Fundamental understanding of texturing electrodeposition metal zinc anodes for practical aqueous Zn-ion batteries

Qiangchao Sun , Xijun Liu , Linhui Chang , Min Lin , Xionggang Lu , Hongwei Cheng

EcoEnergy ›› 2025, Vol. 3 ›› Issue (2) : 296 -320.

PDF
EcoEnergy ›› 2025, Vol. 3 ›› Issue (2) : 296 -320. DOI: 10.1002/ece2.86
REVIEW

Fundamental understanding of texturing electrodeposition metal zinc anodes for practical aqueous Zn-ion batteries

Author information +
History +
PDF

Abstract

One of the most promising electrochemical energy storage technologies, aqueous zinc ion batteries (AZIBs), is garnering increasing attention due to their inherent safety, high sustainability, and low cost. However, the challenges posed by dendrite formation and side reactions resulting from uneven deposition of zinc metal anodes significantly impede the reversibility and cycling stability of AZIBs. Given the influence of crystallographic anisotropy on the diversity of deposited metal morphology and crystal orientation, a thorough understanding of the intrinsic texture of zinc is crucial in achieving a dendrite-free zinc anode. This review highlights groundbreaking efforts and significant advancements in promoting the orientational electrodeposition of zinc, encompassing fundamental crystallographic and electrocrystallization theories as well as approaches for achieving textured zinc electrodeposition. The goal is to provide a comprehensive understanding of the crystallography, electrochemistry, and induction mechanisms involved in controlling sustainable zinc orientational electrodeposition for AZIBs. Lastly, four critical research aspects are proposed to facilitate the commercialization of reliable AZIBs.

Keywords

aqueous zinc ion batteries / induce mechanism / orientational electrodeposition / textured Zn anode

Cite this article

Download citation ▾
Qiangchao Sun, Xijun Liu, Linhui Chang, Min Lin, Xionggang Lu, Hongwei Cheng. Fundamental understanding of texturing electrodeposition metal zinc anodes for practical aqueous Zn-ion batteries. EcoEnergy, 2025, 3(2): 296-320 DOI:10.1002/ece2.86

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Luo J, Xu L, Yang Y, et al. Stable zinc anode solid electrolyte interphase via inner helmholtz plane engineering. Nat Commun. 2024; 15(1):6471.

[2]

Rode A, Carleton T, Delgado M, et al. Estimating a social cost of carbon for global energy consumption. Nature. 2021; 598(7880): 308-314.

[3]

Escher B, Stapleton H, Schymanski E. Tracking complex mixtures of chemicals in our changing environment. Science. 2020; 367(6476): 388-392.

[4]

Sonter LJ, Dade MC, Watson JEM, Valenta RK. Renewable energy production will exacerbate mining threats to biodiversity. Nat Commun. 2020; 11(1):4174.

[5]

Francey RJ, Trudinger CM, van der Schoot M, et al. Atmospheric verification of anthropogenic CO2 emission trends. Nat Clim Change. 2013; 3(5): 520-524.

[6]

Eldering A, Wennberg PO, Crisp D, et al. The orbiting carbon observatory-2 early science investigations of regional carbon dioxide fluxes. Science. 2017; 358(6360):eaam5745.

[7]

Duan T, Cheng H, Liu Y, et al. A multifunctional Janus layer for LLZTO/PEO composite electrolyte with enhanced interfacial stability in solid-state lithium metal batteries. Energy Storage Mater. 2024; 65:103091.

[8]

Yang J, Cao J, Zhao X, et al. Advanced aqueous proton batteries: working mechanism, key materials, challenges and prospects. EnergyChem. 2022; 4(6):100092.

[9]

Sun Q, Cheng H, Yuan Y, et al. Uncovering the fundamental role of interlayer water in charge storage for bilayered V2O5·nH2O xerogel cathode materials. Adv Energy Mater. 2023; 13(3):2202515.

[10]

Hou Z, Zhang T, Liu X, et al. A solid-to-solid metallic conversion electrochemistry toward 91% zinc utilization for sustainable aqueous batteries. Sci Adv. 2022; 8(41):eabp8960.

