Advancing aqueous zinc-ion batteries with carbon dots: A comprehensive review

Mingying Chen , Junjie Ma , Yanhong Feng , Quanping Yuan , Yinghong Wu , Yifan Liu , Guangzhi Hu , Xijun Liu

EcoEnergy ›› 2025, Vol. 3 ›› Issue (2) : 254 -295.

PDF
EcoEnergy ›› 2025, Vol. 3 ›› Issue (2) : 254 -295. DOI: 10.1002/ece2.83
REVIEW

Advancing aqueous zinc-ion batteries with carbon dots: A comprehensive review

Author information +
History +
PDF

Abstract

Recent years have witnessed a surge in research on aqueous zinc-ion batteries (AZIBs) due to their low cost, stability, and exceptional electrochemical performance, among other advantages. However, practical manufacturing and deployment of AZIBs have been hindered by challenges such as low energy density, significant precipitation-related side reactions, slow ion migration, and dendritic growth. Addressing these issues and enhancing the practical application of AZIBs necessitates the development of novel materials. Carbon dots (CDs), with their distinctive structure and superior electrochemical properties, represent an innovative class of carbon-based materials with broad potential applications for optimizing AZIBs' performance. This study offers a comprehensive review of how CDs can address the aforementioned challenges of AZIBs. It begins with an overview of AZIBs composition and mechanism before delving into the classification, preparation techniques, and functionalization strategies of CDs. The review also thoroughly summarizes the sophisticated roles of CDs as modifiers in electrolytes and electrodes, both positive and negative, and briefly discusses their potential application in membranes. Additionally, it provides a summary of current issues and difficulties encountered in utilizing CDs in AZIBs. This review aims to provide insights and guidance for designing and manufacturing the next generation of high-performance AZIBs.

Keywords

aqueous zinc-ion batteries / carbon dots / electrode design / electrolyte / energy storage

Cite this article

Download citation ▾
Mingying Chen, Junjie Ma, Yanhong Feng, Quanping Yuan, Yinghong Wu, Yifan Liu, Guangzhi Hu, Xijun Liu. Advancing aqueous zinc-ion batteries with carbon dots: A comprehensive review. EcoEnergy, 2025, 3(2): 254-295 DOI:10.1002/ece2.83

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ahuis M, Doose S, Vogt D, Michalowski P, Zellmer S, Kwade A. Recycling of solid-state batteries. Nat Energy. 2024; 9(4): 373-385.

[2]

Lu J, Wang T, Yang J, et al. Multifunctional self-assembled bio-interfacial layers for high-performance zinc metal anodes. Angew Chem Int Ed. 2024; 63(42):e202409838.

[3]

Durmus YE, Zhang H, Baakes F, et al. Side by side battery technologies with lithium-ion based batteries. Adv Energy Mater. 2020; 10(24):2000089.

[4]

Zhang C, Chou S, Guo Z, Dou S-X. Beyond lithium-ion batteries. Adv Funct Mater. 2024; 34(5):2308001.

[5]

Zhao Z, Nian B, Lei Y, et al. Passivation layers in Mg-metal batteries: robust interphases for Li-metal batteries. Adv Mater. 2024; n/a(n/a):2402626.

[6]

Han L, Ou P, Liu W, et al. Design of Ru-Ni diatomic sites for efficient alkaline hydrogen oxidation. Sci Adv. 2022; 8(22):eabm3779.

[7]

Chen K, Xiang J, Guo Y, Liu X, Li X, Chu K. Pd1Cu single-atom alloys for high-current-density and durable NO-to-NH3 electroreduction. Nano Lett. 2024; 24(2): 541-548.

[8]

Yang T, Luo D, Zhang X, et al. Sustainable regeneration of spent cathodes for lithium-ion and post-lithium-ion batteries. Nat Sustain. 2024; 7(6): 776-785.

[9]

Kim H, Kim JC. Opportunities and challenges in cathode development for non-lithium-ion batteries. eScience. 2024; 4(4):100232.

[10]

Wang Z, Du Z, Wang L, et al. Disordered materials for high-performance lithium-ion batteries: a review. Nano Energy. 2024; 121:109250.

[11]

Cao Y, Li J, Ji H, Wei X, Zhou G, Cheng H-M. A review of direct recycling methods for spent lithium-ion batteries. Energy Storage Mater. 2024; 70:103475.

[12]

Xiao J, Zhang B, Liu J, et al. NaSICON-type materials for lithium-ion battery applications: progress and challenges. Nano Energy. 2024; 127:109730.

[13]

Cao J, Sun M, Zhang D, et al. Tuning vertical electrodeposition for dendrites-free zinc-ion batteries. ACS Nano. 2024; 18(26): 16610-16621.

