The role of dopants in mitigating the chemo-mechanical degradation of Ni-rich cathode: A critical review

Imesha Rambukwella , Hanisha Ponnuru , Cheng Yan

EcoEnergy ›› 2025, Vol. 3 ›› Issue (2) : 321 -353.

PDF
EcoEnergy ›› 2025, Vol. 3 ›› Issue (2) : 321 -353. DOI: 10.1002/ece2.92
REVIEW

The role of dopants in mitigating the chemo-mechanical degradation of Ni-rich cathode: A critical review

Author information +
History +
PDF

Abstract

Ni-rich cathodes are more promising candidates to the increasing demand for high capacity and the ability to operate at high voltages. However, the high Ni content creates a trade-off between energy density and cycling stability, mainly caused by the chemo-mechanical degradation. Oxygen evolution, cation mixing, rock salt formation, phase transition, and crack formation contribute to the degradation process. To overcome this problem, strategies such as doping, surface coating, and core-shell structures have been employed. The advantage of doping is to engineer the cathode surface, structure, and particle morphology simultaneously. This review aims to summarize recent advances in understanding chemo-mechanical degradation mechanism and the role of different dopants in enhancing the thermal stability and overall electrochemical performance. The pinning and pillaring effects of dopants on suppressing oxygen evolution, cation mixing, and phase transition are introduced. It is found that the higher ionic radii enable dopants to reside on cathode particles, preserving the particle surface and refining particle morphology to suppress crack formation. Finally, the effect of doping on Li ion diffusion, rate capability, and long-term stability are discussed.

Keywords

chemo-mechanical / degradation / doping / electrochemical / lithium-ion batteries / mitigation / Ni-rich cathode / polycrystalline

Cite this article

Download citation ▾
Imesha Rambukwella, Hanisha Ponnuru, Cheng Yan. The role of dopants in mitigating the chemo-mechanical degradation of Ni-rich cathode: A critical review. EcoEnergy, 2025, 3(2): 321-353 DOI:10.1002/ece2.92

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Britala L, Marinaro M, Kucinskis G. A review of the degradation mechanisms of NCM cathodes and corresponding mitigation strategies. J Energy Storage. 2023; 73:108875.

[2]

Li W, Lutz DM, Wang L, Takeuchi KJ, Marschilok AC, Takeuchi ES. Peering into batteries: electrochemical insight through in situ and operando methods over multiple length scales. Joule. 2021; 5(1): 77-88.

[3]

Huang X, Zhu W, Yao J, et al. Suppressing structural degradation of Ni-rich cathode materials towards improved cycling stability enabled by a Li2MnO3 coating. J Mater Chem A. 2020; 8(34): 17429-17441.

[4]

Li T, Yuan X-Z, Zhang L, Song D, Shi K, Bock C. Degradation mechanisms and mitigation strategies of nickel-rich NMC-based lithium-ion batteries. Electrochem Energy Rev. 2020; 3(1): 43-80.

[5]

Wu Z, Zhang C, Yuan F, et al. Ni-rich cathode materials for stable high-energy lithium-ion batteries. Nano Energy. 2024; 126:109620.

[6]

Park N-Y, Park G-T, Kim S-B, Jung W, Park B-C, Sun Y-K. Degradation mechanism of Ni-rich cathode materials: focusing on particle interior. ACS Energy Lett. 2022; 7(7): 2362-2369.

[7]

Yang J, Liang X, Ryu H-H, Yoon CS, Sun Y-K. Ni-rich layered cathodes for lithium-ion batteries: from challenges to the future. Energy Storage Mater. 2023; 63:102969.

[8]

Nowak S, Winter M. Elemental analysis of lithium ion batteries. J Anal Atomic Spectrom. 2017; 32(10): 1833-1847.

[9]

Rodríguez-Pérez IA, Zhang L, Wrogemann JM, et al. Enabling natural graphite in high-voltage aqueous graphite || Zn metal dual-ion batteries. Adv Energy Mater. 2020; 10(41):2001256.

[10]

Jiang M, Danilov DL, Eichel R-A, Notten PHL. A review of degradation mechanisms and recent achievements for Ni-rich cathode-based Li-ion batteries. Adv Energy Mater. 2021; 11(48):2103005.

[11]

Fang R, Miao C, Mou H, Xiao W. Facile synthesis of Si@TiO2@rGO composite with sandwich-like nanostructure as superior performance anodes for lithium ion batteries. J Alloys Compd. 2020; 818:152884.

[12]

Li Q, Chen J, Fan L, Kong X, Lu Y. Progress in electrolytes for rechargeable Li-based batteries and beyond. Green Energy Environ. 2016; 1(1): 18-42.

[13]

Choi JU, Voronina N, Sun Y-K, Myung S-T. Recent progress and perspective of advanced high-energy Co-less Ni-rich cathodes for Li-ion batteries: yesterday, today, and tomorrow. Adv Energy Mater. 2020; 10(42):2002027.

[14]

Zhang R, Wang C, Zou P, et al. Long-life lithium-ion batteries realized by low-Ni, Co-free cathode chemistry. Nat Energy. 2023; 8(7): 695-702.

