemistry at LTs, including the use of linear and cyclic ethers/esters, as well as the role of functional groups within these solvents. The review also summarizes the impact of lithium salts containing organic/inorganic anions on solvation chemistry. Characterization techniques for solvent chemistry are discussed, providing a comprehensive analysis that offers valuable insights for developing next-generation electrolytes to ensure reliable battery performance across a wide temperature range.

Keywords

electrolyte / lithium battery / lithium salts / low temperature / solvation chemistry / solvent

Cite this article

Download citation ▾
Houzhen Li, Chuncheng Yan, Shuhua Wang. Solvation chemistry in liquid electrolytes for rechargeable lithium batteries at low temperatures. EcoEnergy, 2025, 3(2): 387-421 DOI:10.1002/ece2.94

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hou J, Yang M, Wang D, Zhang J. Fundamentals and challenges of lithium ion batteries at temperatures between −40 and 60°C. Adv Energy Mater. 2020; 10(18):1904152.

[2]

Li H, Zhang F, Wei W, et al. Promoting air stability of Li anode via an artificial organic/inorganic hybrid layer for dendrite-free lithium batteries. Adv Energy Mater. 2023; 13(28):2301023.

[3]

Tang W, Zhou T, Duan Y, Zhou M, Liu R. Nonflammable in situ PDOL-based gel polymer electrolyte for high-energy-density and high safety lithium metal batteries. Carbon Neutr. 2024; 3: 386-395.

[4]

Armand M, Tarascon J. Building better batteries. Nature. 2008; 451(7179): 652-657.

[5]

Palacin M. Recent advances in rechargeable battery materials: a chemist’s perspective. Chem Soc Rev. 2009; 38(9): 2565-2575.

[6]

Scrosati B, Hassoun J, Sun Y. Lithium-ion batteries: a look into the future. Energy Environ Sci. 2011; 4(9): 3287-3295.

[7]

Pu X, Zheng Y, Qi A, et al. Understanding and illustrating the irreversible self-discharge in rechargeable batteries by the Evans Diagram. Carbon Neutr. 2024; 3(1): 94-107.

[8]

Lu L, Han X, Li J, Hua J, Ouyang M. A review on the key issues for lithium-ion battery management in electric vehicles. J Power Sources. 2013; 226: 272-288.

[9]

Schmuch R, Wagner R, Horpel G, Placke T, Winter M. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat Energy. 2018; 3(4): 267-278.

[10]

Zhu G, Wen K, Lv W, et al. Materials insights into low-temperature performances of lithium-ion batteries. J Power Sources. 2015; 300: 29-40.

[11]

Zuo L, Lu D, Yang T, et al. Recent achievements of free-standing material and interface optimization in high-energy-density flexible lithium batteries. Carbon Neutr. 2022; 1(3): 316-345.

[12]

Cheng X, Zhang R, Zhao C, Zhang Q. Toward safe lithium metal anode in rechargeable batteries: a review. Chem Rev. 2017; 117(15): 10403-10473.

[13]

Dunn B, Kamath H, Tarascon J. Electrical energy storage for the grid: a battery of choices. Science. 2011; 334(6058): 928-935.

[14]

Li M, Lu J, Chen Z, Amine K. 30 years of lithium-ion batteries. Adv Mater. 2018; 30(33):1800561.

[15]

Xie J, Lu YC. A retrospective on lithium-ion batteries. Nat Commun. 2020; 11(1):2499.

[16]

Luo Z, Cao Y, Xu G, et al. Recent advances in robust and ultra-thin Li metal anode. Carbon Neutr. 2024; 3(4): 647-672.

[17]

Li Q, Liu G, Cheng H, Sun Q, Zhang J, Ming J. Low-temperature electrolyte design for lithium-ion batteries: prospect and challenges. Chem - Eur J. 2021; 27(64): 15842-15865.

[18]

Ren X, Chen S, Lee H, et al. Localized high-concentration sulfone electrolytes for high-efficiency lithium-metal batteries. Chem. 2018; 4(8): 1877-1892.