[11]

Liu K, Liu Y, Lin D, Pei A, Cui Y. Materials for lithium-ion battery safety. Sci Adv. 2018; 4(6):eaas9820.

[12]

Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future. Nature. 2012; 488(7411): 294-303.

[13]

Bi S, Wang S, Yue F, Tie Z, Niu Z. A rechargeable aqueous manganese-ion battery based on intercalation chemistry. Nat Commun. 2021; 12(1):6991.

[14]

Liu Y, Yang J, Gu Z, et al. Entropy-regulated cathode with low strain and constraint phase-change toward ultralong-life aqueous Al-ion batteries. Angew Chem Int Ed. 2024; 63(12):e202316925.

[15]

Sun Q, Cheng H, Sun C, et al. Architecting a hydrated Ca0.24V2O5 cathode with a facile desolvation interface for superior-performance aqueous zinc ion batteries. ACS Appl Mater Interfaces. 2021; 13(50): 60035-60045.

[16]

Zhu Y, Yin J, Emwas A, Mohammed OF, Alshareef HN. An aqueous Mg2+-based dual-ion battery with high power density. Adv Funct Mater. 2021; 31(50):2107523.

[17]

Zhang D, Fu H, Ma X, et al. Nonflammable phosphate-based electrolyte for safe and stable potassium batteries enabled by optimized solvation effect. Angew Chem Int Ed. 2024; 63(29):e202405153.

[18]

Jiang L, Lu Y, Zhao C, et al. Building aqueous K-ion batteries for energy storage. Nat Energy. 2019; 4(6): 495-503.

[19]

Yu X, Li Z, Wu X, et al. Ten concerns of Zn metal anode for rechargeable aqueous zinc batteries. Joule. 2023; 7(6): 1145-1175.

[20]

Wang N, Sun C, Liao X, et al. Reversible (de)intercalation of hydrated Zn2+ in Mg2+-stabilized V2O5 nanobelts with high areal capacity. Adv Energy Mater. 2020; 10(41):2002293.

[21]

Song J, Xu K, Liu N, Reed D. Crossroads in the renaissance of rechargeable aqueous zinc batteries. Mater Today. 2021; 45: 191-212.

[22]

Ma X, Zhang D, Wen J, Fan L, Rao AM, Lu B. Sustainable electrolytes: design principles and recent advances. Chem--Eur J. 2024; 30(36):e202400332.

[23]

Sun Q, Cheng H, Nie W, Lu X, Zhao H. A comprehensive understanding of interlayer engineering in layered manganese and vanadium cathodes for aqueous Zn-ion batteries. Chem Asian J. 2022; 17(7):e202200067.

[24]

Niu Y, Chang L, Sun Q, et al. Manipulating Zn metal texture with guided zincophilic sites via electrochemical stripping for dendrite-free Zn anodes. ACS Appl Mater Interfaces. 2024; 16(6): 6988-6997.

[25]

Zhu Y, Liang G, Cui X, et al. Engineering hosts for Zn anodes in aqueous Zn-ion batteries. Energy Environ Sci. 2024; 17(2): 369-385.

[26]

Li L, Zheng Y, Xu J, et al. Structural and interfacial engineering strategies for constructing dendrite-free zinc metal anodes. ACS Energy Lett. 2024; 9(7): 3269-3289.

[27]

Jiang Z, Du Z, Pan R, et al. Electrosynthesis of metal-organic framework interlayer to realize highly stable and kinetics-enhanced Zn metal anode. Adv Energy Mater. 2024; 14(44):2402150.

[28]

Zhang Q, Luan J, Huang X, et al. Revealing the role of crystal orientation of protective layers for stable zinc anode. Nat Commun. 2020; 11(1):3961.

[29]

Hao Y, Feng D, Hou L, Li T, Jiao Y, Wu P. Gel electrolyte constructing Zn (002) deposition crystal plane toward highly stable zn anode. Adv Sci. 2022; 9(7):2104832.

