1 min synthesis of phase pure nanocrystalline high-entropy sulfides for efficient water electrolysis

Judith Zander , Roland Marschall

EcoEnergy ›› 2025, Vol. 3 ›› Issue (2) : 482 -498.

PDF
EcoEnergy ›› 2025, Vol. 3 ›› Issue (2) : 482 -498. DOI: 10.1002/ece2.91
RESEARCH ARTICLE

1 min synthesis of phase pure nanocrystalline high-entropy sulfides for efficient water electrolysis

Author information +
History +
PDF

Abstract

The development of noble-metal free electrocatalysts with low production cost is of utmost importance for sustainable water electrolysis. Herein, we present a fast flexible synthesis pathway for the preparation of a variety of different medium- and high-entropy spinel sulfides of various compositions, using a non-aqueous microwave-assisted synthesis without any H2S. Nanoparticulate high-entropy sulfides containing up to 8 different metal cations can be obtained after an extremely short synthesis time of only 1 min and comparatively low temperatures of 200-230°C. We further demonstrate the high activity of the obtained sulfides for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER).

Keywords

electrocatalysis / high-entropy sulphides / water splitting

Cite this article

Download citation ▾
Judith Zander, Roland Marschall. 1 min synthesis of phase pure nanocrystalline high-entropy sulfides for efficient water electrolysis. EcoEnergy, 2025, 3(2): 482-498 DOI:10.1002/ece2.91

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Takise K, Sekine Y. Production, storage, utilization of hydrogen. Accounts Mater Surf Res. 2019; 4: 115-134.

[2]

Grigoriev SA, Fateev VN, Bessarabov DG, Millet P. Current status, research trends, and challenges in water electrolysis science and technology. Int J Hydrogen Energy. 2020; 45(49): 26036-26058.

[3]

Zhang K, Zou R. Advanced transition metal-based OER electrocatalysts: current status, opportunities, and challenges. Small. 2021; 17(37):2100129.

[4]

Lakhan MN, Hanan A, Hussain A, et al. Transition metal-based electrocatalysts for alkaline overall water splitting: advancements, challenges, and perspectives. Chem Commun. 2024; 60(39): 5104-5135.

[5]

Sun H, Xu X, Kim H, Jung W, Zhou W, Shao Z. Electrochemical water splitting: bridging the gaps between fundamental research and industrial applications. Energy Environ Mater. 2023; 6(5): 1-21.

[6]

Li S, Li E, An X, Hao X, Jiang Z, Guan G. Transition metal-based catalysts for electrochemical water splitting at high current density: current status and perspectives. Nanoscale. 2021; 13(30): 12788-12817.

[7]

Baek J, Hossain MD, Mukherjee P, et al. Synergistic effects of mixing and strain in high entropy spinel oxides for oxygen evolution reaction. Nat Commun. 2023; 14(1):5936.

[8]

Li H, Lai J, Li Z, Wang L. Multi-sites electrocatalysis in high-entropy alloys. Adv Funct Mater. 2021; 31(47):2106715.

[9]

Xu X, Shao Z, Jiang SP. High-entropy materials for water electrolysis. Energy Technol. 2022; 10(11):2200573.

[10]

Sarkar A, Wang Q, Schiele A, et al. High-entropy oxides: high-entropy oxides: fundamental aspects and electrochemical properties (Adv. Mater. 26/2019). Adv Mater. 2019; 31(26):1806236.

[11]

Fu M, Ma X, Zhao K, Li X, Su D. High-entropy materials for energy-related applications. iScience. 2021; 24(3):102177.

[12]

Sun Y, Dai S. High-entropy materials for catalysis: a new frontier. Sci Adv. 2021; 7(20):eabg1600.

[13]

Batchelor TAA, Pedersen JK, Winther SH, Castelli IE, Jacobsen KW, Rossmeisl J. High-entropy alloys as a discovery platform for electrocatalysis. Joule. 2019; 3: 834-845.

[14]

Ma Y, Ma Y, Wang Q, et al. High-entropy energy materials: challenges and new opportunities. Energy Environ Sci. 2021; 14(5): 2883-2905.

[15]

Pan Y, Liu JX, Tu TZ, Wang W, Zhang GJ. High-entropy oxides for catalysis: a diamond in the rough. Chem Eng J. 2023; 451:138659.