[14]

Han Y, Zhao Y, Yu Y. Research progress of Zn-air batteries suitable for extreme temperatures. Energy Storage Mater. 2024; 69:103429.

[15]

Yang L, Zhou M, Xie Y, Shen X, Liang S, Fang G. Separators in aqueous zinc-ion batteries: interfacial chemistry and optimization strategies. Energy Storage Mater. 2024; 67:103271.

[16]

Deng S, Xu B, Zhao J, Fu H. Advanced design for anti-freezing aqueous zinc-ion batteries. Energy Storage Mater. 2024; 70:103490.

[17]

Dai Y, Lu R, Zhang C, et al. Zn2+-mediated catalysis for fast-charging aqueous Zn-ion batteries. Nat Catal. 2024; 7(7): 776-784.

[18]

Niu B, Wang J, Guo Y, et al. Polymers for aqueous zinc-ion batteries: from fundamental to applications across core components. Adv Energy Mater. 2024; 14(12):2303967.

[19]

Feng Z, Feng Y, Fan F, et al. Functionalization design of zinc anode for advanced aqueous zinc-ion batteries. SusMat. 2024; 4(2):e184.

[20]

Chen S, Qi G, Yin R, et al. Electrocatalytic nitrate-to-ammonia conversion on CoO/CuO nanoarrays using Zn-nitrate batteries. Nanoscale. 2023; 15(48): 19577-19585.

[21]

Liu F, Zhang Y, Liu H, et al. Advances of nanomaterials for high-efficiency Zn metal anodes in aqueous zinc-ion batteries. ACS Nano. 2024; 18(25): 16063-16090.

[22]

Qu G, Wei H, Zhao S, et al. A temperature self-adaptive electrolyte for wide-temperature aqueous zinc-ion batteries. Adv Mater. 2024; 36(29):2400370.

[23]

Chen X, Liu J-H, Jiang H, et al. Metal organic framework-based cathode materials for aqueous zinc-ion batteries: recent advances and perspectives. Energy Storage Mater. 2024; 65:103168.

[24]

Shi X, Zhou C, Yang F, et al. Spontaneous interface layer engineering of Ag2Mn8O16 cathode via anodic oxidation strategy toward high-performance aqueous zinc-ion batteries. ACS Energy Lett. 2024; 9(3): 1063-1072.

[25]

Zhong W, Shen Z, Mao J, et al. Mitigating cathodic dissolution through interfacial water masking to enhance the longevity of aqueous zinc-ion batteries. Energy Environ Sci. 2024; 17(5): 2059-2068.

[26]

Li Y, Guo Y-F, Li Z-X, Wang P-F, Xie Y, Yi T-F. Carbon-based nanomaterials for stabilizing zinc metal anodes towards high-performance aqueous zinc-ion batteries. Energy Storage Mater. 2024; 67:103300.

[27]

Deng W, Huang Z, Zhou Z, et al. A near 0 V and low-strain intercalative anode for aqueous zinc-ion batteries. ACS Energy Lett. 2023; 8(7): 3171-3179.

[28]

Du K, Liu Y, Yang Y, et al. High entropy oxides modulate atomic-level interactions for high-performance aqueous zinc-ion batteries. Adv Mater. 2023; 35(51):2301538.

[29]

Liu X, Wang X, Yao J, et al. Endogenous organic-inorganic hybrid interface for reversible Zn electrochemistry. Adv Energy Mater. 2024; 14(22):2400090.

[30]

Li D, Tang Y, Liang S, Lu B, Chen G, Zhou J. Self-assembled multilayers direct a buffer interphase for long-life aqueous zinc-ion batteries. Energy Environ Sci. 2023; 16(8): 3381-3390.

[31]

Wang Z, Zhou D, Zhou Z, et al. Synergistic effect of 3D elastomer/super-ionic conductor hybrid fiber networks enables zinc anode protection for aqueous zinc-ion batteries. Adv Funct Mater. 2024; 34(22):2313371.

[32]

Sun X, Lv X, Zhang M, et al. Construction of selective ion transport polymer at anode-electrolyte interface for stable aqueous zinc-ion batteries. ACS Nano. 2024; 18(11): 8452-8462.

[33]

Wang K, Li S, Chen X, Shen J, Zhao H, Bai Y. Trifunctional Rb+-intercalation enhancing the electrochemical cyclability of ammonium vanadate cathode for aqueous zinc ion batteries. ACS Nano. 2024; 18(9): 7311-7323.

[34]

Yang S, Xu Z, Wang S, et al. Hydrophilic and nanocrystalline carbon quantum dots enable highly reversible zinc-ion batteries. Green Chem. 2024; 26(12): 7293-7301.

[35]

Shi Y, Su W, Yuan F, et al. Carbon dots for electroluminescent light-emitting diodes: recent progress and future prospects. Adv Mater. 2023; 35(44):2210699.