[30]

Cao J, Sun M, Zhang D, et al. Tuning vertical electrodeposition for dendrites-free zinc-ion batteries. ACS Nano. 2024; 18(26): 16610-16621.

[31]

Chen Z, Zhao J, He Q, et al. Texture control of commercial Zn foils prolongs their reversibility as aqueous battery anodes. ACS Energy Lett. 2022; 7(10): 3564-3571.

[32]

Wang J, Zhang B, Cai Z, et al. Stable interphase chemistry of textured Zn anode for rechargeable aqueous batteries. Sci Bull. 2022; 67(7): 716-724.

[33]

Yao L, Hou C, Liu M, et al. Ultra-stable Zn anode enabled by fiber-directed ion migration using mass-producible separator. Adv Funct Mater. 2023; 33(5):2209301.

[34]

Sun R, Dong S, Guo X, et al. Construction of 2D sandwich-like Na2V6O16·3H2O@MXene heterostructure for advanced aqueous zinc ion batteries. J Colloid Interface Sci. 2024; 655: 226-233.

[35]

Fan X, Yang H, Wang X, et al. Enabling stable Zn anode via a facile alloying strategy and 3D foam structure. Adv Mater Interfaces. 2021; 8(7):2002184.

[36]

Sun R, Xia P, Guo X, et al. Ternary Zn3V3O8 superstructure and synergistic modification of separator promote high performance and stable zinc ion battery. Chem Eng J. 2024; 486:150377.

[37]

Ji J, Zhu Z, Du H, et al. Zinc-contained alloy as a robustly adhered interfacial lattice locking layer for planar and stable zinc electrodeposition. Adv Mater. 2023; 35(20):2211961.

[38]

Yan Y, Shu C, Zeng T, et al. Surface-preferred crystal plane growth enabled by underpotential deposited monolayer toward dendrite-free zinc anode. ACS Nano. 2022; 16(6): 9150-9162.

[39]

Li Y, Chen W, Jia S, et al. Ultrathin Zn(002) textured zinc anodes for dendrite-free and hydrogen evolution-inhibited zinc batteries. J Power Sources. 2024; 614:235040.

[40]

Song X, Bai L, Wang C, et al. Synergistic cooperation of Zn(002) texture and amorphous zinc phosphate for dendrite-free Zn anodes. ACS Nano. 2023; 17(15): 15113-15124.

[41]

Xu D, Chen B, Ren X, et al. Selectively etching-off the highly reactive (002) Zn facet enables highly efficient aqueous zinc-metal batteries. Energy Environ Sci. 2024; 17(2): 642-654.

[42]

Santos F, Fernández RAJ. Hydration as a solution to zinc batteries. Nat Sustain. 2022; 5(3): 179-180.

[43]

Zhao Y, Guo S, Chen M, et al. Tailoring grain boundary stability of zinc-titanium alloy for long-lasting aqueous zinc batteries. Nat Commun. 2023; 14(1):7080.

[44]

Hu E, Yang X.-Q. Rejuvenating zinc batteries. Nat Mater. 2018; 17(6): 480-481.

[45]

Zheng J, Zhao Q, Tang T, et al. Reversible epitaxial electrodeposition of metals in battery anodes. Science. 2019; 366(6465): 645-648.

[46]

Zheng J, Yin J, Zhang D, et al. Spontaneous and field-induced crystallographic reorientation of metal electrodeposits at battery anodes. Sci Adv. 2020; 6(25):eabb1122.

[47]

Yuan D, Zhao J, Ren H, et al. Anion texturing towards dendrite-free Zn anode for aqueous rechargeable batteries. Angew Chem Int Ed. 2021; 60(13): 7213-7219.

[48]

Wei T, Zhang H, Ren Y, et al. Building near-unity stacked (002) texture for high-stable zinc anode. Adv Funct Mater. 2024; 34(14):2312506.

[49]

Song Y, Ruan P, Mao C, et al. Metal-organic frameworks functionalized separators for robust aqueous zinc-ion batteries. Nano-Micro Lett. 2022; 14(1): 218.

