Thermoelectric performance enhancement of environmentally-friendly SrTiO3 epitaxial films by hydrogen substitution

Masatoshi Kimura , Masahiro Ochiai , Xinyi He , Takayoshi Katase , Hidenori Hiramatsu , Hideo Hosono , Toshio Kamiya

EcoEnergy ›› 2025, Vol. 3 ›› Issue (2) : 459 -469.

PDF
EcoEnergy ›› 2025, Vol. 3 ›› Issue (2) : 459 -469. DOI: 10.1002/ece2.89
RESEARCH ARTICLE

Thermoelectric performance enhancement of environmentally-friendly SrTiO3 epitaxial films by hydrogen substitution

Author information +
History +
PDF

Abstract

Developing high-efficiency and environmentally-friendly thermoelectric materials has been a significant challenge. Conventional thermometric materials consist of heavy (toxic) elements to reduce thermal conductivity (κ), while we demonstrated light-element hydride anion (H) substitution in SrTiO3 can largely reduce κ and enhance thermometric efficiency (ZT) without heavy elements. In this paper, we succeeded in maximizing the ZT of SrTiO3−xHx by applying topochemical reaction directly to SrTiO3 epitaxial films with CaH2, which realized wide-range control of carrier concentration (ne) from 1.5 × 1020 cm−3 to 4.1 × 1021 cm−3. The power factor (PF) showed a dome-shaped behavior with respect to ne, and the maximum PF = 22.5 μW/(cmK2) was obtained at the optimal ne = 3.4 × 1020 cm−3. Carrier transport analyses clarified that the carrier mobility was limited by impurity scattering of H-related impurities in the SrTiO3−xHx films, while the hydrogen substitution induced a much lower κ of 4.6 W/(mK) than other heavy-element substituted Sr1−xLaxTiO3 and SrTi1−xNbxO3 films in the wide ne range, resulting in the higher ZT value of 0.14 in maximum at room temperature. In addition, the ZT increased to 0.17 at 373 K due to the large decrease in κ for a SrTiO3−xHx film with the hydrogen concentration of 1.2 × 1021 cm−3. Further study on H substitution approach and modulation of the H state in transition metal oxides would lead to development of high ZT environmentally-friendly thermoelectric materials.

Keywords

hydrogen / mixed anion / phonon scattering / thermoelectric material / transition metal oxide

Cite this article

Download citation ▾
Masatoshi Kimura, Masahiro Ochiai, Xinyi He, Takayoshi Katase, Hidenori Hiramatsu, Hideo Hosono, Toshio Kamiya. Thermoelectric performance enhancement of environmentally-friendly SrTiO3 epitaxial films by hydrogen substitution. EcoEnergy, 2025, 3(2): 459-469 DOI:10.1002/ece2.89

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Disalvo FJ. Thermoelectric cooling and power generation. Science. 1999; 285(5428): 703-706.

[2]

Bell LE. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science. 2008; 321(5895): 1457-1461.

[3]

Zhang QH, Huang XY, Bai SQ, Shi X, Uher C, Chen LD. Thermoelectric devices for power generation: recent progress and future challenges. Adv Eng Mater. 2016; 18(2): 194-213.

[4]

Snyder GJ, Toberer ES. Complex thermoelectric materials. Nat Mater. 2008; 7(2): 105-114.

[5]

He J, Tritt TM. Advances in thermoelectric materials research: looking back and moving forward. Science. 2017; 357(6358):eaak9997.

[6]

Zhu T, Liu Y, Fu C, Heremans JP, Snyder JG, Zhao X. Compromise and synergy in high-efficiency thermoelectric materials. Adv Mater. 2017; 29(30):1605884.

[7]

Zhao LD, Lo SH, Zhang Y, et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature. 2014; 508(7496): 373-377.

[8]

Olvera AA, Moroz NA, Sahoo P, et al. Partial indium solubility induces chemical stability and colossal thermoelectric figure of merit in Cu2Se. Energy Environ Sci. 2017; 10(7): 1668-1676.

[9]

Li J, Zhang X, Chen Z, et al. Low-symmetry rhombohedral GeTe thermoelectrics. Joule. 2018; 2(5): 976-987.

[10]

Zhou C, Lee YK, Yu Y, et al. Polycrystalline SnSe with a thermoelectric figure of merit greater than the single crystal. Nat Mater. 2021; 20(10): 1378-1384.

[11]

Kumar A, Bhumla P, Kosonowski A, et al. Synergistic effect of work function and acoustic impedance mismatch for improved thermoelectric performance in GeTe-WC composite. ACS Appl Mater Interfaces. 2022; 14(39): 44527-44538.

[12]

Koumoto K, Wang Y, Zhang R, Kosuga A, Funahashi R. Oxide thermoelectric materials: a nanostructuring approach. Annu Rev Mater Res. 2010; 40(1): 363-394.