[19]

Li J, Yan C, Yao Y, Cai W, Huang J, Zhang Q. Inhibiting solvent co-intercalation in a graphite anode by a localized high-concentration electrolyte in fast-charging batteries. Angew Chem, Int Ed. 2021; 60(7): 3402-3406.

[20]

Sun N, Li R, Zhao Y, et al. Anionic coordination manipulation of multilayer solvation structure electrolyte for high-rate and low temperature lithium metal battery. Adv Energy Mater. 2022; 12(42):202200621.

[21]

Chen S, Zheng J, Mei D, et al. High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes. Adv Mater. 2018; 30(21):1706102.

[22]

Qin L, Xiao N, Zheng J, Lei Y, Zhai D, Wu Y. Localized high-concentration electrolytes boost potassium storage in high-loading graphite. Adv Energy Mater. 2019; 9(44):1902618.

[23]

He Y, Shang W, Tan P. Insight into rechargeable batteries in extreme environment for deep space exploration. Carbon Neutr. 2024; 3(5): 773-780.

[24]

Yang Y, Fang Z, Yin Y, et al. Synergy of weakly-solvated electrolyte and optimized interphase enables graphite anode charge at low temperature. Angew Chem Int Ed. 2022; 61(36):e202208345.

[25]

Holoubek J, Liu H, Wu Z, et al. Tailoring electrolyte solvation for Li metal batteries cycled at ultra-low temperature. Nat Energy. 2021; 6(3): 303-313.

[26]

Cui Z, Wang D, Guo J, et al. Push−pull electrolyte design strategy enables high-voltage Low temperature lithium metal batteries. J Am Chem Soc. 2024; 146(40): 27644-27654.

[27]

Xue Y, Wang Y, Zhang H, et al. Molecular design of mono-fluorinated ether-based electrolyte for all-climate lithium-ion batteries and lithium-metal batteries. Angew Chem Int Ed. 2024; 64(2):e202414201.

[28]

Zhu X, Chen J, Liu P, et al. Non-fluorinated cyclic ether-based electrolyte with quasi conjugate effect for high-performance lithium metal batteries. Angew Chem Int Ed. 2024; 64(1):e202412859.

[29]

Guo D, Thomas S, El-Demellawi J, et al. Electrolyte failure and reconstruction towards Li-S batteries operating from −20°C to 100°C. Energy Environ Sci. 2024; 17(21): 8151-8161.

[30]

Yoon S, Cavallaro K, Park B, Yook H, Han JW, McDowell MT. Controlling solvation and solid-electrolyte interphase formation to enhance lithium interfacial kinetics at low temperatures. Adv Funct Mater. 2023; 33(38):202302778.

[31]

Xu G, Huang S, Cui Z, et al. Functional additives assisted ester-carbonate electrolyte enables wide temperature operation of a high-voltage (5 V-Class) Li-ion battery. J Power Sources. 2019; 416: 29-36.

[32]

Xu Z, Yang J, Qian J, et al. Bicomponent electrolyte additive excelling fluoroethylene carbonate for high performance Si-based anodes and lithiated Si-S batteries. Energy Storage Mater. 2019; 20: 388-394.

[33]

Cavers H, Molaiyan P, Abdollahifar M, Lassi U, Kwade A. Perspectives on improving the safety and sustainability of high voltage lithium-ion batteries through the electrolyte and separator region. Adv Energy Mater. 2022; 12(23):2200147.

[34]

Xu J, Cai X, Cai S, et al. High-energy lithium-ion batteries: recent progress and a promising future in applications. Energy Environ Mater. 2023; 6(5):2575-0348.

[35]

Zhang X, Li Z, Luo L, Fan Y, Du Z. A review on thermal management of lithium-ion batteries for electric vehicles. Energy. 2022; 238(238):121652.

[36]

Tan S, Borodin O, Wang N, Yen D, Weiland C, Hu E. Synergistic anion and solvent-derived interphases enable lithium ion batteries under extreme conditions. J Am Chem Soc. 2024; 146(44): 30104-30116.

[37]

Huang Y, Wang C, Lv H, et al. Bifunctional interphase promotes Li+ de-solvation and transportation enabling fast-charging graphite anode at low temperature. Adv Mater. 2024; 36(13):2308675.