[36]

Ru Y, Waterhouse GIN, Lu S. Aggregation in carbon dots. Aggregate. 2022; 3(6):e296.

[37]

Xia C, Zhu S, Feng T, Yang M, Yang B. Evolution and synthesis of carbon dots: from carbon dots to carbonized polymer dots. Adv Sci. 2019; 6(23):1901316.

[38]

Oladzadabbasabadi N, Dheyab MA, Nafchi AM, Ghasemlou M, Ivanova EP, Adhikari B. Turning food waste into value-added carbon dots for sustainable food packaging application: a review. Adv Colloid Interface Sci. 2023; 321:103020.

[39]

Yi M, Jing M, Yang Y, et al. Recent developments of carbon dots for advanced zinc-based batteries: a review. Adv Funct Mater. 2024; 34(29):2400001.

[40]

Zhang Y, Yue L, Ding H, et al. Carbon dots promoting surface defect and interphase high anion concentration for sodium-ion battery carbon anodes. Nano Energy. 2024; 127:109696.

[41]

Han Y, Jiu H, Zhang L, et al. Facile synthesis of Bi2Se3/nitrogen-doped carbon dot nanoplates for aqueous zinc ion battery cathodes. Phys Chem Chem Phys. 2023; 25(32): 21350-21357.

[42]

Li J, Guo P, Chen G, et al. Chitosan-derived carbon dots introduced V2O5 nanobelts for high-performance aqueous zinc-ion battery. J Energy Storage. 2024; 84:110632.

[43]

Zhang Q, Liu P, Wang T, Liu Q, Wu D. Core-shell structures of Cu2O constructed by carbon quantum dots as high-performance zinc-ion battery cathodes. J Mater Chem A. 2023; 11(45): 24823-24835.

[44]

Ma W, Wang S, Wu X, et al. Tailoring desolvation strategies for aqueous zinc-ion batteries. Energy Environ Sci. 2024; 17(14): 4819-4846.

[45]

Dai Y, Zhang C, Li J, et al. Inhibition of vanadium cathodes dissolution in aqueous Zn-ion. Batteries. 2024; 36(14):2310645.

[46]

Nie W, Cheng H, Sun Q, et al. Design strategies toward high-performance Zn metal anode. Small Methods. 2023; 8(6):2201572.

[47]

Shang Y, Kundu D. A path forward for the translational development of aqueous zinc-ion batteries. Joule. 2023; 7(2): 244-250.

[48]

Yi Z, Chen G, Hou F, Wang L, Liang J. Strategies for the stabilization of Zn metal anodes for Zn-ion batteries. Adv Energy Mater. 2021; 11(1):2003065.

[49]

Yang J, Yin B, Sun Y, et al. Zinc anode for mild aqueous zinc-ion batteries: challenges, strategies, and perspectives. Nano-Micro Lett. 2022; 14(1):42.

[50]

Zou Y, Yang X, Shen L, et al. Emerging strategies for steering orientational deposition toward high-performance Zn metal anodes. Energy Environ Sci. 2022; 15(12): 5017-5038.

[51]

Liu H, Zhou Q, Xia Q, et al. Interface challenges and optimization strategies for aqueous zinc-ion batteries. J Energy Chem. 2023; 77: 642-659.

[52]

Lin D, Li Y. Recent advances of aqueous rechargeable zinc-iodine batteries: challenges, solutions, and prospects. Adv Mater. 2022; 34(23):2108856.

[53]

Zhang X, Shen Q, Lin X, Luo C, Shen Y, Huang X. Ion-confinement effect for zinc anode of aqueous zinc ion batteries. J Energy Storage. 2023; 73:109085.

[54]

Yang X, Tu Y, Ye F, Bao Z. Back-contact configuration energizes perovskite photovoltaic modules. Nano Res Energy. 2024; 3(2):e9120111.

[55]

Zhang L, Hou Y. Comprehensive analyses of aqueous Zn metal batteries: characterization methods, simulations, and theoretical calculations. Adv Energy Mater. 2021; 11(13):2003823.

[56]

Wang X, Zhang Z, Xi B, et al. Advances and perspectives of cathode storage chemistry in aqueous zinc-ion batteries. ACS Nano. 2021; 15(6): 9244-9272.

[57]

Yang J, Zhao R, Wang Y, et al. Insights on artificial interphases of Zn and electrolyte: protection mechanisms, constructing techniques, applicability, and prospective. Adv Funct Mater. 2023; 33(14):2213510.

[58]

Zhang Q, Luan J, Tang Y, Ji X, Wang H. Interfacial design of dendrite-free zinc anodes for aqueous zinc-ion batteries. Angew Chem Int Ed. 2020; 59(32): 13180-13191.