[15]

Gomez-Martin A, Reissig F, Frankenstein L, et al. Magnesium substitution in Ni-rich NMC layered cathodes for high-energy lithium ion batteries. Adv Energy Mater. 2022; 12(8):2103045.

[16]

Meng X-H, Lin T, Mao H, et al. Kinetic origin of planar gliding in single-crystalline Ni-rich cathodes. J Am Chem Soc. 2022; 144(25): 11338-11347.

[17]

Lee S, Li W, Dolocan A, et al. In-depth analysis of the degradation mechanisms of high-nickel, low/No-cobalt layered oxide cathodes for lithium-ion batteries. Adv Energy Mater. 2021; 11(31):2100858.

[18]

Li W, Erickson EM, Manthiram A. High-nickel layered oxide cathodes for lithium-based automotive batteries. Nat Energy. 2020; 5(1): 26-34.

[19]

Shan R, Lu X, Xu Y, et al. A ternary MOF derived single crystalline LiNi1/3Mn1/3Co1/3O2 as high-voltage cathodes for lithium-ion batteries. Chem Eng Sci. 2023; 268:118416.

[20]

Shen J, Zhang B, Huang W, et al. Achieving thermodynamic stability of single-crystal Co-free Ni-rich cathode material for high voltage lithium-ion batteries. Adv Funct Mater. 2023; 33(23):2300081.

[21]

Ou X, Liu T, Zhong W, et al. Enabling high energy lithium metal batteries via single-crystal Ni-rich cathode material co-doping strategy. Nat Commun. 2022; 13(1):2319.

[22]

Zuo J, Wang J, Duan R, et al. Grain binding derived reinforced interfacial mechanical behavior of Ni-rich layered cathode materials. Nano Energy. 2024; 121:109214.

[23]

Mesnier A, Manthiram A. Influence of single-crystalline morphology on the electrochemical behavior of high-nickel layered oxide cathodes. J Electrochem Soc. 2023; 170(8):080509.

[24]

Lin R, Bak S-M, Shin Y, et al. Hierarchical nickel valence gradient stabilizes high-nickel content layered cathode materials. Nat Commun. 2021; 12(1):2350.

[25]

Lee S, Laisuo S, Mesnier A, Cui Z, Manthiram A. Cracking vs. surface reactivity in high-nickel cathodes for lithium-ion batteries. Joule. 2023; 7(11): 2430-2444.

[26]

Liang L, Zhang W, Zhao F, et al. Surface/interface structure degradation of Ni-rich layered oxide cathodes toward lithium-ion batteries: fundamental mechanisms and remedying strategies. Adv Mater Interfaces. 2020; 7(3):1901749.

[27]

Mu L, Lin R, Xu R, et al. Oxygen release induced chemomechanical breakdown of layered cathode materials. Nano Lett. 2018; 18(5): 3241-3249.

[28]

Caijian Liao FL, Liu J. Challenges and modification strategies of Ni-rich cathode materials operating at high-voltage. Nanomaterials. 2022; 12(11):1888.

[29]

Gan Q, Qin N, Yuan H, Lu L, Xu Z, Lu Z. Critical review on the degradation mechanisms and recent progress of Ni-rich layered oxide cathodes for lithium-ion batteries. EnergyChem. 2023; 5(5):100103.

[30]

Song J, Huang L, Yang G, et al. Solid-state approach for synthesizing single crystal LiNi0.8Co0.1Mn0.1O2 cathode of lithium-ion batteries. J Alloys Compd. 2023; 946:169358.

[31]

Ko G, Jeong S, Park S, et al. Doping strategies for enhancing the performance of lithium nickel manganese cobalt oxide cathode materials in lithium-ion batteries. Energy Storage Mater. 2023; 60:102840.

[32]

Binder JO, Culver SP, Pinedo R, et al. Investigation of fluorine and nitrogen as anionic dopants in nickel-rich cathode materials for lithium-ion batteries. ACS Appl Mater Interfaces. 2018; 10(51): 44452-44462.

[33]

Zhang H-L, Wu F-J. Effect of Cl doping on the structural and electrochemical properties of LiNi0.4Co0.2Mn0.4O2 as cathode materials for lithium-ion batteries. Int J Electrochem Sci. 2020; 15(8): 7417-7422.

[34]

Park HG, Min K, Park K. A synergistic effect of Na+ and Al3+ dual doping on electrochemical performance and structural stability of LiNi0.88Co0.08Mn0.04O2 Cathodes for Li-ion batteries. ACS Appl Mater Interfaces. 2022; 14(4): 5168-5176.

[35]

Sannyal A, Byun K, Mian SA, Jang J. Stabilizing a nickel-rich (LiNi0.89Co0.055Mn0.055O2) cathode material by doping zirconium or molybdenum: a first-principles study. J Phys Chem C. 2021; 125(50): 27543-27555.

[36]

Jeong M, Kim H, Lee W, Ahn S-J, Lee E, Yoon W-S. Stabilizing effects of Al-doping on Ni-rich LiNi0.80Co0.15Mn0.05O2 cathode for Li rechargeable batteries. J Power Sources. 2020; 474:228592.

[37]

Sim S-J, Lee S-H, Jin B-S, Kim H-S. Improving the electrochemical performances using a V-doped Ni-rich NCM cathode. Sci Rep. 2019; 9(1):8952.