[13]

He J, Liu Y, Funahashi R. Oxide thermoelectrics: the challenges, progress, and outlook. J Mater Res. 2011; 26(15): 1762-1772.

[14]

Terasaki I. Research Update: oxide thermoelectrics: beyond the conventional design rules. Apl Mater. 2016; 4(10):104501.

[15]

Okuda T, Nakanishi K, Miyasaka S, Tokura Y. Large thermoelectric response of metallic perovskites: Sr1-xLaxTiO3 (0<∼x<∼0.1). Phys Rev B. 2001; 63(11):113104.

[16]

Muta H, Kurosaki K, Yamanaka S. Thermoelectric properties of reduced and La-doped single-crystalline SrTiO3. J Alloys Compd. 2005; 392(1-2): 306-309.

[17]

Ohta S, Nomura T, Ohta H, Koumoto K. High-temperature carrier transport and thermoelectric properties of heavily La- or Nb-doped SrTiO3 single crystals. J Appl Phys. 2005; 97(3):034106.

[18]

Shi XL, Wu H, Liu Q, et al. SrTiO3-based thermoelectrics: progress and challenges. Nano Energy. 2020; 78:105195.

[19]

Suemune Y. Thermal conductivity of BaTiO3 and SrTiO3 from 4.5o to 300oK. J Phys Soc Jpn. 1965; 20(1): 174-175.

[20]

Goldsmid HJ. Recent studies of bismuth telluride and its alloys. J Appl Phys. 1961; 32(10): 2198-2202.

[21]

Obara H, Yamamoto A, Lee CH, Kobayashi K, Matsumoto A, Funahashi R. Thermoelectric properties of Y-doped polycrystalline SrTiO3. Jpn J Appl Phys. 2004; 43(4B): L540-L542.

[22]

Liu J, Wang CL, Li Y, et al. Influence of rare earth doping on thermoelectric properties of SrTiO3 ceramics. J Appl Phys. 2013; 114(22):223714.

[23]

Lu Z, Zhang H, Lei W, Sinclair DC, Reaney IM. High-Figure-of-Merit thermoelectric La-doped A-site-deficient SrTiO3 ceramics. Chem Mater. 2016; 28(3): 925-935.

[24]

Popuri SR, Scott AJM, Downie RA, et al. Glass-like thermal conductivity in SrTiO3 thermoelectrics induced by A-site vacancies. RSC Adv. 2014; 4(64): 33720-33723.

[25]

Wang J, Zhang BY, Kang HJ, et al. Record high thermoelectric performance in bulk SrTiO3 via nano-scale modulation doping. Nano Energy. 2017; 35: 387-395.

[26]

He X, Nomoto S, Komatsu T, et al. Hydride anion substitution boosts thermoelectric performance of polycrystalline SrTiO3 via simultaneous realization of reduced thermal conductivity and high electronic conductivity. Adv Funct Mater. 2023; 33(28):2213144.

[27]

Kobayashi Y, Hernandez OJ, Sakaguchi T, et al. An oxyhydride of BaTiO3 exhibiting hydride exchange and electronic conductivity. Nat Mater. 2012; 11(6): 507-511.

[28]

Sakaguchi T, Kobayashi Y, Yajima T, et al. Oxyhydrides of (Ca,Sr,Ba)TiO3 perovskite solid solutions. Inorg Chem. 2012; 51(21): 11371-11376.

[29]

Katase T, Nomoto S, He X, et al. Simultaneous realization of single-crystal-like electron transport and strong phonon scattering in polycrystalline SrTiO3-xHx. ACS Appl Electron Mater. 2024; 6(10): 7424-7429.

[30]

Yajima T, Kitada A, Kobayashi Y, et al. Epitaxial thin films of ATiO3-xHx (A = Ba, Sr, Ca) with metallic conductivity. J Am Chem Soc. 2012; 134(21): 8782-8785.

[31]

Bouilly G, Yajima T, Terashima T, et al. Electrical properties of epitaxial thin films of oxyhydrides ATiO3-xHx (A = Ba and Sr). Chem Mater. 2015; 27(18): 6354-6359.

[32]

Kutsuzawa D, Hirose Y, Chikamatsu A, et al. Strain-enhanced topotactic hydrogen substitution for oxygen in SrTiO3 epitaxial thin film. Appl Phys Lett. 2018; 113(25):253104.

[33]

Matsumoto J, Hanzawa K, Sasase M, et al. Superconductivity at 48 K of heavily hydrogen-doped SmFeAsO epitaxial films grown by topotactic chemical reaction using CaH2. Phys Rev Mater. 2019; 3(10):103401.