[59]

Shin J, Lee J, Park Y, Choi JW. Aqueous zinc ion batteries: focus on zinc metal anodes. Chem Sci. 2020; 11(8): 2028-2044.

[60]

Tian Y, An Y, Wei C, et al. Recent advances and perspectives of Zn-metal free “rocking-chair”-type Zn-ion batteries. Adv Energy Mater. 2021; 11(5):2002529.

[61]

Paolella A, Faure C, Timoshevskii V, et al. A review on hexacyanoferrate-based materials for energy storage and smart windows: challenges and perspectives. J Mater Chem A. 2017; 5(36): 18919-18932.

[62]

Naveed A, Rasheed T, Raza B, et al. Addressing thermodynamic Instability of Zn anode: classical and recent advancements. Energy Storage Mater. 2022; 44: 206-230.

[63]

Fang G, Zhou J, Pan A, Liang S. Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 2018; 3(10): 2480-2501.

[64]

Fu J, Liang R, Liu G, et al. Recent progress in electrically rechargeable zinc-air batteries. Adv Mater. 2019; 31(31):1805230.

[65]

Lim MB, Lambert TN, Chalamala BR. Rechargeable alkaline zinc-manganese oxide batteries for grid storage: mechanisms, challenges and developments. Mater Sci Eng R Rep. 2021; 143:100593.

[66]

Liu J, Guan C, Zhou C, et al. A flexible quasi-solid-state nickel-zinc battery with high energy and power densities based on 3D electrode design. Adv Mater. 2016; 28(39): 8732-8739.

[67]

Schismenos S, Chalaris M, Stevens G. Battery hazards and safety: a scoping review for lead acid and silver-zinc batteries. Saf Sci. 2021; 140:105290.

[68]

Liang Y, Qiu M, Sun P, Mai W. Comprehensive review of electrolyte modification strategies for stabilizing Zn metal anodes. Adv Funct Mater. 2023; 33(51):2304878.

[69]

Xue Q, Pei Z, Huang Y, et al. Mn3O4 nanoparticles on layer-structured Ti3C2 MXene towards the oxygen reduction reaction and zinc-air batteries. J Mater Chem A. 2017; 5(39): 20818-20823.

[70]

Xu C, Li B, Du H, Kang F. Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew Chem Int Ed. 2012; 51(4): 933-935.

[71]

Alfaruqi MH, Mathew V, Gim J, et al. Electrochemically induced structural transformation in a γ-MnO2 cathode of a high capacity zinc-ion battery system. Chem Mater. 2015; 27(10): 3609-3620.

[72]

Zhang M, Zhang Y, Huang W, Zhang Q. Recent progress in calix[n]quinone (n=4, 6) and pillar[5]quinone electrodes for secondary rechargeable batteries. Batter Supercaps. 2020; 3(6): 476-487.

[73]

Zhang Y, Zheng X, Wang N, et al. Anode optimization strategies for aqueous zinc-ion batteries. Chem Sci. 2022; 13(48): 14246-14263.

[74]

Zhou T, Zhu L, Xie L, et al. Cathode materials for aqueous zinc-ion batteries: a mini review. J Colloid Interface Sci. 2022; 605: 828-850.

[75]

Dai Y, Zhang C, Li J, et al. Inhibition of vanadium cathodes dissolution in aqueous Zn-ion batteries. Adv Mater. 2024; 36(14):2310645.

[76]

Jia X, Liu C, Neale ZG, Yang J, Cao G. Active materials for aqueous zinc ion batteries: synthesis, crystal structure, morphology, and electrochemistry. Chem Rev. 2020; 120(15): 7795-7866.

[77]

Zeng X, Gong Z, Wang C, Cullen PJ, Pei Z. Vanadium-based cathodes modification via defect engineering: strategies to support the leap from lab to commercialization of aqueous zinc-ion batteries. Adv Energy Mater. 2024; 14(31):2401704.

[78]

Bai Y, Qin Y, Hao J, Zhang H, Li CM. Advances and perspectives of ion-intercalated vanadium oxide cathodes for high-performance aqueous zinc ion battery. Adv Funct Mater. 2024; 34(11):2310393.

[79]

Fei B, Liu Z, Fu J, et al. In situ induced core-shell carbon-encapsulated amorphous vanadium oxide for ultra-long cycle life aqueous zinc-ion batteries. Adv Funct Mater. 2023; 33(32):2215170.

[80]

Liu Y, Li L, Ji X, Cheng S. Scientific challenges and improvement strategies of Zn-based anodes for aqueous Zn-ion batteries. Chem Rec. 2022; 22(10):e202200114.

