Band edge engineering of lead halide perovskites using carboxylic-based self-assembled monolayer for efficient photovoltaics

Yiheng Shi , Xinyuan Sui , Jingjing He , Zhanpeng Wei , Hua Gui Yang , Qiang Niu , Yu Hou , Shuang Yang

EcoEnergy ›› 2025, Vol. 3 ›› Issue (2) : 441 -448.

PDF
EcoEnergy ›› 2025, Vol. 3 ›› Issue (2) : 441 -448. DOI: 10.1002/ece2.87
RESEARCH ARTICLE

Band edge engineering of lead halide perovskites using carboxylic-based self-assembled monolayer for efficient photovoltaics

Author information +
History +
PDF

Abstract

Perovskite solar cells are promising candidates for low-cost and efficient photovoltaic markets, but their efficiency is usually limited by the non-radiative recombination losses at the mismatched interface of perovskite and transport layers. Herein, we show that the band edges of perovskite thin films can be on-demand engineered by a series of carboxylic-based self-assembled monolayers. Experimental and theoretical studies indicate that the functionalized perovskite inherits the polarity of the monolayer with linear dependence of work function on the molecular dipole moments, which enables the management of interfacial charge transport process. Solar cells with 4-bromophenylacetic acid SAMs achieve about 6.48% enhancement in power conversion efficiency with the champion values over 23%.

Keywords

electron extraction / molecular dipole moment / perovskite solar cells / self-assembled monolayer

Cite this article

Download citation ▾
Yiheng Shi, Xinyuan Sui, Jingjing He, Zhanpeng Wei, Hua Gui Yang, Qiang Niu, Yu Hou, Shuang Yang. Band edge engineering of lead halide perovskites using carboxylic-based self-assembled monolayer for efficient photovoltaics. EcoEnergy, 2025, 3(2): 441-448 DOI:10.1002/ece2.87

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Stranks SD, Eperon GE, Grancini G, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science. 2013; 342(6156): 341-344.

[2]

Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc. 2009; 131(17): 6050-6051.

[3]

Li Y, Xu W, Mussakhanuly N, et al. Homologous bromides treatment for improving the open-circuit voltage of perovskite solar cells. Adv Mater. 2022; 34(6):2106280.

[4]

Ren M, Fang L, Zhang Y, et al. Durable perovskite solar cells with 24.5% average efficiency: the role of rigid conjugated core in molecular semiconductors. Adv Mater. 2024; 36(27):2403403.

[5]

Nie J, Zhang Y, Wang J, Li L, Zhang Y. Recent progress in regulating surface potential for high-efficiency perovskite solar cells. ACS Energy Lett. 2024; 9(4): 1674-1681.

[6]

Aydin E, Allen TG, De Bastiani M, et al. Pathways toward commercial perovskite/silicon tandem photovoltaics. Science. 2024; 383(6679):eadh3849.

[7]

Hao M, Zhou Y. Grain-boundary grooves in perovskite solar cells. Joule. 2024; 8(4): 913-921.

[8]

Cai B, Xing Y, Yang Z, Zhang WH, Qiu J. High performance hybrid solar cells sensitized by organolead halide perovskites. Energy Environ Sci. 2013; 6(1):1480.

[9]

Khadka DB, Shirai Y, Yanagida M, et al. Defect passivation in methylammonium/bromine free inverted perovskite solar cells using charge-modulated molecular bonding. Nat Commun. 2024; 15(1):882.

[10]

You S, Eickemeyer FT, Gao J, et al. Bifunctional hole-shuttle molecule for improved interfacial energy level alignment and defect passivation in perovskite solar cells. Nat Energy. 2023; 8(5): 515-525.

[11]

Ma K, Sun J, Atapattu HR, et al. Holistic energy landscape management in 2D/3D heterojunction via molecular engineering for efficient perovskite solar cells. Sci Adv. 2023; 9(23):eadg0032.

[12]

Chen Q, Wang C, Li Y, Chen L. Interfacial dipole in organic and perovskite solar cells. J Am Chem Soc. 2020; 142(43): 18281-18292.

[13]

Jiang X, Zhang B, Yang G, et al. Molecular dipole engineering of carbonyl additives for efficient and stable perovskite solar cells. Angew Chem Int Ed. 2023; 62(22):e202302462.

[14]

Zhang W, Guo X, Cui Z, et al. Strategies for improving efficiency and stability of inverted perovskite solar cells. Adv Mater. 2024; 36(37):2311025.