[34]

Ekren D, Cao J, Azough F, et al. Controlling the thermoelectric behavior of La-doped SrTiO3 through processing and addition of graphene oxide. ACS Appl Mater Interfaces. 2022; 14(48): 53711-53723.

[35]

Firoz SH, Yagi T, Taketoshi N, Ishikawa K, Baba T. Direct observation of thermal energy transfer across the thin metal film on silicon substrates by a rear heating-front detection thermoreflectance technique. Meas Sci Technol. 2011; 22(2):24012.

[36]

Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B. 1999; 59(3): 1758-1775.

[37]

Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B. 1996; 54(16): 11169-11186.

[38]

Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996; 77(18): 3865-3868.

[39]

Heyd J, Scuseria GE, Ernzerhof M. Hybrid functionals based on a screened Coulomb potential. J Chem Phys. 2003; 118(18): 8207-8215.

[40]

Madsen GK, Carrete J, Verstraete MJ. BoltzTraP2, a program for interpolating band structures and calculating semi-classical transport coefficients. Comput Phys Commun. 2018; 231: 140-145.

[41]

Ravichandran J, Siemons W, Scullin ML, et al. Tuning the electronic effective mass in double-doped SrTiO3. Phys Rev B. 2011; 83(3):035101.

[42]

Zhang Y, Feng B, Hayashi H, et al. Thermoelectric phase diagram of the SrTiO3-SrNbO3 solid solution system. J Appl Phys. 2017; 121(18):185102.

[43]

Ohta S, Nomura T, Ohta H, Hirano M, Hosono H, Koumoto K. Large thermoelectric performance of heavily Nb-doped SrTiO3 epitaxial film at high temperature. Appl Phys Lett. 2005; 87(9):092108.

[44]

Jalan B, Stemmer S. Large Seebeck coefficients and thermoelectric power factor of La-doped SrTiO3 thin films. Appl Phys Lett. 2010; 97(4):042106.

[45]

Zhang Y, Sugo K, Cho HJ, Ohta H. Thermoelectric phase diagram of the SrTiO3-LaTiO3 solid-solution system through a metal to Mott insulator transition. J Appl Phys. 2019; 126(7):075104.

[46]

Iwazaki Y, Gohda Y, Tsuneyuki S. Diversity of hydrogen configuration and its roles in SrTiO3-δ. Apl Mater. 2014; 2(1):012103.

[47]

Zhang Y, Cho HJ, Sugo K, et al. Low thermal conductivity of SrTiO3−LaTiO3 and SrTiO3−SrNbO3 thermoelectric oxide solid solutions. J Am Ceram Soc. 2021; 104(8): 4075-7085.

[48]

Sarantopoulos A, Saha D, Ong WL, Magén C, Malen JA, Rivadulla F. Reduction of thermal conductivity in ferroelectric SrTiO3 thin films. Phys Rev Mater. 2020; 4(5):054002.

[49]

Xu K, Guo J, Raciti G, et al. In-plane thermal diffusivity determination using beam-offset frequency-domain thermoreflectance with a one-dimensional optical heat source. Int J Heat Mass Tran. 2023; 214:124376.

[50]

Qian X, Ding Z, Shin J, Schmidt AJ, Chen G. Accurate measurement of in-plane thermal conductivity of layered materials without metal film transducer using frequency domain thermoreflectance. Rev Sci Instrum. 2020; 91(6):064903.

[51]

Hong SS, Yu JH, Lu D, et al. Two-dimensional limit of crystalline order in perovskite membrane films. Sci Adv. 2017; 3(11):eaao5173.

[52]

Huang JK, Wan Y, Shi J, et al. High-κ perovskite membranes as insulators for two-dimensional transistors. Nature. 2022; 605(7909): 262-267.

[53]

Shi GA, Saboktakin M, Stavola M, Pearton SJ. “Hidden hydrogen” in as-grown ZnO. Appl Phys Lett. 2004; 85(23): 5601-5603.

[54]

Tarun MC, McCluskey MD. Infrared absorption of hydrogen-related defects in strontium titanate. J Appl Phys. 2011; 109(6):063706.

[55]

Kojima KM, Hiraishi M, Okabe H, et al. Electronic structure of interstitial hydrogen in In-Ga-Zn-O semiconductor simulated by muon. Appl Phys Lett. 2019; 115(12):122104.

[56]

Baratoff A, Binnig G. Physica B+C mechanism of superconductivity in SrTiO3. Phys B+C. 1981; 108(1-3): 1335-1336.

[57]

Van der Marel D, Van Mechelen JLM, Mazin II. Common Fermi-liquid origin of T2 resistivity and superconductivity in n-type SrTiO3. Phys Rev B. 2011; 84(20):205111.

[58]

Frederikse HPR, Hosler WR. Hall mobility in SrTiO3. Phys Rev. 1967; 161(3): 822-827.