[81]

Zhu Y, Liang G, Cui X, et al. Engineering hosts for Zn anodes in aqueous Zn-ion batteries. Energy Environ Sci. 2024; 17(2): 369-385.

[82]

Zong Y, He H, Wang Y, et al. Functionalized separator strategies toward advanced aqueous zinc-ion batteries. Adv Energy Mater. 2023; 13(20):2300403.

[83]

Zhang Y, Li X, Fan L, Shuai Y, Zhang N. Ultrathin and super-tough membrane for anti-dendrite separator in aqueous zinc-ion batteries. Cell Rep Phys Sci. 2022; 3(4):100824.

[84]

Yan J, Ang EH, Yang Y, et al. High-voltage zinc-ion batteries: design strategies and challenges. Adv Funct Mater. 2021; 31(22):2010213.

[85]

Liu N, Li B, He Z, Dai L, Wang H, Wang L. Recent advances and perspectives on vanadium- and manganese-based cathode materials for aqueous zinc ion batteries. J Energy Chem. 2021; 59: 134-159.

[86]

Sun W, Wang F, Hou S, et al. Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion. J Am Chem Soc. 2017; 139(29): 9775-9778.

[87]

Nam KW, Kim H, Beldjoudi Y, Kwon T-w, Kim DJ, Stoddart JF. Redox-active phenanthrenequinone triangles in aqueous rechargeable zinc batteries. J Am Chem Soc. 2020; 142(5): 2541-2548.

[88]

Pan H, Shao Y, Yan P, et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat Energy. 2016; 1(5):16039.

[89]

Lee B, Seo HR, Lee HR, et al. Critical role of pH evolution of electrolyte in the reaction mechanism for rechargeable zinc batteries. ChemSusChem. 2016; 9(20): 2948-2956.

[90]

Li J, Zhao X, Gong X. The emerging star of carbon luminescent materials: exploring the mysteries of the nanolight of carbon dots for optoelectronic applications. Small. 2024; 20(31):2400107.

[91]

Chen R, Wang Z, Pang T, et al. Ultra-narrow-bandwidth deep-red electroluminescence based on green plant-derived carbon dots. Adv Mater. 2023; 35(36):2302275.

[92]

Hasan AMM, Susan MABH. Synergism in carbon nanotubes and carbon-dots: counter electrode of a high-performance dye-sensitized solar cell. RSC Adv. 2024; 14(11): 7616-7630.

[93]

Li W, Wang Y, Wang B, et al. Enhanced light-harvesting and energy transfer in carbon dots embedded thylakoids for photonic hybrid capacitor applications. Angew Chem Int Ed. 2024; 63(4):e202308951.

[94]

Sun Y, Zheng Y, Pan H, et al. Magnetism of graphene quantum dots. npj Quantum Mater. 2017; 2(1):5.

[95]

Liu J, Bi H, Cesar Morais P, Zhang X, Zhang F, Hu L. Room-temperature magnetism in carbon dots and enhanced ferromagnetism in carbon dots-polyaniline nanocomposite. Sci Rep. 2017; 7(1):2165.

[96]

Xu X, Ray R, Gu Y, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc. 2004; 126(40): 12736-12737.

[97]

Sun Y-P, Zhou B, Lin Y, et al. Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc. 2006; 128(24): 7756-7757.

[98]

Yoo S, Song Y, Hahn S. Ultralong persistent luminescence from carbon dots. Light Sci Appl. 2022; 11(1):132.

[99]

Chen BB, Liu ML, Li CM, Huang CZ. Fluorescent carbon dots functionalization. Adv Colloid Interface Sci. 2019; 270: 165-190.

[100]

Kong J, Wei Y, Zhou F, et al. Carbon quantum dots: properties, preparation, and applications. Molecules. 2024; 29(9):2002.

[101]

Park Y, Kim Y, Chang H, Won S, Kim H, Kwon W. Biocompatible nitrogen-doped carbon dots: synthesis, characterization, and application. J Mater Chem B. 2020; 8(39): 8935-8951.

[102]

Kong J, Zhou F. Preparation and application of carbon dots nanozymes. Antioxidants. 2024; 13(5):535.

[103]

Gan L, Su Q, Chen Z, Yang X. Exploration of pH-responsive carbon dots for detecting nitrite and ascorbic acid. Appl Surf Sci. 2020; 530:147269.

[104]

Korah BK, K S, K RE, Mathew B. Bio-derivatized and silver modified carbon dot based nanocomposite in multiple mode detection, catalytic reduction, and biocidal applications. Biochem Eng J. 2023; 199:109060.

[105]

Jo M-H, Kim K-H, Ahn H-J. P-doped carbon quantum dot graft-functionalized amorphous WO3 for stable and flexible electrochromic energy-storage devices. Chem Eng J. 2022; 445:136826.