[38]

Hou J, Yang M, Wang D, Zhang J. Fundamentals and challenges of lithium ion batteries at temperatures between −40 and 60°C. Adv Energy Mater. 2020; 10(18):1904152.

[39]

Luo D, Li M, Zheng Y, et al. Electrolyte design for lithium metal anode-based batteries toward extreme temperature application. Adv Sci. 2021; 8(18):2101051.

[40]

Li Z, Yao Y, Sun S, et al. 40 years of low-temperature electrolytes for rechargeable lithium batteries. Angew Chem, Int Ed. 2023; 62(37):e202303888.

[41]

Hu A, Li F, Chen W, et al. Ion transport kinetics in low-temperature lithium metal batteries. Adv Energy Mater. 2022; 12(42):2202432.

[42]

Liu Q, Wang L. Fundamentals of electrolyte design for wide-temperature lithium metal batteries. Adv Energy Mater. 2023; 13(37):2301742.

[43]

Wan S, Ma W, Wang Y, Xiao Y, Chen S. Electrolytes design for extending the temperature adaptability of lithium-ion batteries: from fundamentals to strategies. Adv Mater. 2024; 36(21):2311912.

[44]

Huang Z, Xiao Z, Jin R, et al. A comprehensive review on liquid electrolyte design for low-temperature lithium/sodium metal batteries. Energy Environ Sci. 2024; 17(15): 5365-5386.

[45]

Zhang Y, Lu Y, Jin J, et al. Electrolyte design for lithium-ion batteries for extreme temperature applications. Adv Mater. 2023; 36(13):2308484.

[46]

Huo R, Guo S, Zhou H. Atomic insights into advances and issues in low-temperature electrolytes. Adv Energy Mater. 2023; 13(14):2300053.

[47]

Zhang C, Huo S, Su B, Bi C, Xue W. Challenges of film-forming additives in low-temperature lithium-ion batteries: a review. J Power Sources. 2024; 606:34559.

[48]

Xiao P, Yun X, Chen Y, et al. Insights into the solvation chemistry in liquid electrolytes for lithium-based rechargeable batteries. Chem Soc Rev. 2023; 15(52): 5255-5316.

[49]

Nan B, Chen L, Rodrigo N, et al. Enhancing Li transport in NMC811||Graphite lithium-ion batteries at low temperatures by using low-polarity-solvent electrolytes. Angew Chem Int Ed. 2022; 61(35):e202205967.

[50]

Dong L, Yan H, Liu Q, et al. Quantification of charge transport and mass deprivation in solid electrolyte interphase for kinetically-stable low-temperature lithium-ion batteries. Angew Chem, Int Ed. 2024; 63(43):e202411029.

[51]

Chen S, Wang T, Ma L, et al. Aqueous rechargeable zinc air batteries operated at −110 oC. Chem. 2022; 9(2): 497-510.

[52]

Zhang A, Bi Z, Wang G, et al. Regulating electrode/electrolyte interfacial chemistry enables 4.6 V ultra-stable fast charging of commercial LiCoO2. Energy Environ Sci. 2024; 17(9): 3021-3031.

[53]

Zhao Y, Hu Z, Zhao Z, et al. Strong solvent and dual lithium salts enable fast-charging Lithium-ion batteries operating from ‒78 to 60 oC. J Am Chem Soc. 2023; 145(40): 22184-22193.

[54]

Han R, Wang Z, Huang D, et al. High-energy-density lithium metal batteries with impressive Li+ transport dynamic and wide-temperature performance from −60 to 60 oC. Small. 2023; 19(25):2300571.

[55]

Cheng F, Zhang W, Li Q, Fang C, Han J, Huang Y. High chaos induced multiple-anion-rich solvation structure enabling ultrahigh voltage and wide temperature lithium-metal Batteries. ACS Nano. 2023; 17(23): 24259-24267.

[56]

Chen Y, He Q, Zhao Y, et al. Breaking solvation dominance of ethylene carbonate via molecular charge engineering enables lower temperature battery. Nat Commun. 2023; 14(1):13.