[50]

Ren L, Hu Z, Peng C, et al. Suppressing metal corrosion through identification of optimal crystallographic plane for Zn batteries. Proc Natl Acad Sci USA. 2024; 121(5):e2309981121.

[51]

Wang T, Sun J, Hua Y, et al. Planar and dendrite-free zinc deposition enabled by exposed crystal plane optimization of zinc anode. Energy Storage Mater. 2022; 53: 273-304.

[52]

Zheng J, Archer LA. Controlling electrochemical growth of metallic zinc electrodes: toward affordable rechargeable energy storage systems. Sci Adv. 2021; 7(2):eabe0219.

[53]

Yang X, Dong Z, Weng G, et al. Crystallographic manipulation strategies toward reversible Zn anode with orientational deposition. Adv Energy Mater. 2024; 14(25):2401293.

[54]

Du W, Yan J, Cao C, et al. Electrocrystallization orientation regulation of zinc metal anodes: strategies and challenges. Energy Storage Mater. 2022; 52: 329-354.

[55]

Wu S, Hu Z, He P, Ren L, Huang J, Luo J. Crystallographic engineering of Zn anodes for aqueous batteries. eScience. 2023; 3(3):100120.

[56]

Yang J, Yin B, Sun Y, et al. Zinc anode for mild aqueous zinc-ion batteries: challenges, strategies, and perspectives. Nano-Micro Lett. 2022; 14(1): 42.

[57]

Tu J, Song W, Lei H, et al. Nonaqueous rechargeable aluminum batteries: progresses, challenges, and perspectives. Chem Rev. 2021; 121(8): 4903-4961.

[58]

Nie W, Cheng H, Sun Q, et al. Design strategies toward high-performance Zn metal anode. Small Methods. 2024; 8(6):2201572.

[59]

Li C, Jin S, Archer L, Nazar LF. Toward practical aqueous zinc-ion batteries for electrochemical energy storage. Joule. 2022; 6(8): 1733-1738.

[60]

Li S, Fu J, Miao G, et al. Toward planar and dendrite-free Zn electrodepositions by regulating Sn-crystal textured surface. Adv Mater. 2021; 33(21):2008424.

[61]

Shen Z, Mao J, Yu G, et al. Electrocrystallization regulation enabled stacked hexagonal platelet growth toward highly reversible zinc anodes. Angew Chem Int Ed. 2023; 62(11):e202218452.

[62]

Wang Y, Xu X, Yin J, et al. MoS2-mediated epitaxial plating of Zn metal anodes. Adv Mater. 2023; 35(6):2208171.

[63]

Yang X, Li C, Sun Z, et al. Interfacial manipulation via in situ grown ZnSe cultivator toward highly reversible zn metal anodes. Adv Mater. 2021; 33(52):2105951.

[64]

Wei T, Zhang X, Ren Y, et al. Reconstructing anode/electrolyte interface and solvation structure towards high stable zinc anode. Chem Eng J. 2023; 457:141272.

[65]

Jin S, Zhang D, Sharma A, et al. Stabilizing zinc electrodeposition in a battery anode by controlling crystal growth. Small. 2021; 17(33):2101798.

[66]

Zheng J, Archer LA. Crystallographically textured electrodes for rechargeable batteries: symmetry, fabrication, and characterization. Chem Rev. 2022; 122(18): 14440-14470.

[67]

Hou Z, Gao Y, Zhou R, Zhang B. Unraveling the rate-dependent stability of metal anodes and its implication in designing cycling protocol. Adv Funct Mater. 2022; 32(7):2107584.

[68]

Xie C, Liu S, Yang Z, et al. Discovering the intrinsic causes of dendrite formation in zinc metal anodes: lattice defects and residual stress. Angew Chem Int Ed. 2023; 62(16):e202218612.

[69]

Sui Y, Ji X. Anticatalytic strategies to suppress water electrolysis in aqueous batteries. Chem Rev. 2021; 121(11): 6654-6695.