[106]

Geng K, Wu G, Miao H, Cong R, Wei Z, He Y. Progress in preparation of ultrafine powder by supercritical carbon dioxide. China Powder Sci Technol. 2024; 30(2): 123-137.

[107]

Chen X, Zhao S, Kang X, et al. Gradient synthesis of carbon quantum dots and activated carbon from pulp black liquor for photocatalytic hydrogen evolution and supercapacitor. Adv Compos Hybrid Mater. 2023; 6(4):131.

[108]

Zhou Z, Li P, Man Z, et al. Multiscale dot-wire-sheet heterostructured nitrogen-doped carbon dots-Ti3C2T/silk nanofibers for high-performance fiber-shaped supercapacitors. Angew Chem Int Ed. 2023; 62(20):e202301618.

[109]

Hua X-W, Bao Y-W, Wu F-G. Fluorescent carbon quantum dots with intrinsic nucleolus-targeting capability for nucleolus imaging and enhanced cytosolic and nuclear drug delivery. ACS Appl Mater Interfaces. 2018; 10(13): 10664-10677.

[110]

Ye X, Qu Z, Wu Y, et al. Nitrogen-doped carbon dots derived from ellagic acid and L-tyrosine for photothermal anticancer and anti-inflammation. Biomater Adv. 2024; 163:213951.

[111]

Wu Y, Fang X, Shi J, Yao W, Wu W. Blue-to-green manipulation of carbon dots from fluorescence to ultralong room-temperature phosphorescence for high-level anti-counterfeiting. Chin Chem Lett. 2021; 32(12): 3907-3910.

[112]

Wang F, Dong X, Zuo Y, Xie Z, Guan R. Effectively enhancing red fluorescence strategy and bioimaging applications of carbon dots. Mater Today Phys. 2024; 41:101332.

[113]

Chen T, Yao T, Peng H, et al. An injectable hydrogel for simultaneous photothermal therapy and photodynamic therapy with ultrahigh efficiency based on carbon dots and modified cellulose nanocrystals. Adv Funct Mater. 2021; 31(45):2106079.

[114]

Li T, Zhang N, Zhao S, et al. Long-lived dynamic room temperature phosphorescent carbon dots for advanced sensing and bioimaging applications. Coord Chem Rev. 2024; 516:215987.

[115]

Chu X, Zhang P, Wang Y, et al. Near-infrared carbon dot-based platform for bioimaging and photothermal/photodynamic/quaternary ammonium triple synergistic sterilization triggered by single NIR light source. Carbon. 2021; 176: 126-138.

[116]

Zhang Y, Xia H, Yang M, et al. Carbon dots with two-photon fluorescence imaging for efficient synergistic trimodal therapy. Chin Chem Lett. 2023; 34(9):108197.

[117]

Ren W, Wang H, Chang Q, Li N, Yang J, Hu S. Origin of sonocatalytic activity of fluorescent carbon dots. Carbon. 2021; 184: 102-108.

[118]

Yu J, Song H, Li X, et al. Computational studies on carbon dots electrocatalysis: a review. Adv Funct Mater. 2021; 31(49):2107196.

[119]

Zhou Y, ElMetwally AE, Chen J, et al. Gel-like carbon dots: a high-performance future photocatalyst. J Colloid Interface Sci. 2021; 599: 519-532.

[120]

Tang T, Zhao J, Shen Y, Yang F, Yao S, An C. Carbon dots bridged Zn0.5Cd0.5S with interfacial amide bond facilitating electron transfer for efficient photocatalytic hydrogen peroxide production. Appl Catal, B: Environ Energy. 2024; 346:123721.

[121]

Han W, Zhang H, Li D, et al. Surface engineered carbon quantum dots for efficient photocatalytic hydrogen peroxide production. Appl Catal, B: Environ Energy. 2024; 350:123918.

[122]

Moniruzzaman M, Deb Dutta S, Lim K-T, Kim J. Wet chemistry-based processing of tunable polychromatic carbon quantum dots for multicolor bioimaging and enhanced NIR-triggered photothermal bactericidal efficacy. Appl Surf Sci. 2022; 597:153630.

[123]

Zhang ZC, Ma QL, Li JL. Preparation of gold nanoparticles and carbon dots by hydrothermal reaction of bovine haemoglobin with chloroauric acid and energy band bending in carbon dots. J Exp Nanosci. 2017; 12(1): 239-246.

[124]

Yang Y, Zhang W, Chen K, et al. Research progress on adsorption mechanism of radioactive iodine by metal-organic framework composites. China Powder Sci Technol. 2024; 30(4): 151-160.

[125]

Chahal S, Macairan J-R, Bui H-NN, et al. A comparison of carbon dot and CdTe quantum dot toxicity in Drosophila melanogaster. Environ Sci Adv. 2024; 3(6): 912-924.