[57]

Liu J, Yuan B, He N, et al. Reconstruction of LiF-rich interphases through an anti-freezing electrolyte for ultralow-temperature LiCoO2 batteries. Energy Environ Sci. 2023; 16(3): 1024-1034.

[58]

Yang J, Shang J, Liu Q, et al. Variant-localized high-concentration electrolyte without phase separation for low-temperature batteries. Angew Chem, Int Ed. 2024; 63(33):202406182.

[59]

Shi J, Xu C, Lai J, et al. An amphiphilic molecule-regulated core-shell-solvation electrolyte for Li-metal batteries at ultra-low temperature. Angew Chem, Int Ed. 2023; 62(13):202218151.

[60]

Xu J, Koverga V, Phan A, et al. Revealing the anion-solvent interaction for ultralow temperature lithium metal batteries. Adv Mater. 2024; 36(7):202306462.

[61]

Holoubek J, Yu M, Yu SL, et al. An All-fluorinated ester electrolyte for stable high-voltage Li metal batteries capable of ultra-low-temperature operation. ACS Energy Lett. 2020; 5(5): 1438-1447.

[62]

Lu D, Li R, Rahman M, et al. Ligand-channel-enabled ultrafast Li-ion conduction. Nature. 2024; 627(8002): 19-107.

[63]

Chen X, Zhang X, Li H, Zhang Q. Cation−solvent, cation−anion, and solvent−solvent interactions with electrolyte solvation in lithium batteries. Batteries Supercaps. 2019; 2: 128-131.

[64]

Piao N, Wang J, Gao X, et al. Designing temperature-insensitive solvated electrolytes for low-temperature lithium metal batteries. J Am Chem Soc. 2024; 146(27): 18281-18291.

[65]

Chen L, Wang J, Chen M, et al. “Dragging effect” induced fast desolvation kinetics and ‒50 oC workable high-safe lithium batteries. Energy Storage Mater. 2024; 65: 10.

[66]

Younesi R, Veith G, Johansson P, Edström K, Vegge T. Lithium salts for advanced lithium batteries: Li-metal, Li-O2, and Li-S. Energy Environ Sci. 2015; 8(7): 1905-1922.

[67]

Hu A, Lv W, Lei T, et al. Heterostructured NiS2/ZnIn2S4 realizing toroid-like Li2O deposition in lithium-oxygen batteries with low-donor-number solvents. ACS Nano. 2020; 14(3): 3490-3499.

[68]

Kim S, Wang J, Xu R, et al. High-entropy electrolytes for practical lithium metal batteries. Nat Energy. 2023; 8: 814-826.

[69]

Jie Y, Wang S, Wen S, et al. Towards long-life 500 Wh Wh−1 lithium metal pouch cells via compact ion-pair aggregate electrolytes. Nat Energy. 2024; 9(8): 987-998.

[70]

Kim S, Lee J, Lee T, et al. Wide-temperature-range operation of lithium-metal batteries using partially and weakly solvating liquid electrolytes. Energy Environ Sci. 2023; 16(11): 5108-5122.

[71]

Yin Y, Yang Y, Cheng D, et al. Fire-extinguishing, recyclable liquefied gas electrolytes for temperature-resilient lithium-metal batteries. Nat Energy. 2022; 7(6): 548-559.

[72]

Cai G, Holoubek J, Li M, et al. Solvent selection criteria for temperature-resilient lithium-sulfur batteries. Proc Natl Acad Sci USA. 2022; 119(28):2200392119.

[73]

Li H, Kang Y, Wei W, et al. Branch-chain-rich diisopropyl ether with steric hindrance facilitates stable cycling of lithium batteries at ‒20°C. Nano-Micro Lett. 2024; 16(1):197.

[74]

Weber R, Genovese M, Louli A, et al. Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte. Nat Energy. 2019; 4(8): 683-689.

[75]

Luo L, Chen K, Chen H, et al. Enabling ultralow-temperature (‒70 oC) lithium-ion batteries: advanced electrolytes utilizing weak-solvation and low-viscosity nitrile cosolvent. Adv Mater. 2024; 36(5):202308881.