[38]

Li Z-Y, Guo H, Ma X, et al. Al substitution induced differences in materials structure and electrochemical performance of Ni-rich layered cathodes for lithium-ion batteries. J Phys Chem C. 2019; 123(32): 19298-19306.

[39]

Ober S, Mesnier A, Manthiram A. Surface stabilization of cobalt-free LiNiO2 with niobium for lithium-ion batteries. ACS Appl Mater Interfaces. 2023; 15(1): 1442-1451.

[40]

Cui Z, Guo Z, Manthiram A. Assessing the intrinsic roles of key dopant elements in high-nickel layered oxide cathodes in lithium-based batteries. Adv Energy Mater. 2023; 13(12):2203853.

[41]

Wang X, Zhou X, Liu X, et al. Surface reactivity versus microcracks in Ni-rich layered oxide cathodes: which is critical for long cycle life? Chem Eng J. 2024; 488:150795.

[42]

Sun HH, Kim U-H, Park J-H, et al. Transition metal-doped Ni-rich layered cathode materials for durable Li-ion batteries. Nat Commun. 2021; 12(1):6552.

[43]

de Biasi L, Schwarz B, Brezesinski T, Hartmann P, Janek J, Ehrenberg H. Chemical, structural, and electronic aspects of formation and degradation behavior on different length scales of Ni-rich NCM and Li-rich HE-NCM cathode materials in Li-ion batteries. Adv Mater. 2019; 31(26):1900985.

[44]

Zhang R, Wang C, Zou P, et al. Compositionally complex doping for zero-strain zero-cobalt layered cathodes. Nature. 2022; 610(7930): 67-73.

[45]

Park G-T, Namkoong B, Kim S-B, Liu J, Yoon CS, Sun Y-K. Introducing high-valence elements into cobalt-free layered cathodes for practical lithium-ion batteries. Nat Energy. 2022; 7(10): 946-954.

[46]

Sun Y-K, Lee D-J, Lee YJ, Chen Z, Myung S-T. Cobalt-free nickel rich layered oxide cathodes for lithium-ion batteries. ACS Appl Mater Interfaces. 2013; 5(21): 11434-11440.

[47]

Nam K-W, Bak S-M, Hu E, et al. Combining in situ synchrotron X-ray diffraction and absorption techniques with transmission electron microscopy to study the origin of thermal instability in overcharged cathode materials for lithium-ion batteries. Adv Funct Mater. 2013; 23(8): 1047-1063.

[48]

Wang L, Su Q, Han B, et al. Unraveling the degradation mechanism of LiNi0.8Co0.1Mn0.1O2 atthe highcut-offvoltage for lithium ion batteries. J Energy Chem. 2023; 77: 428-437.

[49]

Sim YB, Lee H, Mun J, Kim KJ. Modification strategies improving the electrochemical and structural stability of high-Ni cathode materials. J Energy Chem. 2024; 96: 185-205.

[50]

Luo Y-H, Pan Q-L, Wei H-X, et al. Towards Ni-rich layered oxides cathodes with low Li/Ni intermixing by mild molten-salt ion exchange for lithium-ion batteries. Nano Energy. 2022; 102:107626.

[51]

Wang L, Liu T, Wu T, Lu J. Strain-retardant coherent perovskite phase stabilized Ni-rich cathode. Nature. 2022; 611(7934): 61-67.

[52]

Wu Q, Mao S, Wang Z, Tong Y, Lu Y. Improving LiNixCoyMn1−x−yO2 cathode electrolyte interface under high voltage in lithium ion batteries. Nano Select. 2020; 1(1): 111-134.

[53]

Kim J-H, Ryu H-H, Kim SJ, Yoon CS, Sun Y-K. Degradation mechanism of highly Ni-rich Li[NixCoyMn1-x-y]O2 cathodes with x > 0.9. ACS Appl Mater Interfaces. 2019; 11(34): 30936-30942.

[54]

Narayan R, Laberty-Robert C, Pelta J, Tarascon J-M, Dominko R. Self-healing: an emerging technology for next-generation smart batteries. Adv Energy Mater. 2022; 12(17):2102652.

[55]

Duan Y, Chen S-P, Zhang L, Guo L, Shi F-N. Review on oxygen release mechanism and modification strategy of nickel-rich NCM cathode materials for lithium-ion batteries: recent advances and future directions. Energy Fuels. 2024; 38(7): 5607-5631.

[56]

Abdellahi A, Urban A, Dacek S, Ceder G. Understanding the effect of cation disorder on the voltage profile of lithium transition-metal oxides. Chem Mater. 2016; 28(15): 5373-5383.

[57]

Oh P, Ko M, Myeong S, Kim Y, Cho J. A novel surface treatment method and new insight into discharge voltage deterioration for high-performance 0.4Li2MnO3-0.6LiNi1/3Co1/3Mn1/3O2 cathode materials. Adv Energy Mater. 2014; 4(16):1400631.

[58]

Xia F, Zeng W, Peng H, et al. Revealing structural degradation in layered structure oxides cathode of lithium ion batteries via in-situ transmission electron microscopy. J Mater Sci Technol. 2023; 154: 189-201.