[126]

Liu C, Lin X, Liao J, et al. Carbon dots-based dopamine sensors: recent advances and challenges. Chin Chem Lett. 2024; 35(12):109598.

[127]

Guo R, Li L, Wang B, et al. Functionalized carbon dots for advanced batteries. Energy Storage Mater. 2021; 37: 8-39.

[128]

Li S, Li L, Tu H, et al. The development of carbon dots: from the perspective of materials chemistry. Mater Today. 2021; 51: 188-207.

[129]

Zhai Y, Zhang B, Shi R, et al. Carbon dots as new building blocks for electrochemical energy storage and electrocatalysis. Adv Energy Mater. 2022; 12(6):2103426.

[130]

Liu J, Li D, Zhang K, Yang M, Sun H, Yang B. One-step hydrothermal synthesis of nitrogen-doped conjugated carbonized polymer dots with 31% efficient red emission for in vivo imaging. Small. 2018; 14(15):1703919.

[131]

Liu H, Zhong X, Pan Q, et al. A review of carbon dots in synthesis strategy. Coord Chem Rev. 2024; 498:215468.

[132]

Chen M, Ma J, Chen C, et al. Cutting-edge innovations in red carbon dots: synthesis, perfection, and breakthroughs in optoelectronics and electrocatalysis. Chem Eng J. 2024; 498:155302.

[133]

Guan Q, Su R, Zhang M, et al. Highly fluorescent dual-emission red carbon dots and their applications in optoelectronic devices and water detection. New J Chem. 2019; 43(7): 3050-3058.

[134]

Yang Y, Sreekumar S, Chimenti RV, et al. Polypropylene-derived luminescent carbon dots. ACS Mater Lett. 2024; 6(5): 1968-1976.

[135]

Chen H, Chen Y, Liang Z-B, et al. Preparation and characterization of chiral carbon dots with red emission. Mater Char. 2024; 213:114026.

[136]

Song T-B, Huang Z-H, Niu X-Q, Zhang X-R, Wei J-S, Xiong H-M. In-situ growth of Mn3O4 nanoparticles on nitrogen-doped carbon dots-derived carbon skeleton as cathode materials for aqueous zinc ion batteries. ChemSusChem. 2022; 15(6):e202102390.

[137]

Alassafi JE, Al-Hadeethi Y, Salah Aida M, Fayez Al-Shehri S. Synthesis and optical properties of luminescent carbon dots from Haloxylon seeds. Inorg Chem Commun. 2024; 163:112296.

[138]

Zheng G-S, Shen C-L, Niu C-Y, et al. Photooxidation triggered ultralong afterglow in carbon nanodots. Nat Commun. 2024; 15(1):2365.

[139]

Cheng B, Hu H, Chen J, et al. A waterborne polyurethane-based fluorescent tunable carbon quantum dot. J Polym Sci. 2024; 62(13): 2887-2897.

[140]

Ye S, Sheng S, Liu Y, et al. Enhanced the zinc ion storage performance of PANI in ZnSO4 aqueous electrolyte by doping with sulfonated graphene quantum dots. Electrochim Acta. 2023; 471:143396.

[141]

Zhang Y, Li L, Yue J, et al. Yttrium-mediated red fluorescent carbon dots for sensitive and selective detection of calcium ions. Luminescence. 2021; 36(8): 1969-1976.

[142]

Long X, Zhang Y, Chen X, Zhong Y, Wu S, Hao L. Synthesis of highly efficient green emissive carbon dots towards UV encryption fluorescent ink. Opt Mater. 2022; 132:112829.

[143]

Song T-B, Ma Q-L, Zhang X-R, Ni J-W, He T-L, Xiong H-M. Zn anode surface engineering for stable zinc-ion batteries: carbon dots incorporated mesoporous TiO2 as a coating layer. Chem Eng J. 2023; 471:144735.

[144]

Ge Z, Xu L, Xu Y, et al. Multifunctional fluorinated carbon dots artificial interface layer coupled with in-situ generated Zn2+ conductor interlayer enable ultra-stable Zn anode. Nano Energy. 2024; 119:109053.

[145]

Deng Y, Shen C, Zhao W, et al. Biosynthesis of the narrowband deep-red emissive carbon nanodots from eggshells. ACS Sustainable Chem Eng. 2023; 11(17): 6535-6544.

[146]

Lu K, Fu Q, Sun S, et al. Temperature-responsive red-phosphorescent carbon dots for anticounterfeiting applications. ACS Appl Nano Mater. 2024; 7(4): 4465-4473.

[147]

Liu J, Geng Y, Li D, et al. Deep red emissive carbonized polymer dots with unprecedented narrow full width at half maximum. Adv Mater. 2020; 32(17):1906641.