[70]

Yang Q, Li Q, Liu Z, et al. Dendrites in Zn-based batteries. Adv Mater. 2020; 32(48):2001854.

[71]

Xie C, Ji H, Zhang Q, et al. High-index zinc facet exposure induced by preferentially orientated substrate for dendrite-free zinc anode. Adv Energy Mater. 2023; 13(3):2203203.

[72]

Jia X, Liu C, Neale Z, Yang J, Cao G. Active materials for aqueous zinc ion batteries: synthesis, crystal structure, morphology, and electrochemistry. Chem Rev. 2020; 120(15): 7795-7866.

[73]

Cheng Y, Jiao Y, Wu P. Manipulating Zn 002 deposition plane with zirconium ion crosslinked hydrogel electrolyte toward dendrite free Zn metal anodes. Energy Environ Sci. 2023; 16(10): 4561-4571.

[74]

Yi Z, Chen G, Hou F, Wang L, Liang J. Strategies for the stabilization of Zn metal anodes for Zn-ion batteries. Adv Energy Mater. 2021; 11(1):2003065.

[75]

Liu M, Cai J, Xu J, et al. Crystal plane reconstruction and thin protective coatings formation for superior stable Zn anodes cycling 1300 h. Small. 2022; 18(22):2201443.

[76]

Zhang J, Huang W, Li L, et al. Nonepitaxial electrodeposition of (002)-textured Zn anode on textureless substrates for dendrite-free and hydrogen evolution-suppressed Zn batteries. Adv Mater. 2023; 35(21):2300073.

[77]

Pangarov NA. Preferred orientations in electro-deposited metals. J Electroanal Chem. 1965; 9(1): 70-85.

[78]

Jäckle M, Helmbrecht K, Smits M, Stottmeister D, Groß A. Self-diffusion barriers: possible descriptors for dendrite growth in batteries? Energy Environ Sci. 2018; 11(12): 3400-3407.

[79]

Cai Z, Wang J, Lu Z, et al. Ultrafast metal electrodeposition revealed by in situ optical imaging and theoretical modeling towards fast-charging Zn battery chemistry. Angew Chem Int Ed. 2022; 61(14):e202116560.

[80]

Budevski E, Staikov G, Lorenz WJ. Electrocrystallization: nucleation and growth phenomena. Electrochim Acta. 2000; 45(15): 2559-2574.

[81]

Li M, Lai C, He X, et al. Texturing crystal plane of zinc metal via cleavage fracture for a dendrite-free zinc anode. ACS Appl Mater Interfaces. 2022; 14(44): 49719-49729.

[82]

Bao Q.-p, Sui B.-b, Wang P.-f, et al. High-pressure deformation exposes zinc (002) crystal planes adapted for high-performance zinc anodes. Electrochim Acta. 2024; 478:143824.

[83]

Wang H, Zhou A, Hu X, et al. Facilitating oriented dense deposition: utilizing crystal plane end-capping reagent to construct dendrite-free and highly corrosion-resistant (100) crystal plane zinc anode. Adv Mater. 2024:2407145.

[84]

Yuan W, Nie X, Ma G, et al. Realizing textured zinc metal anodes through regulating electrodeposition current for aqueous zinc batteries. Angew Chem Int Ed. 2023; 62(10):e202218386.

[85]

Zhang X, Li J, Liu Y, Lu B, Liang S, Zhou J. Single [0001]-oriented zinc metal anode enables sustainable zinc batteries. Nat Commun. 2024; 15(1):2735.

[86]

Shen T, Wei T, Zhang S, et al. Single-crystalline Zn(002) facet enables ultrastable anode-electrolyte interface. Small Structures. 2024:2400325.

[87]

Su Y, Chen B, Sun Y, et al. Rationalized electroepitaxy toward scalable single-crystal Zn anodes. Adv Mater. 2023; 35(28):2301410.

[88]

Yang X, Lu Y, Liu Z, et al. Facet-governed Zn homoepitaxy via lattice potential regulation. Energy Environ Sci. 2024; 17(15): 5563-5575.