[59]

Zheng J, Myeong S, Cho W, et al. Li- and Mn-rich cathode materials: challenges to commercialization. Adv Energy Mater. 2017; 7(6):1601284.

[60]

Lu S-J, Tang L-B, Wei H-X, et al. Single-crystal nickel-based cathodes: fundamentals and recent advances. Electrochem Energy Rev. 2022; 5(4):15.

[61]

Wang Z, Wang Z, Xue D, et al. Reviving the rock-salt phases in Ni-rich layered cathodes by mechano-electrochemistry in all-solid-state batteries. Nano Energy. 2023; 105:108016.

[62]

Zhou L, Zheng Y, Qian T, et al. Tuning the interface stability of nickel-rich NCM cathode against aggressive structural collapse via the synergistic effect of additives. Inorg Chem. 2024; 63(12): 5727-5733.

[63]

Zhang H, Omenya F, Whittingham MS, Wang C, Zhou G. Formation of an anti-core-shell structure in layered oxide cathodes for Li-ion batteries. ACS Energy Lett. 2017; 2(11): 2598-2606.

[64]

Xu C, Märker K, Lee J, et al. Bulk fatigue induced by surface reconstruction in layered Ni-rich cathodes for Li-ion batteries. Nat Mater. 2021; 20(1): 84-92.

[65]

Zheng S, Hong C, Guan X, et al. Correlation between long range and local structural changes in Ni-rich layered materials during charge and discharge process. J Power Sources. 2019; 412: 336-343.

[66]

Zhang SS. Understanding of performance degradation of LiNi0.80Co0.10Mn0.10O2 cathode material operating at high potentials. J Energy Chem. 2020; 41: 135-141.

[67]

Gupta H, Singh RK. High-voltage nickel-rich NMC cathode material with ionic-liquid-based polymer electrolytes for rechargeable lithium-metal batteries. Chemelectrochem. 2020; 7(17): 3597-3605.

[68]

Huang Y, Zhu H, Zhu H, Zhang J, Ren Y, Liu Q. Insight into the capacity decay mechanism of cycled LiNi0.5Co0.2Mn0.3O2 cathodes via in situ X-ray diffraction. Nanotechnology. 2021; 32(29):295701.

[69]

Xu J, Hu E, Nordlund D, et al. Understanding the degradation mechanism of lithium nickel oxide cathodes for Li-ion batteries. ACS Appl Mater Interfaces. 2016; 8(46): 31677-31683.

[70]

Wang C, Wang X, Zhang R, Lei T, Kisslinger K, Xin HL. Resolving complex intralayer transition motifs in high-Ni-content layered cathode materials for lithium-ion batteries. Nat Mater. 2023; 22(2): 235-241.

[71]

Zhao C, Wang C, Liu X, et al. Suppressing strain propagation in ultrahigh-Ni cathodes during fast charging via epitaxial entropy-assisted coating. Nat Energy. 2024; 9(3): 345-356.

[72]

Liu T, Liu J, Li L, et al. Origin of structural degradation in Li-rich layered oxide cathode. Nature. 2022; 606(7913): 305-312.

[73]

Liu X, Zhou X, Liu Q, et al. Multiscale understanding of surface structural effects on high-temperature operational resiliency of layered oxide cathodes. Adv Mater. 2022; 34(4):2107326.

[74]

Kim J-H, Park K-J, Kim SJ, Yoon CS, Sun Y-K. A method of increasing the energy density of layered Ni-rich Li[Ni1−2xCoxMnx]O2 cathodes (x = 0.05, 0.1, 0.2). J Mater Chem A. 2019; 7(6): 2694-2701.

[75]

Sun Y, Huang W, Zhao G, et al. LiNi0.9Co0.09Mo0.01O2 cathode with Li3PO4 coating and Ti doping for next-generation lithium-ion batteries. ACS Energy Lett. 2023; 8(3): 1629-1638.

[76]

Song J-H, Yu S, Kim B, et al. Slab gliding, a hidden factor that induces irreversibility and redox asymmetry of lithium-rich layered oxide cathodes. Nat Commun. 2023; 14(1):4149.

[77]

Eum D, Park S-O, Jang H-Y, et al. Electrochemomechanical failure in layered oxide cathodes caused by rotational stacking faults. Nat Mater. 2024; 23(8): 1093-1099.

[78]

Huang W, Liu T, Yu L, et al. Unrecoverable lattice rotation governs structural degradation of single-crystalline cathodes. Science. 2024; 384(6698): 912-919.

[79]

Deng HD, Zhao H, Jin N, et al. Correlative image learning of chemo-mechanics in phase-transforming solids. Nat Mater. 2022; 21(5): 547-554.

[80]

Ryu H-H, Namkoong B, Kim J-H, Belharouak I, Yoon CS, Sun Y-K. Capacity fading mechanisms in Ni-rich single-crystal NCM cathodes. ACS Energy Lett. 2021; 6(8): 2726-2734.

[81]

Qian G, Zhang J, Chu S-Q, et al. Understanding the mesoscale degradation in nickel-rich cathode materials through machine-learning-revealed strain-redox decoupling. ACS Energy Lett. 2021; 6(2): 687-693.