[16]

Jiang B, Yu Y, Cui J, et al. High-entropy-stabilized chalcogenides with high thermoelectric performance. Science. 2021; 371(6531): 830-834.

[17]

Amiri A, Shahbazian-Yassar R. Recent progress of high-entropy materials for energy storage and conversion. J Mater Chem A. 2021; 9(2): 782-823.

[18]

Aamlid SS, Oudah M, Rottler J, Hallas AM. Understanding the role of entropy in high entropy oxides. J Am Chem Soc. 2023; 145(11): 5991-6006.

[19]

Rost CM, Sachet E, Borman T, et al. Entropy-stabilized oxides. Nat Commun. 2015; 6(1):8485.

[20]

Chang X, Zeng M, Liu K, Fu L. Phase engineering of high-entropy alloys. Adv Mater. 2020; 32(14):1907226.

[21]

Zhang Y, Wang D, Wang S, Shang L. Smart film actuators for biomedical applications. Small. 2022; 18(36):2104339.

[22]

Sarkar A, Velasco L, Wang D, et al. High entropy oxides for reversible energy storage. Nat Commun. 2018; 9(1):3400.

[23]

Anand G, Wynn AP, Handley CM, Freeman CL. Phase stability and distortion in high-entropy oxides. Acta Mater. 2018; 146: 119-125.

[24]

Dąbrowa J, Stygar M, Mikuła A, et al. Synthesis and microstructure of the (Co,Cr,Fe,Mn,Ni)3O4 high entropy oxide characterized by spinel structure. Mater Lett. 2018; 216: 32-36.

[25]

Zander J, Wölfel JP, Weiss M, et al. Medium- and High-Entropy Spinel Ferrite Nanoparticles via Low-Temperature Synthesis for the Oxygen Evolution Reaction. Adv Funct Mater. 2023; 2310179: 1-16.

[26]

Fracchia M, Manzoli M, Anselmi-Tamburini U, Ghigna P. A new eight-cation inverse high entropy spinel with large configurational entropy in both tetrahedral and octahedral sites: synthesis and cation distribution by X-ray absorption spectroscopy. Scripta Mater. 2020; 188: 26-31.

[27]

Gild J, Samiee M, Braun JL, et al. High-entropy fluorite oxides. J Eur Ceram Soc. 2018; 38(10): 3578-3584.

[28]

Buckingham MA, Ward-O’Brien B, Xiao W, Li Y, Qu J, Lewis DJ. High entropy metal chalcogenides: synthesis, properties, applications and future directions. Chem Commun. 2022; 58: 8025-8037.

[29]

Guo M, Li P, Wang A, et al. Topotactic synthesis of high-entropy sulfide nanosheets as efficient pre-catalysts for water oxidation. Chem Commun. 2023; 59(34): 5098-5101.

[30]

Han L, Dong S, Wang E. Transition-metal (Co, Ni, and Fe)-Based electrocatalysts for the water oxidation reaction. Adv Mater. 2016; 28(42): 9266-9291.

[31]

Yu M, Budiyanto E, Tüysüz H. Principles of water electrolysis and recent progress in cobalt-, nickel-, and iron-based oxides for the oxygen evolution reaction. Angew Chem Int Ed. 2022; 61(1):e202103824.

[32]

Wang M, Zhang L, He Y, Zhu H. Recent advances in transition-metal-sulfide-based bifunctional electrocatalysts for overall water splitting. J Mater Chem A. 2021; 9: 5320-5363.

[33]

Shi J, Jiang H, Hong X, Tang J. Non-noble metal high entropy sulfides for efficient oxygen evolution reaction catalysis. Appl Surf Sci. 2024; 642:158598.

[34]

Fan H, Ma Y, Chen W, Tang Y, Li L, Wang J. Facile one-step electrodeposition of two-dimensional nickel-iron bimetallic sulfides for efficient electrocatalytic oxygen evolution. J Alloys Compd. 2022; 894:162533.

[35]

Wu L, Shen X, Ji Z, et al. Facile synthesis of medium-entropy metal sulfides as high-efficiency electrocatalysts toward oxygen evolution reaction. Adv Funct Mater. 2023; 33(3):2208170.