[89]

Li Y, Wong H, Wang J, et al. Deposition of horizontally stacked Zn crystals on single layer 1t-VSe2 for dendrite-free Zn metal anodes. Adv Energy Mater. 2022; 12(47):2202983.

[90]

Zhu Q, Sun G, Qiao S, et al. Selective shielding of the (002) plane enabling vertically oriented zinc plating for dendrite-free zinc anode. Adv Mater. 2023; 36(11):2308577.

[91]

Xu Z, Li H, Liu Y, et al. Durable modulation of Zn(002) plane deposition via reproducible zincophilic carbon quantum dots towards low N/P ratio zinc-ion batteries. Mater Horiz. 2023; 10(9): 3680-3693.

[92]

Chen Z, Wang Y, Wu Q, et al. Grain boundary filling empowers (002)-textured Zn metal anodes with superior stability. Adv Mater. 2024; 36(46):2411004.

[93]

Yan H, Ren J, Li S, Xu X, Yang S. Enabling cobblestone-like zinc deposition via uniform ZnSnO3 perovskite nanocrystal nucleus towards dendrites-free and high-rate zinc batteries. Mater Today Chem. 2023; 33:101710.

[94]

Zheng J, Deng Y, Yin J, et al. Textured electrodes: manipulating built-in crystallographic heterogeneity of metal electrodes via severe plastic deformation. Adv Mater. 2022; 34(1):2106867.

[95]

Zhou M, Guo S, Li J, et al. Surface-preferred crystal plane for a stable and reversible zinc anode. Adv Mater. 2021; 33(21):2100187.

[96]

Liu Z, Guo Z, Fan L, et al. Construct robust epitaxial growth of (101) textured zinc metal anode for long life and high capacity in mild aqueous zinc-ion batteries. Adv Mater. 2024; 36(5):2305988.

[97]

Du Y, Feng Y, Li R, et al. Zinc-bismuth binary alloy enabling high-performance aqueous zinc ion batteries. Small. 2024; 20(17):2307848.

[98]

Zou Y, Yang X, Shen L, et al. Emerging strategies for steering orientational deposition toward high-performance Zn metal anodes. Energy Environ Sci. 2022; 15(12): 5017-5038.

[99]

Wang Y, Zhang S, Wang H, et al. Is (002) the only one that's important? An overall consideration of the main exposed crystallographic planes on a Zn anode for obtaining dendrite-free long-life zinc ion batteries. J Mater Chem A. 2023; 11(32): 17207-17216.

[100]

Su T.-T, Wang K, Chi B.-Y, Ren W, Sun R. Stripy zinc array with preferential crystal plane for the ultra-long lifespan of zinc metal anodes for zinc ion batteries. EcoMat. 2022; 4(6):e12219.

[101]

Chai Y, Xie X, He Z, et al. A smelting-rolling strategy for znin bulk phase alloy anodes. Chem Sci. 2022; 13(39): 11656-11665.

[102]

Wang T, Tang Y, Yu M, Lu B, Zhang X, Zhou J. Spirally grown zinc-cobalt alloy layer enables highly reversible zinc metal anodes. Adv Funct Mater. 2023; 33(51):2306101.

[103]

Chen S, Ouyang K, Liu Y, et al. Non-epitaxial electrodeposition of overall 99% (002) plane achieves extreme and direct utilization of 95% zn anode and by-product as cathode. Angew Chem Int Ed. 2024; 136(42):e202409303.

[104]

Yuan W, Nie X, Wang Y, et al. Orientational electrodeposition of highly (002)-textured zinc metal anodes enabled by iodide ions for stable aqueous zinc batteries. ACS Nano. 2023; 17(23): 23861-23871.

[105]

Pu S, Gong C, Tang Y, et al. Achieving ultrahigh-rate planar and dendrite-free zinc electroplating for aqueous zinc battery anodes. Adv Mater. 2022; 34(28):2202552.

[106]

Yi Z, Liu J, Tan S, et al. An ultrahigh rate and stable zinc anode by facet-matching-induced dendrite regulation. Adv Mater. 2022; 34(37):2203835.