[15]

Azmi R, Zhumagali S, Bristow H, et al. Moisture-resilient perovskite solar cells for enhanced stability. Adv Mater. 2024; 36(12):2211317.

[16]

Zhang Z, Gao Y, Li Z, et al. Marked passivation effect of naphthalene-1,8-dicarboximides in high-performance perovskite solar cells. Adv Mater. 2021; 33(31):2008405.

[17]

Tang H, Shen Z, Shen Y, et al. Reinforcing self-assembly of hole transport molecules for stable inverted perovskite solar cells. Science. 2024; 383(6688): 1236-1240.

[18]

Wang Y, Liao Q, Chen J, et al. Teaching an old anchoring group new tricks: enabling low-cost, eco-friendly hole-transporting materials for efficient and stable perovskite solar cells. J Am Chem Soc. 2020; 142(39): 16632-16643.

[19]

Bi H, Fujiwara Y, Kapil G, et al. Perovskite solar cells consisting of PTAA modified with monomolecular layer and application to all-perovskite tandem solar cells with efficiency over 25. Adv Funct Mater. 2023; 33(32):2300089.

[20]

Pitaro M, Alonso JES, Di Mario L, et al. Tuning the surface energy of hole transport layers based on carbazole self-assembled monolayers for highly efficient Sn/Pb perovskite solar cells. Adv Funct Mater. 2023;2306571.

[21]

Dai Z, Yadavalli SK, Chen M, Abbaspourtamijani A, Qi Y, Padture NP. Interfacial toughening with self-assembled monolayers enhances perovskite solar cell reliability. Science. 2021; 372(6542): 618-622.

[22]

Park SM, Wei M, Lempesis N, et al. Low-loss contacts on textured substrates for inverted perovskite solar cells. Nature. 2023; 624(7991): 289-294.

[23]

Chin XY, Turkay D, Steele JA, et al. Interface passivation for 31.25%-efficient perovskite/silicon tandem solar cells. Science. 2023; 381(6653): 59-63.

[24]

Lin X, Jumabekov AN, Lal NN, et al. Dipole-field-assisted charge extraction in metal-perovskite-metal back-contact solar cells. Nat Commun. 2017; 8(1):613.

[25]

Ok SA, Jo B, Somasundaram S, et al. Management of transition dipoles in organic hole-transporting materials under solar irradiation for perovskite solar cells. Nat Commun. 2018; 9(1):4537.

[26]

Li Z, Li B, Wu X, et al. Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells. Science. 2022; 376(6591): 416-420.

[27]

Li Z, Sun X, Zheng X, et al. Stabilized hole-selective layer for high-performance inverted p-i-n perovskite solar cells. Science. 2023; 382(6668): 284-289.

[28]

Aydin E, Ugur E, Yildirim BK, et al. Enhanced optoelectronic coupling for perovskite/silicon tandem solar cells. Nature. 2023; 623(7988): 732-738.

[29]

Li Z, Sun X, Zheng X, et al. Stabilized hole-selective layer for high-performance inverted p-i-n perovskite solar cells. Science. 2023; 382(6668): 284-289.

[30]

Said AA, Aydin E, Ugur E, et al. Sublimed C60 for efficient and repeatable perovskite-based solar cells. Nat Commun. 2024; 15(1):708.

[31]

Canil L, Cramer T, Fraboni B, et al. Tuning halide perovskite energy levels. Energy Environ Sci. 2021; 14(3): 1429-1438.

[32]

Li X, Zhang W, Guo X, Lu C, Wei J, Fang J. Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells. Science. 2022; 375(6579): 434-437.

[33]

Feng W, Tao J, Liu G, et al. Near-stoichiometric and homogenized perovskite films for solar cells with minimized performance variation. Angew Chem. 2023; 135(17).

[34]

Tian T, Zhong JX, Yang M, et al. Interfacial linkage and carbon encapsulation enable full solution-printed perovskite photovoltaics with prolonged lifespan. Angew Chem Int Ed. 2021; 60(44): 23735-23742.

[35]

Thiesbrummel J, Shah S, Gutierrez-Partida E, et al. Ion-induced field screening as a dominant factor in perovskite solar cell operational stability. Nat Energy. 2024; 9(6): 664-676.

RIGHTS & PERMISSIONS

2024 The Author(s). EcoEnergy published by John Wiley & Sons Australia, Ltd on behalf of China Chemical Safety Association.

AI Summary AI Mindmap
PDF

15

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/