[82]

Sun X, Wang L, Ma J, et al. A Bifunctional chemomechanics strategy to suppress electrochemo-mechanical failure of Ni-rich cathodes for all-solid-state lithium batteries. ACS Appl Mater Interfaces. 2022; 14(15): 17674-17681.

[83]

Kim H, Kong Y, Seong WM, Manthiram A. Controlling the microstructure of cobalt-free, high-nickel cathode materials with dopant solubility for lithium-ion batteries. ACS Appl Mater Interfaces. 2023; 15(22): 26585-26592.

[84]

Ryu H-H, Park K-J, Yoon CS, Sun Y-K. Capacity fading of Ni-rich Li[NixCoyMn1-x-y]O2 (0.6 ≤ x ≤ 0.95) cathodes for high-energy-density lithium-ion batteries: bulk or surface degradation? Chem Mater. 2018; 30(3): 1155-1163.

[85]

Cheng X, Li Y, Cao T, et al. Real-time observation of chemomechanical breakdown in a layered nickel-rich oxide cathode realized by in situ scanning electron microscopy. ACS Energy Lett. 2021; 6(5): 1703-1710.

[86]

Fan X-M, Huang Y-D, Wei H-X, et al. Surface modification engineering enabling 4.6 V single-crystalline Ni-rich cathode with superior long-term cyclability. Adv Funct Mater. 2022; 32(6):2109421.

[87]

Sun HH, Ryu H-H, Kim U-H, et al. Beyond doping and coating: prospective strategies for stable high-capacity layered Ni-rich cathodes. ACS Energy Lett. 2020; 5(4): 1136-1146.

[88]

Li J, Hua H, Kong X, et al. In-situ probing the near-surface structural thermal stability of high-nickel layered cathode materials. Energy Storage Mater. 2022; 46: 90-99.

[89]

Yan P, Zheng J, Chen T, et al. Coupling of electrochemically triggered thermal and mechanical effects to aggravate failure in a layered cathode. Nat Commun. 2018; 9(1):2437.

[90]

Wei Z, Liang C, Jiang L, et al. Probing the thermal degradation mechanism of polycrystalline and single-crystal Li(Ni0.8Co0.1Mn0.1)O2 cathodes from the perspective of oxygen vacancy diffusion. Energy Storage Mater. 2023; 56: 495-505.

[91]

Tan X, Zhang M, Li J, Zhang D, Yan Y, Li Z. Recent progress in coatings and methods of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode materials: a short review. Ceram Int. 2020; 46(14): 21888-21901.

[92]

Ko D-S, Park J-H, Park S, et al. Microstructural visualization of compositional changes induced by transition metal dissolution in Ni-rich layered cathode materials by high-resolution particle analysis. Nano Energy. 2019; 56: 434-442.

[93]

Ryu H-H, Lim H-W, Lee SG, Sun Y-K. Near-surface reconstruction in Ni-rich layered cathodes for high-performance lithium-ion batteries. Nat Energy. 2024; 9(1): 47-56.

[94]

Hou P, Yin J, Ding M, Huang J, Xu X. Surface/interfacial structure and chemistry of high-energy nickel-rich layered oxide cathodes: advances and perspectives. Small. 2017; 13(45):1701802.

[95]

Saleem A, Shaw LL, Iqbal R, et al. Ni-rich cathode evolution: exploring electrochemical dynamics and strategic modifications to combat degradation. Energy Storage Mater. 2024; 69:103440.

[96]

Dongyang Li WL, Liang W, Xu R. Degradation mechanisms and modification strategies of nickel-rich NCM cathode in lithium-ion batteries. Mater Res Express. 2024; 11(1):012006.

[97]

Müller S, Pietsch P, Brandt B-E, et al. Quantification and modeling of mechanical degradation in lithium-ion batteries based on nanoscale imaging. Nat Commun. 2018; 9(1):2340.

[98]

Zhao K, Cui Y. Understanding the role of mechanics in energy materials: a perspective. Extreme Mech Lett. 2016; 9: 347-352.

[99]

Ni L, Chen H, Guo S, et al. Enabling structure/interface regulation for high performance Ni-rich cathodes. Adv Funct Mater. 2023; 33(51):2307126.

[100]

Sim R, Cui Z, Manthiram A. Impact of dopants on suppressing gas evolution from high-nickel layered oxide cathodes. ACS Energy Lett. 2023; 8(12): 5143-5148.

[101]

Yao L, Zheng H, Yu H, Chen L, Jiang H. Surface engineering of Ni-rich cathodes enables homogeneous doping of high-valence Mo ions for Li-ion batteries. Energy Fuels. 2023; 37(21): 16962-16969.

[102]

Levartovsky Y, Chakraborty A, Kunnikuruvan S, et al. Enhancement of structural, electrochemical, and thermal properties of high-energy density Ni-rich LiNi0.85Co0.1Mn0.05O2 cathode materials for Li-ion batteries by niobium doping. ACS Appl Mater Interfaces. 2021; 13(29): 34145-34156.

[103]

Chu B, Liu S, You L, et al. Enhancing the Cycling stability of Ni-rich LiNi0.6Co0.2Mn0.2O2 cathode at a high cutoff voltage with Ta doping. ACS Sustain Chem Eng. 2020; 8(8): 3082-3090.