[59]

Tufte ON, Chapman PW. Electron mobility in semiconducting strontium titanate. Phys Rev. 1967; 155(3): 796-802.

[60]

Himmetoglu B, Janotti A, Peelaers H, Alkauskas A, Van de Walle CG. First-principles study of the mobility of SrTiO3. Phys Rev B. 2014; 90(24):241204.

[61]

Barker JAS. Temperature dependence of the transverse and longitudinal optic mode frequencies and charges in SrTiO3 and BaTiO3. Phys Rev. 1966; 145(2): 391-399.

[62]

Kobayashi K, Goto Y, Matsushima S, Matsushima S, Okada G. Superconductivity in hydrogen-doped Nd1.85Ce0.15CuO4. Jpn J Appl Phys. 1991; 30(6B):L1106.

[63]

Hayward MA, Cussen EJ, Claridge JB, et al. The hydride anion in an extended transition metal oxide array: LaSrCoO3H0.7. Science. 2002; 295(5561): 1882-1884.

[64]

Hayashi K, Sushko PV, Shluger AL, Hirano M, Hosono H. Hydride ion as a two-electron donor in a nanoporous crystalline semiconductor 12CaO·7Al2O3. J Phys Chem B. 2005; 109(50): 23836-23842.

[65]

Janotti A, Van de Walle CG. Hydrogen multicentre bonds. Nat Mater. 2007; 6(1): 44-47.

[66]

Helps RM, Rees NH, Hayward MA. Sr3Co2O4.33H0.84: an extended transition metal oxide-hydride. Inorg Chem. 2010; 49(23): 11062-11068.

[67]

Hanna T, Muraba Y, Matsuishi S, et al. Hydrogen in layered iron arsenides: indiret electron doping to induce superconductivity. Phys Rev B. 2011; 84(2):024521.

[68]

Romero FD, Leach A, Möller JS, Foronda F, Blundell SJ, Hayward MA. Strontium vanadium oxide-hydrides: “square-planar” two-electron phases. Angew Chem Int Ed. 2014; 126:7686.

[69]

Tassel C, Goto Y, Kuno Y, et al. Direct synthesis of chromium perovskite oxyhydride with a high magnetic-transition temperature. Angew Chem Int Ed. 2014; 53(39): 10377-10380.

[70]

Katayama T, Chikamatsu A, Kamisaka H, et al. Topotactic synthesis of strontium cobalt oxyhydride thin film with perovskite structure. AIP Adv. 2015; 5(10):107147.

[71]

Niedermeier CA, Rhode S, Fearn S, et al. Solid phase epitaxial growth of high mobility La:BaSnO3 thin films co-doped with interstitial hydrogen. Appl Phys Lett. 2016; 108(17):172101.

[72]

Onozuka T, Chikamatsu A, Katayama T, Fukumura T, Hasegawa T. Formation of defect-fluorite structured NdNiOxHy epitaxial thin films via a soft chemical route from NdNiO3 precursors. Dalton Trans. 2016; 45(30): 12114-12118.

[73]

Yamamoto T, Morgan HWT, Zeng D, et al. Pressure-induced transitions in the 1-dimensional vanadium oxyhydrides Sr2VO3H and Sr3V2O5H2, and comparison to 2-dimensional SrVO2H. Inorg Chem. 2019; 58(22): 15393-15400.

[74]

Toriumi H, Kobayashi G, Saito T, et al. Barium indate-zirconate perovskite oxyhydride with enhanced hydride ion/electron mixed conductivity. Chem Mater. 2022; 34(16): 7389-7401.

[75]

Jehle M, Hoffmann A, Kohlmann H, Sherer H, Röhr C. The ‘sub’ metallide oxide hydrides Sr21Si2O5H12+x and Ba21M2O5H12+x (M = Zn, Cd, Hg, In, Tl, Si, Ge, Sn, Pb, As, Sb, Bi). J Alloys Compd. 2015; 623: 164-177.

[76]

Fukui K, Iimura S, Tada T, et al. Characteristic fast H ion conduction in oxygen-substituted lanthanum hydride. Nat Commun. 2019; 10(1):2578.

[77]

Komatsu Y, Shimizu R, Sato R, et al. Repeatable photoinduced insulator-to-metal transition in yttrium oxyhydride epitaxial thin films. Chem Mater. 2022; 34(8): 3616-3623.

[78]

Rodenburg HP, Mutschke A, Ngamwongwan L, et al. Mixed hydride-electronic conductivity in Rb2CaH4 and Cs2CaH4. Solid State Ionics. 2023; 403:116384.

RIGHTS & PERMISSIONS

2024 The Author(s). EcoEnergy published by John Wiley & Sons Australia, Ltd on behalf of China Chemical Safety Association.

AI Summary AI Mindmap
PDF

18

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/