[36]

Tan L, Yu J, Wang C, et al. Partial sulfidation strategy to NiFe-LDH@FeNi2S4 heterostructure enable high-performance water/seawater oxidation. Adv Funct Mater. 2022; 32(29):2200951.

[37]

Pan Z, Yaseen M, Kang Shen P, Zhan Y. Designing highly efficient 3D porous Ni-Fe sulfide nanosheets based catalyst for the overall water splitting through component regulation. J Colloid Interface Sci. 2022; 616: 422-432.

[38]

Mohili R, Hemanth NR, Jin H, Lee K, Chaudhari N. Emerging high entropy metal sulphides and phosphides for electrochemical water splitting. J Mater Chem A. 2023; 11(20): 10463-10472.

[39]

Cui M, Yang C, Li B, et al. High-entropy metal sulfide nanoparticles promise high-performance oxygen evolution reaction. Adv Energy Mater. 2021; 11(3):2002887.

[40]

Li S, Tong L, Peng Z, Zhang B, Fu X. A novel high-entropy sulfide (ZnCoMnFeAlMg)9S8 as a low potential and long life electrocatalyst for overall water splitting in experiments and DFT analysis. Green Chem. 2023; 26(1): 384-395.

[41]

Xiao W, Li Y, Elgendy A, et al. Synthesis of high entropy and entropy-stabilized metal sulfides and their evaluation as hydrogen evolution electrocatalysts. Chem Mater. 2023; 35(19): 7904-7914.

[42]

Lin L, Ding Z, Karkera G, et al. High-entropy sulfides as highly effective catalysts for the oxygen evolution reaction. Small Struct. 2023; 4(9):2300012.

[43]

McCormick CR, Schaak RE. Simultaneous multication exchange pathway to high-entropy metal sulfide nanoparticles. J Am Chem Soc. 2021; 143(2): 1017-1023.

[44]

Simon C, Zander J, Kottakkat T, et al. Fast microwave synthesis of phase-pure Ni2FeS4 thiospinel nanosheets for application in electrochemical CO2 reduction. ACS Appl Energy Mater. 2021; 4(9): 8702-8708.

[45]

Hegazy MBZ, Zander J, Weiss M, et al. FeNi2S4-A potent bifunctional efficient electrocatalyst for the overall electrochemical water splitting in alkaline electrolyte. Small. 2024; 20(31): 1-10. 2311627.

[46]

Lin L, Wang K, Sarkar A, et al. High-entropy sulfides as electrode materials for Li-ion batteries. Adv Energy Mater. 2022; 12(8):2103090.

[47]

Nguyen TX, Su YH, Lin CC, Ting JM. Advanced high entropy perovskite oxide electrocatalyst for oxygen evolution reaction. Adv Funct Mater. 2021; 31(27): 1-11.

[48]

Bilecka I, Elser P, Niederberger M. Kinetic and thermodynamic aspects in the microwave-assisted synthesis of ZnO nanoparticles in benzyl alcohol. ACS Nano. 2009; 3(2): 467-477.

[49]

Zhu YJ, Chen F. Microwave-assisted preparation of inorganic nanostructures in liquid phase. Chem Rev. 2014; 114(12): 6462-6555.

[50]

Pauwels LJ. Energy level diagrams of the “NiAs”-, “pyrite”- and “spinel”-type sulfides of Fe, Co and Ni. Bull Soc Chim Belg. 1970; 79(9-10): 549-566.

[51]

Kwon DH, Lee J, Artrith N, et al. The impact of surface structure transformations on the performance of Li-excess cation-disordered rocksalt cathodes. Cell Reports Phys Sci. 2020; 1(9):100187.

[52]

Zander J, Marschall R. Ni2FeS4as a highly efficient earth-abundant co-catalyst in photocatalytic hydrogen evolution. J Mater Chem A. 2023; 11(32): 17066-17078.

[53]

Bloesser A, Kurz H, Timm J, et al. Tailoring the size, inversion parameter, and absorption of phase-pure magnetic MgFe2O4 nanoparticles for photocatalytic degradations. ACS Appl Nano Mater. 2020; 3(11): 11587-11599.