[104]

Liu Q, Zhao Z, Wu F, Mu D, Wang L, Wu B. The effects of molybdenum doping on LiNi0.6Co0.2Mn0.2O2 cathode material. Solid State Ionics. 2019; 337: 107-114.

[105]

Li J, Liang G, Zheng W, et al. Addressing cation mixing in layered structured cathodes for lithium-ion batteries: a critical review. Nano Mater Sci. 2023; 5(4): 404-420.

[106]

Zhang D, Liu Y, Wu L, et al. Effect of Ti ion doping on electrochemical performance of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode material. Electrochim Acta. 2019; 328:135086.

[107]

Liu Y, Fan X, Luo B, et al. Understanding the enhancement effect of boron doping on the electrochemical performance of single-crystalline Ni-rich cathode materials. J Colloid Interface Sci. 2021; 604: 776-784.

[108]

Bianchini M, Roca-Ayats M, Hartmann P, Brezesinski T, Janek J. There and back again—the journey of LiNiO2 as a cathode active material. Angew Chem Int Ed. 2019; 58(31): 10434-10458.

[109]

Zhao W, Zou L, Jia H, et al. Optimized Al doping improves both interphase stability and bulk structural integrity of Ni-rich NMC cathode materials. ACS Appl Energy Mater. 2020; 3(4): 3369-3377.

[110]

Schipper F, Dixit M, Kovacheva D, et al. Stabilizing nickel-rich layered cathode materials by a high-charge cation doping strategy: zirconium-doped LiNi0.6Co0.2Mn0.2O2. J Mater Chem A. 2016; 4(41): 16073-16084.

[111]

Park G-T, Kim S-B, Namkoong B, et al. A new ternary Co-free layered cathode, Li[Ni1-x-yTixAly]O2, for high-energy lithium-ion batteries. Mater Today. 2023; 71: 38-49.

[112]

Guo H, Zhao C, Gao J, et al. Slight multielement doping-induced structural order-disorder transition for high-performance layered Na-ion oxide cathodes. ACS Appl Mater Interfaces. 2023; 15(29): 34789-34796.

[113]

Fang L, Wang M, Zhou Q, Xu H, Hu W, Li H. Suppressing cation mixing and improving stability by F doping in cathode material LiNiO2 for Li-ion batteries: first-principles study. Colloids Surf A Physicochem Eng Asp. 2020; 600:124940.

[114]

Kim U-H, Park G-T, Conlin P, et al. Cation ordered Ni-rich layered cathode for ultra-long battery life. Energy Environ Sci. 2021; 14(3): 1573-1583.

[115]

Feng Z, Rajagopalan R, Zhang S, et al. A three in one strategy to achieve zirconium doping, boron doping, and interfacial coating for stable LiNi0.8Co0.1Mn0.1O2 Cathode. Adv Sci. 2021; 8(2):2001809.

[116]

Zaker N, Geng C, Rathore D, et al. Probing the mysterious behavior of tungsten as a dopant inside pristine cobalt-free nickel-rich cathode materials. Adv Funct Mater. 2023; 33(16):2211178.

[117]

Qiao L, You Q, Wu X, Min H, Liu X, Yang H. Mo doping to modify lattice and morphology of the LiNi0.9Co0.05Mn0.05O2 cathode toward high-efficient lithium-ion storage. ACS Appl Mater Interfaces. 2024; 16(4): 4772-4783.

[118]

Park N-Y, Kim S-B, Kim M-C, et al. Mechanism of doping with high-valence elements for developing Ni-rich cathode materials. Adv Energy Mater. 2023; 13(34):2301530.

[119]

Adamo JB, Manthiram A. Understanding the effects of Al and Mn doping on the H2-H3 phase transition in high-nickel layered oxide cathodes. Chem Mater. 2024; 36(12): 6226-6236.

[120]

Wu R, Zhao S, Liao S, et al. Bulk doping of tungsten improves the structure stability and electrochemical performance of layered Ni-rich material. J Power Sources. 2024; 606:234584.

[121]

de Vasconcelos LS, Xu R, Xu Z, et al. Chemomechanics of rechargeable batteries: status, theories, and perspectives. Chem Rev. 2022; 122(15): 13043-13107.

[122]

Li Y, Gao D, Chang C, Zheng J. Improved electrochemical performance of Nb5+ doped NCM cathode upon 4.5 V application beneficial from the suppressed H2-H3 phase transition and promoted Li+ migration kinetics. J Energy Storage. 2023; 73:109139.

[123]

Li R, Ming Y, Xiang W, et al. Structure and electrochemical performance modulation of a LiNi0.8Co0.1Mn0.1O2 cathode material by anion and cation co-doping for lithium ion batteries. RSC Adv. 2019; 9(63): 36849-36857.

[124]

Cheng Y, Sun Y, Chu C, et al. Stabilizing effects of atomic Ti doping on high-voltage high-nickel layered oxide cathode for lithium-ion rechargeable batteries. Nano Res. 2022; 15(5): 4091-4099.