[76]

Zhang S, Xu K, Jow T, et al. Low-temperature performance of Li-ion cells with a LiBF4-based electrolyte. J Solid State Electrochem. 2003; 7(3): 147-151.

[77]

Liang J, Zhang Y, Xin S, et al. Mitigating swelling of the solid electrolyte interphase using an inorganic anion switch for low-temperature lithium-ion batteries. Angew Chem Int Ed. 2023; 62(16):202300384.

[78]

Lai P, Huang B, Deng X, et al. A localized high concentration carboxylic ester-based electrolyte for high-voltage and low temperature lithium batteries. Chem Eng J. 2023; 461:10.

[79]

Yang Y, Yin Y, Davies D, et al. Liquefied gas electrolytes for wide-temperature lithium metal batteries. Energy Environ Sci. 2020; 13(7): 2209-2219.

[80]

Piao Z, Wu X, Ren H, et al. A semisolvated sole-solvent electrolyte for high-voltage lithium metal batteries. J Am Chem Soc. 2023; 145(44): 24260-24271.

[81]

Holoubek J, Kim K, Yin Y, et al. Electrolyte design implications of ion-pairing in low-temperature Li metal batteries. Energy Environ Sci. 2022; 15(4): 1647-1658.

[82]

Jiang J, Li M, Liu X, et al. Multifunctional additives to realize dendrite-free lithium deposition in carbonate electrolytes toward low-temperature Li metal batteries. Adv Energy Mater. 2024; 14(27):202400365.

[83]

Cheng L, Wang Y, Yang J, et al. An ultrafast and stable Li-metal battery cycled at −40°C. Adv Funct Mater. 2022; 33(11):202212349.

[84]

Hu H, Li J, Zhang Q, et al. Non-concentrated electrolyte with weak anion coordination enables low Li-ion desolvation energy for low-temperature lithium batteries. Chem Eng J. 2023; 457:10.

[85]

Xu J, Zhang J, Pollard T, et al. Electrolyte design for Li-ion batteries under extreme operating conditions. Nature. 2023; 614(7949): 694-700.

[86]

Zhao X, Fu Z, Zhang X, et al. More is better: high-entropy electrolyte design in rechargeable batteries. Energy Environ Sci. 2024; 17(7): 2406-2430.

[87]

Ma Y, Yuan M, Wang Q, et al. High-entropy energy materials: challenges and new opportunities. Energy Environ Sci. 2021; 14(5): 2883-2905.

[88]

Wang Q, Zhao C, Wang J, et al. High entropy liquid electrolytes for lithium batteries. Nat Commun. 2023; 14(1):12.

[89]

Wang Q, Zhao C, Yao Z, et al. Entropy-driven liquid electrolytes for lithium batteries. Adv Mater. 2023; 35(17):202210677.

[90]

Yan C, Li H, Chen X, et al. Regulating the inner helmholtz plane for stable solid electrolyte interphase on lithium metal anodes. J Am Chem Soc. 2019; 141(23): 9422-9429.

[91]

Wen Z, Fang W, Wang F, et al. Dual-salt electrolyte additive enables high moisture tolerance and favorable electric double layer for lithium metal battery. Angew Chem Int Ed. 2024; 63(13):202314876.

[92]

Wang H, Xu J, Wang C, et al. Designing electrolytes and interphases for high-energy lithium batteries. Nat Rev Chem. 2024; 8(1): 30-44.

[93]

Yuan S, Cao S, Chen X, et al. Deshielding anions enable solvation chemistry control of LiPF6-based electrolyte toward low-temperature lithium-ion batteries. Adv Mater. 2024; 9:202311327.

[94]

Jow T, Ding M, Xu K, et al. Nonaqueous electrolytes for wide-temperature-range operation of Li-ion cells. J Power Sources. 2003; 119: 343-348.

[95]

Zhu Y, He S, Ding J, Zhao G, Lian F. The sulfolane-based liquid electrolyte with LiClO4 additive for the wide-temperature operating high nickel ternary cathode. Nano Res. 2023; 16(3): 3855-3863.

