Modulation of Ti3C2Tx interlayer spacing and functional groups by Lewis-basic halides and their effects on Li+ storage properties

Xuke Li , Keke Guan , Lixiang Ding , Xinyue Wang , Haijun Zhang , Yaping Deng , Wen Lei

EcoEnergy ›› 2025, Vol. 3 ›› Issue (2) : 449 -458.

PDF
EcoEnergy ›› 2025, Vol. 3 ›› Issue (2) : 449 -458. DOI: 10.1002/ece2.88
RESEARCH ARTICLE

Modulation of Ti3C2Tx interlayer spacing and functional groups by Lewis-basic halides and their effects on Li+ storage properties

Author information +
History +
PDF

Abstract

Surface and interfacial chemistry play a vital role in shaping the properties of two-dimensional transition metal carbides and nitrides (MXenes). This study focuses on utilizing Lewis-basic halides (LiCl/KCl) for thermal treatment of multilayered Ti3C2Tx, leading to the simultaneous modulation of interlayer spacing and surface functional groups. Compared to the pristine Ti3C2Tx, the LiCl/KCl treated sample (heating temperature: 450°C, denoted as LK-Ti3C2Tx-450) showcases a remarkable increase in the interlayer spacing and synergistic optimization of the functional groups. These modifications endow LK-Ti3C2Tx-450 with enhanced electrochemical properties, rendering it as a promising anode candidate for lithium-ion batteries. The increased interlayer spacing is particularly advantageous, as it facilitates efficient and rapid Li+ diffusion, a vital factor in enhancing the performance of energy storage devices.

Keywords

functional groups / interlayer spacing / Lewis-basic halides / Li+storage / Ti3C2Tx

Cite this article

Download citation ▾
Xuke Li, Keke Guan, Lixiang Ding, Xinyue Wang, Haijun Zhang, Yaping Deng, Wen Lei. Modulation of Ti3C2Tx interlayer spacing and functional groups by Lewis-basic halides and their effects on Li+ storage properties. EcoEnergy, 2025, 3(2): 449-458 DOI:10.1002/ece2.88

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lim KRG, Shekhirev M, Wyatt BC, Anasori B, Gogotsi Y, Seh ZW. Fundamentals of MXene synthesis. Nat Synth. 2022; 1(8): 601-614.

[2]

Zheng Y, Li X, Pi C, et al. Recent advances of two-dimensional transition metal nitrides for energy storage and conversion applications. FlatChem. 2020; 19:100149.

[3]

Tan Y, Zhao Y, Chen X, et al. Cooperative Cu with defective MXene for enhanced nitrate electroreduction to ammonia. EcoEnergy. Published online March 28, 2(2), 258, , 267, 2024:ece2.33.

[4]

Hart JL, Hantanasirisakul K, Lang AC, et al. Control of MXenes’ electronic properties through termination and intercalation. Nat Commun. 2019; 10(1): 522.

[5]

Li X, Huang Z, Shuck CE, Liang G, Gogotsi Y, Zhi C. MXene chemistry, electrochemistry and energy storage applications. Nat Rev Chem. 2022; 6(6): 389-404.

[6]

Hu M, Zhang H, Hu T, Fan B, Wang X, Li Z. Emerging 2D MXenes for supercapacitors: status, challenges and prospects. Chem Soc Rev. 2020; 49(18): 6666-6693.

[7]

Peng M, Wang L, Longbin L, et al. Manipulating the interlayer spacing of 3D MXenes with improved stability and zinc-ion storage capability. Adv Funct Mater. 2021; 32(7):2109524.

[8]

Lian P, Dong Y, Wu ZS, et al. Alkalized Ti3C2 MXene nanoribbons with expanded interlayer spacing for high-capacity sodium and potassium ion batteries. Nano Energy. 2017; 40: 1-8.

[9]

Zhang T, Shevchuk K, Wang RJ, Kim H, Hourani J, Gogotsi Y. Delamination of chlorine-terminated MXene produced using molten salt etching. Chem Mater. 2024; 36(4): 1998-2006.

[10]

Guan K, Dong L, Xing Y, et al. Structure and surface modification of MXene for efficient Li/K-ion storage. J Energy Chem. 2022; 75: 330-339.

[11]

Tang Q, Zhou Z, Shen P. Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. J Am Chem Soc. 2012; 134(40): 16909-16916.

[12]

Xie Y, Kent PRC. Hybrid density functional study of structural and electronic properties of functionalized Tin+1Xn (X= C, N) monolayers. Phys Rev B. 2013; 87(23):235441.

[13]

Meng Q, Ma J, Zhang Y, et al. The S-functionalized Ti3C2 Mxene as a high capacity electrode material for Na-ion batteries: a DFT study. Nanoscale. 2018; 10(7): 3385-3392.