[125]

Venkatachalam P, Duru KK, Rangarajan M, Sangaraju S, Maram PS, Kalluri S. Delineating the importance of simultaneous Zr4+ doping and ZrO2 coating on NCM-622: a pathway to facilitate high-performance cathodes for lithium-ion batteries. J Mater Sci. 2024; 59(2): 548-562.

[126]

Gao D, Huang Y, Dong H, Li C, Chang C. Atomic horizons interpretation on enhancing electrochemical performance of Ni-rich NCM cathode via W doping: dual improvements in electronic and ionic conductivities from DFT calculations and experimental confirmation. Small. 2023; 19(5):2205122.

[127]

Zhu Z, Liang Y, Hu H, et al. Enhanced structural and electrochemical stability of LiNi0.83Co0.11Mn0.06O2 cathodes by zirconium and aluminum co-doping for lithium-ion battery. J Power Sources. 2021; 498:229857.

[128]

Zhou G, Wei Y, Li H, Wang C, Huang X, Yang D. Al2O3-coated, single crystal Zr/Y co-doped high-Ni NCM cathode materials for high-performance lithium-ion batteries. Part Part Syst Char. 2022; 39(7):2200061.

[129]

Ryu H-H, Park N-Y, Yoon DR, Kim U-H, Yoon CS, Sun Y-K. New class of Ni-rich cathode materials Li[NixCoyB1−x−y]O2 for next lithium batteries. Adv Energy Mater. 2020; 10(25):2000495.

[130]

Huang K, Mu X, Ding Y, Li J, Sui M, Yan P. Ti-Modification of grain boundaries for enhanced high voltage cycling stability of NCM811. ACS Appl Energy Mater. 2024; 7(11): 4856-4865.

[131]

Sattar T, Lee S-H, Jin B-S, Kim H-S. Influence of Mo addition on the structural and electrochemical performance of Ni-rich cathode material for lithium-ion batteries. Sci Rep. 2020; 10(1):8562.

[132]

Stallard JC, Wheatcroft L, Booth SG, et al. Mechanical properties of cathode materials for lithium-ion batteries. Joule. 2022; 6(5): 984-1007.

[133]

Pistorio F, Clerici D, Mocera F, Somà A. Coupled electrochemical-mechanical model for fracture analysis in active materials of lithium ion batteries. J Power Sources. 2023; 580:233378.

[134]

Kim YS, Kim JH, Sun Y-K, Yoon CS. Evolution of a radially aligned microstructure in boron-doped Li[Ni0.95Co0.04Al0.01]O2 cathode particles. ACS Appl Mater Interfaces. 2022; 14(15): 17500-17508.

[135]

Park G-T, Ryu H-H, Park N-Y, Yoon CS, Sun Y-K. Tungsten doping for stabilization of Li[Ni0.90Co0.05Mn0.05]O2 cathode for Li-ion battery at high voltage. J Power Sources. 2019; 442:227242.

[136]

Li J, Wu J, Li S, et al. Stabilizing LiNi0.8Co0.15Mn0.05O2 cathode by doping sulfate for lithium-ion batteries. ChemSusChem. 2021; 14(13): 2721-2730.

[137]

Ryu H-H, Lim H-W, Kang G-C, Park N-Y, Sun Y-K. Long-lasting Ni-rich NCMA cathodes via simultaneous microstructural refinement and surface modification. ACS Energy Lett. 2023; 8(3): 1354-1361.

[138]

Zhao Y, Bao Y, Zhang W, Guan M, Zhuang Y. The effect on electrochemical properties of Ti4+ and V5+ doping in LiNi0.8Co0.1Mn0.1O2. J Alloys Compd. 2023; 958:170451.

[139]

Levartovsky Y, Kunnikuruvan S, Chakraborty A, et al. Electrochemical and structural studies of LiNi0.85Co0.1Mn0.05O2, a cathode material for high energy density Li-ion batteries, stabilized by doping with small amounts of tungsten. J Electrochem Soc. 2021; 168(6):060552.

[140]

Hou P, Gong M, Tian Y, Li F. A new high-valence cation pillar within the Li layer of compositionally optimized Ni-rich LiNi0.9Co0.1O2 with improved structural stability for Li-ion battery. J Colloid Interface Sci. 2024; 653: 129-136.

[141]

Ryu H-H, Lee S-B, Sun Y-K. Promoting grain growth in Ni-rich single-crystal cathodes for high-performance lithium-ion batteries through Ce doping. J Solid State Electrochem. 2022; 26(9): 2097-2105.

[142]

Zhang B, Cheng L, Deng P, et al. Effects of transition metal doping on electrochemical properties of single-crystalline LiNi0.7Co0.1Mn0.2O2 cathode materials for lithium-ion batteries. J Alloys Compd. 2021; 872:159619.

[143]

Li D, Guo H, Jiang S, Zeng G, Zhou W, Li Z. Microstructures and electrochemical performances of TiO2-coated Mg-Zr co-doped NCM as a cathode material for lithium-ion batteries with high power and long circular life. New J Chem. 2021; 45(41): 19446-19455.

[144]

Lv Y, Cheng X, Qiang W, Huang B. Improved electrochemical performances of Ni-rich LiNi0.83Co0.12Mn0.05O2 by Mg-doping. J Power Sources. 2020; 450:227718.