[96]

Wu J, Gao Z, Tian Y, et al. Unique tridentate coordination tailored solvation sheath toward highly stable lithium metal batteries. Adv Mater. 2023; 35(38):202303347.

[97]

Ma T, Ni Y, Wang Q, et al. Optimize lithium deposition at low temperature by weakly solvating power solvent. Angew Chem Int Ed. 2022; 61(39):202207927.

[98]

Ramasamy H, Kim S, Adams E, Rao H, Pol VG. A novel cyclopentyl methyl ether electrolyte solvent with a unique solvation structure for subzero (‒40°C) lithium-ion batteries. Chem Commun. 2022; 58(33): 5124-5127.

[99]

Jin C, Yao N, Xiao Y, et al. Taming solvent-solute interaction accelerates interfacial kinetics in low-temperature lithium-metal batteries. Adv Mater. 2023; 35(3):202208340.

[100]

Yang Y, Chen Y, Tan L, et al. Rechargeable LiNi0.65Co0.15Mn 0.2O2||Graphite batteries operating at ‒60°C. Angew Chem, Int Ed. 2022; 61(42):202209619.

[101]

Jiang H, Yang C, Chen M, et al. Electrophilically trapping water for preventing polymerization of cyclic ether towards low-temperature Li metal battery. Angew Chem, Int Ed. 2023; 62(14):202300238.

[102]

Zhang G, Chang J, Wang L, et al. A monofluoride ether-based electrolyte solution for fast-charging and low-temperature non-aqueous lithium metal batteries. Nat Commun. 2023; 14(1):13.

[103]

Guo H, Tian Y, Liu Y, et al. Inner lithium fluoride (LiF)-rich solid electrolyte interphase enabled by a smaller solvation sheath for fast-charging lithium batteries. ACS Appl Mater Interfaces. 2023; 15(1): 1201-1209.

[104]

Li X, Li M, Liu Y, et al. Fast interfacial defluorination kinetics enables stable cycling of low-temperature lithium metal batteries. J Am Chem Soc. 2024; 146(25): 17023-17031.

[105]

Liao L, Cheng X, Ma Y, et al. Fluoroethylene carbonate as electrolyte additive to improve low temperature performance of LiFePO4 electrode. Electrochim Acta. 2013; 87: 466-472.

[106]

Xiao L, Cao Y, Ai X, Yang H. Optimization of EC-based multi-solvent electrolytes for low temperature applications of lithium-ion batteries. Electrochim Acta. 2004; 49(27): 4857-4863.

[107]

Smart M, Ratnakumar B, Whitcanack L, et al. Improved low-temperature performance of lithium-ion cells with quaternary carbonate-based electrolytes. J Power Sources. 2003; 119: 349-358.

[108]

Li Q, Lu D, Zheng J, et al. Li+-desolvation dictating lithium-ion battery’s low-temperature performances. ACS Appl Mater Interfaces. 2017; 9(49): 42761-42768.

[109]

Lazar M, Lucht B. Carbonate free electrolyte for lithium ion batteries containing γ-butyrolactone and methyl butyrate. J Electrochem Soc. 2015; 162(6): A928-A934.

[110]

Shi P, Fang S, Huang J, Luo D, Yang L, Hirano S. A novel mixture of lithium bis(oxalato) borate, gamma-butyrolactone and non-flammable hydrofluoroether as a safe electrolyte for advanced lithium ion batteries. J Mater Chem A. 2017; 5(37): 19982-19990.

[111]

Cho Y, Li M, Holoubek J, et al. Enabling the low-temperature cycling of NMC||Graphite pouch cells with an ester-based electrolyte. ACS Energy Lett. 2021; 6(5): 2016-2023.

[112]

Dong L, Luo D, Zhang B, et al. All-fluorinated electrolyte engineering enables practical wide-temperature-range lithium metal batteries. ACS Nano. 2024; 18(28): 18729-18742.

[113]

Li Z, Yao Y, Zheng M, et al. Electrolyte design enables rechargeable LiFePO4/Graphite batteries from ‒80°C to 80 oC. Angew Chem Int Ed. 2024; 64(2):e202409409.