[107]

Nie W, Tian F, Zhang L, et al. Oriented-electrochemical etching of Zn crystal edges in deep eutectic solvent for enhancing stability and reversibility of Zn anodes. Adv Funct Mater. 2024:2403305.

[108]

Chen X, Zhai Z, Yu T, et al. Constructing a 3D zinc anode exposing the Zn(002) plane for ultralong life zinc-ion batteries. Small. 2024; 20(35):2401386.

[109]

Jeong H, Kim D, Yoo G, et al. Selective control of sharp-edge zinc electrodes with (002) plane for high-performance aqueous zinc-ion batteries. J Mater Chem A. 2024; 12(25): 15265-15277.

[110]

Zhang Y, Han X, Liu R, et al. Manipulating the zinc deposition behavior in hexagonal patterns at the preferential Zn (100) crystal plane to construct surficial dendrite-free zinc metal anode. Small. 2022; 18(7):2105978.

[111]

Wang X, Meng J, Lin X, et al. Stable zinc metal anodes with textured crystal faces and functional zinc compound coatings. Adv Funct Mater. 2021; 31(48):2106114.

[112]

Liu S, Lin H, Song Q, Zhu J, Zhu C. Anti-corrosion and reconstruction of surface crystal plane for Zn anodes by an advanced metal passivation technique. Energy & Environmental Materials. 2023; 6(4):e12405.

[113]

Luo B, Wang Y, Zheng S, et al. Ion pumping synergy with atomic anchoring for dendrite-free Zn anodes. Energy Storage Mater. 2022; 51: 610-619.

[114]

Zhou X, Wen B, Cai Y, et al. Interfacial engineering for oriented crystal growth toward dendrite-free zn anode for aqueous zinc metal battery. Angew Chem Int Ed. 2024; 63(21):e202402342.

[115]

Li X, Li Q, Hou Y, et al. Toward a practical zn powder anode: Ti3C2Tx mxene as a lattice-match electrons/ions redistributor. ACS Nano. 2021; 15(9): 14631-14642.

[116]

Lu Y, Wang T, Li Z, Cheng H, Peng K, Tian Z. Epitaxial deposition of Zn (002) for stable zinc metal anodes. Chem Eng J. 2023; 458:141509.

[117]

Zhou S, Meng X, Fu C, et al. Aligned dipoles induced electric-field promoting zinc-ion de-solvation toward highly stable dendrite-free zinc-metal batteries. Small. 2023; 19(49):2303457.

[118]

Zhao Z, Wang R, Peng C, et al. Horizontally arranged zinc platelet electrodeposits modulated by fluorinated covalent organic framework film for high-rate and durable aqueous zinc ion batteries. Nat Commun. 2021; 12(1):6606.

[119]

Sun Q, Chang L, Liu Y, Nie W, Lian M, Cheng H. Engineering a Ni-Al brucite-based interface layer with regulated Zn2+ flux for highly reversible zn metal anodes. ACS Appl Mater Interfaces. 2023; 15(37): 43942-43952.

[120]

Xi M, Liu Z, Wang W, et al. Shear-flow induced alignment of graphene enables the closest packing crystallography of the (002) textured zinc metal anode with high reversibility. Energy Environ Sci. 2024; 17(9): 3168-3178.

[121]

Zhang S, Li J, Jin B, Shao M. Oriented zinc metal anode based on directional recognition and assembly. Small. 2023; 19(38):2301874.

[122]

Zheng Z, Zhong X, Zhang Q, et al. An extended substrate screening strategy enabling a low lattice mismatch for highly reversible zinc anodes. Nat Commun. 2024; 15(1): 753.

[123]

Han Y, Wang F, Zhang B, et al. Building block effect induces horizontally oriented bottom Zn(002) deposition for a highly stable zinc anode. Energy Storage Mater. 2023; 62:102928.

[124]

Li Q, Hong H, Zhu J, et al. Crystal orientation engineering of perfectly matched heterogeneous textured ZnSe for an enhanced interfacial kinetic Zn anode. ACS Nano. 2023; 17(23): 23805-23813.