[145]

Shen Y, Yao X, Zhang J, et al. Sodium doping derived electromagnetic center of lithium layered oxide cathode materials with enhanced lithium storage. Nano Energy. 2022; 94:106900.

[146]

Dang R, Qu Y, Ma Z, Yu L, Duan L, W. The effect of elemental doping on nickel-rich NCM cathode materials of lithium ion batteries. J Phys Chem C. 2022; 126(1): 151-159.

[147]

Ren J, Liu Z, Tang Y, et al. Enhancing electrochemical performance of nickel-rich NCM cathode material through Nb modification across a wide temperature range. J Power Sources. 2024; 606:234522.

[148]

Ko G, Park S, Kim W, Kwon K. Synergistic effect of Na and Al co-doping on the electrochemical properties of Li[Ni0.8Mn0.1Co0.1]O2 cathode materials for Li-ion batteries. J Alloys Compd. 2022; 925:166678.

[149]

Ryu H-H, Park G-T, Yoon CS, Sun Y-K. Suppressing detrimental phase transitions via tungsten doping of LiNiO2 cathode for next-generation lithium-ion batteries. J Mater Chem A. 2019; 7(31): 18580-18588.

[150]

Xu M, Yin D, Wang L, Chang L, Cheng Y. High valence tungsten doping enhances the lithium storage performance of high-voltage medium-nickel low-cobalt layered oxide cathode. J Energy Storage. 2024; 93:112279.

[151]

Yoon CS, Kim U-H, Park G-T, et al. Self-passivation of a LiNiO2 cathode for a lithium-ion battery through Zr doping. ACS Energy Lett. 2018; 3(7): 1634-1639.

[152]

Gao S, Zhan X, Cheng Y-T. Structural, electrochemical and Li-ion transport properties of Zr-modified LiNi0.8Co0.1Mn0.1O2 positive electrode materials for Li-ion batteries. J Power Sources. 2019; 410-411: 45-52.

[153]

Li X, Zhang K, Wang M, et al. Dual functions of zirconium modification on improving the electrochemical performance of Ni-rich LiNi0.8Co0.1Mn0.1O2. Sustain Energy Fuels. 2018; 2(2): 413-421.

[154]

Sun Y, Chang C, Zheng J. Doping effects on ternary cathode materials for lithium-ion batteries: a review. ChemPhysChem. 2024; 25(17):e202300966.

[155]

Tang Y, Chen Z, Lin F, et al. Synergistic role of Sb doping and surface modification in high performance ultrahigh-nickel layered oxides cathode materials. J Alloys Compd. 2023; 959:170552.

[156]

Wu T, Wang G, Liu B, et al. The role of Cu impurity on the structure and electrochemical performance of Ni-rich cathode material for lithium-ion batteries. J Power Sources. 2021; 494:229774.

[157]

Lu Y, Jin H, Mo Y, Qu Y, Du B, Chen Y. Synthesis and characterization of Cu-doped LiNi0.6Co0.2Mn0.2O2 materials for Li-ion batteries. J Alloys Compd. 2020; 844:156180.

[158]

Huang Y-d, Wei H-X, Li P-Y, et al. Rational design of surface reconstruction with pinning effect to relieving bulk fatigue for high energy single-crystal Ni-rich cathodes. Chem Eng J. 2023; 470:144254.

[159]

Yuan A, Tang H, Liu L, et al. High performance of phosphorus and fluorine co-doped LiNi0.8Co0.1Mn0.1O2 as a cathode material for lithium ion batteries. J Alloys Compd. 2020; 844:156210.

[160]

Kim S-B, Kim H, Park D-H, et al. Li-ion diffusivity and electrochemical performance of Ni-rich cathode material doped with fluoride ions. J Power Sources. 2021; 506:230219.

[161]

Chen Y-H, Zhang J, Li Y, et al. Effects of doping high-valence transition metal (V, Nb and Zr) ions on the structure and electrochemical performance of LIB cathode material LiNi0.8Co0.1Mn0.1O2. Phys Chem Chem Phys. 2021; 23(19): 11528-11537.

[162]

Kim D-H, Song J-H, Jung C-H, et al. Stepwise dopant selection process for high-nickel layered oxide cathodes. Adv Energy Mater. 2022; 12(18):2200136.

[163]

Yan J, Huang H, Tong J, et al. Recent progress on the modification of high nickel content NCM: coating, doping, and single crystallization. Interdiscip Mater. 2022; 1(3): 330-353.

[164]

Li Z, Huang X, Liang J, et al. Element doping induced microstructural engineering enhancing the lithium storage performance of high-nickel layered cathodes. J Energy Chem. 2023; 77: 461-468.

[165]

Li J, Zhong W, Deng Q, Zhang Q, Lin Z, Yang C. Mechanistic origin for high structural stability of single crystalline nickel-rich cathode materials via Al and Sm co-doping. Adv Funct Mater. 2023; 33(24):2300127.

RIGHTS & PERMISSIONS

2025 The Author(s). EcoEnergy published by John Wiley & Sons Australia, Ltd on behalf of China Chemical Safety Association.

AI Summary AI Mindmap
PDF

27

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/