[114]

Smart M, Ratnakumar B, Surampudi S. Use of organic esters as cosolvents in electrolytes for lithium-ion batteries with improved low temperature performance. J Electrochem Soc. 2002; 149(4): A361-A370.

[115]

Kafle J, Harris J, Chang J, Koshina J, Boone D, Qu D. Development of wide temperature electrolyte for graphite/LiNiMnCoO2 Li-ion cells: high throughput screening. J Power Sources. 2018; 392: 60-68.

[116]

Wang Y, Dong S, Gao Y, et al. Difluoroester solvent toward fast-rate anion-intercalation lithium metal batteries under extreme conditions. Nat Commun. 2024; 15(1):13.

[117]

Herreyre S, Huchet O, Barusseau S, Perton F, Bodet J, Biensan P. New Li-ion electrolytes for low temperature applications. J Power Sources. 2001; 97-8: 576-580.

[118]

Jiang Z, Zeng Z, Liang X, et al. Fluorobenzene, a low-density, economical, and bifunctional hydrocarbon cosolvent for practical lithium metal batteries. Adv Funct Mater. 2021; 31(1):9.

[119]

Dong X, Lin Y, Li P, et al. High-energy rechargeable metallic lithium battery at ‒70°C enabled by a cosolvent electrolyte. Angew Chem Int Ed. 2019; 58(17): 201900266-201905627.

[120]

Lei S, Zeng Z, Yan H, et al. Nonpolar cosolvent driving LUMO energy evolution of methyl acetate electrolyte to afford lithium-ion batteries operating at ‒60°C. Adv Funct Mater. 2023; 33(34):202301028.

[121]

Liu X, Mariani A, Diemant T, Dong X, Su P, Passerini S. Locally concentrated ionic liquid electrolytes enabling low-temperature lithium metal batteries. Angew Chem Int Ed. 2023; 62(31):202305840.

[122]

Huang Y, Li R, Weng S, et al. Eco-friendly electrolytes via a robust bond design for high-energy Li metal batteries. Energy Environ Sci. 2022; 15(10): 4349-4361.

[123]

Li S, Zhao W, Zhou Z, et al. Studies on electrochemical performances of novel electrolytes for wide-temperature-range lithium-ion batteries. ACS Appl Mater Interfaces. 2014; 6(7): 4920-4926.

[124]

Yao Y, Yao N, Zhou X, et al. Ethylene-carbonate-free electrolytes for rechargeable Li-ion pouch cells at sub-freezing temperatures. Adv Mater. 2022; 34(35):202206448.

[125]

Fan X, Liu M, Chen T, et al. Reconstructing inorganic-rich interphases by nonflammable electrolytes for high-voltage and low-temperature LiNi0.5Mn1.5O4 Cathodes. Adv Funct Mater. 2024; 34(34):202400996.

[126]

Wan C, Ma H, Borodin O, et al. Natural abundance 17O, 6Li NMR and molecular modeling studies of the solvation structures of lithium bis(fluorosulfonyl)imide/1,2-dimethoxyethane liquid electrolytes. J Power Sources. 2016; 307: 231-243.

[127]

Ji H, Wang Z, Sun Y, et al. Weakening Li+ de-solvation barrier for cryogenic Li-S pouch cells. Adv Mater. 2023; 35(9):202208590.

[128]

Zou Y, Cao Z, Zhang J, et al. Interfacial model deciphering high-voltage electrolytes for high energy density, high safety, and fast-charging lithium-ion batteries. Adv Mater. 2021; 33(43):202102964.

[129]

Liu X, Zhang J, Yun X, et al. Anchored weakly-solvated electrolytes for high-voltage and low-temperature lithium-ion batteries. Angew Chem Int Ed. 2024; 13(36):202406596.

[130]

Tan S, Shadike Z, Li J, et al. Additive engineering for robust interphases to stabilize high-Ni layered structures at ultra-high voltage of 4.8 V. Nat Energy. 2022; 7(6): 484-494.

RIGHTS & PERMISSIONS

2025 The Author(s). EcoEnergy published by John Wiley & Sons Australia, Ltd on behalf of China Chemical Safety Association.

AI Summary AI Mindmap
PDF

60

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/