[54]

Legrand DL, Bancroft GM, Nesbitt HW. Oxidation/alteration of pentlandite and pyrrhotite surfaces at pH 9.3: Part 1. Assignment of XPS spectra and chemical trends. Am Mineral. 2005; 90: 1042-1054.

[55]

Kang J, Li F, Xu Z, et al. How amorphous nanomaterials enhanced electrocatalytic, SERS, and mechanical properties. JACS Au. 2023; 3(10): 2660-2676.

[56]

Simon C, Zakaria MB, Kurz H, et al. Magnetic NiFe2O4 nanoparticles prepared via non-aqueous microwave-assisted synthesis for application in electrocatalytic water oxidation. Chem Eur J. 2021; 27(68): 16990-17001.

[57]

Deshmukh R, Niederberger M. Mechanistic aspects in the formation, growth and surface functionalization of metal oxide nanoparticles in organic solvents. Chem Eur J. 2017; 23(36): 8542-8570.

[58]

Urso M, Torrisi G, Boninelli S, Bongiorno C, Priolo F, Mirabella S. Ni(OH)2@Ni core-shell nanochains as low-cost high-rate performance electrode for energy storage applications. Sci Rep. 2019; 9: 1-11.

[59]

Hall DS, Bock C, MacDougall BR. The electrochemistry of metallic nickel: oxides, hydroxides, hydrides and alkaline hydrogen evolution. J Electrochem Soc. 2013; 160(3): F235-F243.

[60]

Grubač Z, Petrović Ž, Katić J, Metikoš-Huković M, Babić R. The electrochemical behaviour of nanocrystalline nickel: A comparison with polycrystalline nickel under the same experimental condition. J Electroanal Chem. 2010; 645: 87-93.

[61]

Shinagawa T, Garcia-Esparza AT, Takanabe K. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci Rep. 2015; 5: 1-21.

[62]

Burke MS, Kast MG, Trotochaud L, Smith AM, Boettcher SW. Cobalt-iron (Oxy)hydroxide oxygen evolution electrocatalysts: the role of structure and composition on activity, stability, and mechanism. J Am Chem Soc. 2015; 137(10): 3638-3648.

[63]

Zou S, Burke MS, Kast MG, Fan J, Danilovic N, Boettcher SW. Fe (Oxy)hydroxide oxygen evolution reaction electrocatalysis: intrinsic activity and the roles of electrical conductivity, substrate, and dissolution. Chem Mater. 2015; 27(23): 8011-8020.

[64]

Biesinger MC, Payne BP, Grosvenor AP, Lau LWM, Gerson AR, Smart RSC. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl Surf Sci. 2011; 257(7): 2717-2730.

[65]

Han Q, Luo Y, Liu G, Wang Y, Li J, Chen Z. Comparative study on the distinct activity for NiFe-based phosphide and sulfide pre-electrocatalysts towards hydrogen evolution reaction. J Catal. 2022; 413: 425-433.

[66]

Thomae SLJ, Prinz N, Hartmann T, Teck M, Correll S, Zobel M. Pushing data quality for laboratory pair distribution function experiments. Rev Sci Instrum. 2019; 90(4):43905.

[67]

J Rodrígues-Carvajal, Recent Developments of the Program FULLPROF, in Commission on Powder Diffraction (IUCr). Comm Powder Diffr Int Union Crystallogr Newsl2001, December 2, 12-19.

[68]

Vaughan DJ, Craig JR. The crystal chemistry of iron-nickel thiospinels. Am Mineral. 1985; 70: 1036-1043.

[69]

Thompson P, Cox DE, Hastings JB. Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3. J Appl Crystallogr. 1987; 20(2): 79-83.

[70]

Fairley N, Fernandez V, Richard-Plouet M, et al. Systematic and collaborative approach to problem solving using X-ray photoelectron spectroscopy. Appl Surf Sci Adv. 2021; 5:100112.

[71]

Biesinger MC. Accessing the robustness of adventitious carbon for charge referencing (correction) purposes in XPS analysis: insights from a multi-user facility data review. Appl Surf Sci. 2022; 597:153681.

RIGHTS & PERMISSIONS

2025 The Author(s). EcoEnergy published by John Wiley & Sons Australia, Ltd on behalf of China Chemical Safety Association.

AI Summary AI Mindmap
PDF

16

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/