[14]

Xie Y, Dall’Agnese Y, Naguib M, et al. Prediction and characterization of MXene nanosheet anodes for non-lithium-ion batteries. ACS Nano. 2014; 8(9): 9606-9615.

[15]

Li M, Lu J, Luo K, et al. Element replacement approach by reaction with Lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. J Am Chem Soc. 2019; 141(11): 4730-4737.

[16]

Kamysbayev V, Filatov AS, Hu H, et al. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science. 2020; 369(6506): 979-983.

[17]

Li J, Wang H, Xiao X. Intercalation in two-dimensional transition metal carbides and nitrides (MXenes) toward electrochemical capacitor and beyond. Energy Environ Mater. 2020; 3(3): 306-322.

[18]

Li Z, Li K, Li Y, et al. Modified molten salt assisted exfoliation of large-size 2D materials. Adv Funct Mater. 2023; 34(10):2310371.

[19]

Zhang H, Dasbiswas K, Nicholas BL, et al. Stable colloids in molten inorganic salts. Nature. 2017; 542(7641): 328-331.

[20]

Fannin AA, King LA, Seegmiller DW. Chloroaluminate equilibria in AlCl3 - NaCl melts. Electrochemical Society. 1972; 119(7): 801-807.

[21]

Zhang T, Chang L, Zhang X, et al. Simultaneously tuning interlayer spacing and termination of MXenes by Lewis-basic halides. Nat Commun. 2022; 13(1):6731.

[22]

Blöchl PE. Projector augmented-wave method. Phys Rev B. 1994; 50(24): 17953-17979.

[23]

Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci. 1996; 6(1): 15-50.

[24]

Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996; 77(18): 3865-3868.

[25]

Zhang T, Chang L, Zhang X, et al. Simultaneously tuning interlayer spacing and termination of MXenes by Lewis-basic halides. Nat Commun. 2022; 13(1):6731.

[26]

Shao H, Xu K, Wu YC, et al. Unraveling the charge storage mechanism of Ti3C2Tx MXene electrode in acidic electrolyte. ACS Energy Lett. 2020; 5(9): 2873-2880.

[27]

Xie Y, Naguib M, Mochalin VN, et al. Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides. J Am Chem Soc. 2014; 136(17): 6385-6394.

[28]

Liu Y, Tao X, Wang Y, et al. Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries. Science. 2022; 375(6582): 739-745.

[29]

Yan Y, Zhao X, Dou H, et al. MXene frameworks promote the growth and stability of LiF-rich solid-electrolyte interphases on silicon nanoparticle bundles. ACS Appl Mater Interfaces. 2020; 12(16): 18541-18550.

[30]

Liu X, Wang H, Dong L, et al. Molten salt synthesis, morphology modulation, and lithiation mechanism of high entropy oxide for robust lithium storage. J Energy Chem. 2023; 86(86): 536-545.

[31]

Wang X, Mathis TS, Li K, et al. Influences from solvents on charge storage in titanium carbide MXenes. Nat Energy. 2019; 4(3): 241-248.

[32]

Bärmann P, Winter M, Gonzalez-Julian J, Placke T. Solvent Co-Intercalation-Induced activation and capacity fade mechanism of few-/multi-layered MXenes in lithium ion batteries. Small. 2021; 17(47):2104130.

[33]

Bärmann P, Nölle R, Siozios V, et al. Solvent Co-intercalation into few-layered Ti3C2Tx MXenes in lithium ion batteries induced by acidic or basic post-treatment. ACS Nano. 2021; 15(2): 3295-3308.

[34]

Liu X, Xing Y, Xu K, et al. Kinetically accelerated lithium storage in high-entropy (LiMgCoNiCuZn)O enabled by oxygen vacancies. Small. 2022; 18(18):2200524.

[35]

Augustyn V, Come J, Lowe MA, et al. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat Mater. 2013; 12(6): 518-522.

[36]

Xue T, Liu X, Lei H, Dai H, Huang Z, Zhang H. One-step molten salt synthesis of high entropy oxides. Ceram Int. 2024; 50(11): 18294-18302.

[37]

Zhu Y, Gao T, Fan X, Han F, Wang C. Electrochemical techniques for intercalation electrode materials in rechargeable batteries. Acc Chem Res. 2017; 50(4): 1022-1031.

[38]

Liu Y, Dai H, Wu L, et al. A large scalable and low-cost sulfur/nitrogen dual-doped hard carbon as the negative electrode material for high-performance potassium-ion batteries. Adv Energy Mater. 2019; 9(34):1901379.

RIGHTS & PERMISSIONS

2024 The Author(s). EcoEnergy published by John Wiley & Sons Australia, Ltd on behalf of China Chemical Safety Association.

AI Summary AI Mindmap
PDF

19

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/