[125]

Fu M, Zhao Q, Long K, et al. Global “interface-space” dual-modulation by functional supramolecules organic frameworks on aqueous zinc-ion batteries. Adv Funct Mater. 2024; 34(10):2311680.

[126]

Zhang R, Feng Y, Ni Y, et al. Bifunctional interphase with target-distributed desolvation sites and directionally depositional ion flux for sustainable zinc anode. Angew Chem Int Ed. 2023; 62(25):e202304503.

[127]

Chen S, Xia Y, Zeng R, et al. Ordered planar plating/stripping enables deep cycling zinc metal batteries. Sci Adv. 2024; 10(10):eadn2265.

[128]

Chen X, Li W, Hu S, et al. Polyvinyl alcohol coating induced preferred crystallographic orientation in aqueous zinc battery anodes. Nano Energy. 2022; 98:107269.

[129]

Zhang Q, Su Y, Shi Z, Yang X, Sun J. Artificial interphase layer for stabilized Zn anodes: progress and prospects. Small. 2022; 18(40):2203583.

[130]

Chang L, Li J, Sun Q, Liu X, Lu X, Cheng H. Innovative zinc anodes: advancing metallurgy methods to battery applications. Small. 2024:2408124.

[131]

Ren H, Li S, Wang B, et al. Anti-solvent strategy promoting (002) texture and suppressing side reactions for an ultra-stable zinc anode. Cell Reports Physical Science. 2023; 4(10):101626.

[132]

Wang Y, Mo L, Zhang X, et al. Facet-termination promoted uniform Zn (100) deposition for high-stable zinc-ion batteries. Adv Energy Mater. 2023; 13(31):2301517.

[133]

Lin Y, Mai Z, Liang H, Li Y, Yang G, Wang C. Dendrite-free Zn anode enabled by anionic surfactant-induced horizontal growth for highly-stable aqueous Zn-ion pouch cells. Energy Environ Sci. 2023; 16(2): 687-697.

[134]

Zhou J, Hao B, Meng Y, et al. Leveling the Zn anode by crystallographic orientation manipulation. Nano Lett. 2023; 23(22): 10148-10156.

[135]

Liu Q, Liu X, Liu Y, et al. Atomic-level customization of zinc crystallization kinetics at the interface for high-utilization Zn anodes. ACS Nano. 2024; 18(6): 4932-4943.

[136]

Wang Y, Wang Z, Pang WK, et al. Solvent control of water O−H bonds for highly reversible zinc ion batteries. Nat Commun. 2023; 14(1):2720.

[137]

Ouyang K, Ma D, Zhao N, et al. A new insight into ultrastable Zn metal batteries enabled by in situ built multifunctional metallic interphase. Adv Funct Mater. 2022; 32(7):2109749.

[138]

Qiu M, Sun P, Wang Y, Ma L, Zhi C, Mai W. Anion-trap engineering toward remarkable crystallographic reorientation and efficient cation migration of Zn ion batteries. Angew Chem Int Ed. 2022; 61(44):e202210979.

[139]

Wang X, Wang B, Lei P, et al. Polycation-regulated hydrogel electrolytes with nanoscale hydrophobic confinement inducing Zn(002) deposition for highly reversible zinc anodes. Energy Environ Sci. 2024; 17(18): 6640-6655.

[140]

Zhang Q, Xia K, Ma Y, et al. Chaotropic anion and fast-kinetics cathode enabling low-temperature aqueous Zn batteries. ACS Energy Lett. 2021; 6(8): 2704-2712.

[141]

Chen Z, Wu Q, Han X, et al. Converting commercial Zn foils into single (002)-textured Zn with millimeter-sized grains for highly reversible aqueous zinc batteries. Angew Chem Int Ed. 2024; 63(17):e202401507.

RIGHTS & PERMISSIONS

2024 The Author(s). EcoEnergy published by John Wiley & Sons Australia, Ltd on behalf of China Chemical Safety Association.

AI Summary AI Mindmap
PDF

37

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/