[148]

Dong L, Zhao Y, Luo J, et al. Carbon dots derived from curcumae radix and their heartprotective effect. Int J Nanomed. 2023; 19: 3315-3332.

[149]

Zhang J, Wei S, Wang H, et al. Carbon quantum dots promote coupled valence engineering of V2O5 nanobelts for high-performance aqueous zinc-ion batteries. ChemSusChem. 2021; 14(9): 2076-2083.

[150]

Wu J, Liu C, Zhang H, et al. Regulation of the electrochemical plating/stripping process for Zn: multifunctional effects of N, S-Codoped carbon dots. J Phys Chem Lett. 2022; 13(51): 11883-11891.

[151]

Wang F, Lu H, Zhu H, et al. Mitigating the interfacial concentration gradient by negatively charged quantum dots toward dendrite-free Zn anodes. Energy Storage Mater. 2023; 58: 215-221.

[152]

Xu C, Kang J, Zhao Y, et al. Comparison of carbon dots prepared from collagen peptides using conventional hydrothermal and microwave methods. New J Chem. 2023; 47(6): 3159-3166.

[153]

Liu J, Kong T, Xiong H-M. Mulberry-leaves-derived red-emissive carbon dots for feeding silkworms to produce brightly fluorescent silk. Adv Mater. 2022; 34(16):2200152.

[154]

Wang S, Zhao H, Yang J, et al. Preparation of multicolor biomass carbon dots based on solvent control and their application in Cr(VI) detection and advanced anti-counterfeiting. ACS Omega. 2023; 8(7): 6550-6558.

[155]

Raniszewski G, Pyc M, Kolacinski Z. Optimization of magnetic field-assisted synthesis of carbon nanotubes for sensing applications. Sensors. 2014; 14(10): 18474-18483.

[156]

He Z, Yuen M, Zhang C, et al. Room-temperature phosphorescence in coal-based humic acid-derived carbon dots. J Mater Chem C. 2024; 12(17): 6333-6340.

[157]

Yang Y, Wu D, Han S, Hu P, Liu R. Bottom-up fabrication of photoluminescent carbon dots with uniform morphology via a soft-hard template approach. Chem Commun. 2013; 49(43): 4920-4922.

[158]

Liao G, Luo J, Cui T, et al. Microwave-assisted one-pot synthesis of carbon dots for highly sensitive and selective detection of selenite. Microchem J. 2022; 179:107440.

[159]

Fu Q, Lu K, Wu H, et al. White carbon dots with high quantum yield and multicolor carbon dots synthesized by the microwave method in one step. Nano-Struct Nano-Objects. 2024; 38:101178.

[160]

Gholipour A, Jahanshahi M, Emadi H. Synthesis of carbon quantum dots and fe-doped carbon quantum dots as fluorescent probes via one-step microwave process for rapid and accurate detection of diclofenac sodium. J Cluster Sci. 2024; 35(1): 237-251.

[161]

Li X, Lei G, Li Y, et al. Hydrodynamic cavitation fragmentizing residue carbon of gasification fine slag into carbon dots. ACS Sustainable Chem Eng. 2024; 12(10): 4335-4343.

[162]

Yi S, Deng S, Guo X, et al. Red emissive two-photon carbon dots: photodynamic therapy in combination with real-time dynamic monitoring for the nucleolus. Carbon. 2021; 182: 155-166.

[163]

Jiang L, Cai H, Zhou W, Li Z, Zhang L, Bi H. RNA-targeting carbon dots for live-cell imaging of granule dynamics. Adv Mater. 2023; 35(21):2210776.

[164]

Hasan MT, Lee BH, Lin C-W, et al. Near-infrared emitting graphene quantum dots synthesized from reduced graphene oxide for in vitro/in vivo/ex vivo bioimaging applications. 2D Mater. 2021; 8(3):035013.

[165]

Yang D-X, Qu D, Miao X, et al. TiO2 sensitized by red-green-blue-emissive carbon dots for enhanced H2 production. Rare Met. 2019; 38(5): 404-412.

[166]

Shen C-L, Lou Q, Zang J-H, et al. Near-infrared chemiluminescent carbon nanodots and their application in reactive oxygen species bioimaging. Adv Sci. 2020; 7(8):1903525.

[167]

Liu K-K, Song S-Y, Sui L-Z, et al. Efficient red/near-infrared-emissive carbon nanodots with multiphoton excited upconversion fluorescence. Adv Sci. 2019; 6(17):1900766.

[168]

Nugroho D, Wannakan K, Nanan S, Benchawattananon R. The synthesis of carbon dots//zincoxide (CDs/ZnO-H400) by using hydrothermal methods for degradation of ofloxacin antibiotics and reactive red azo dye (RR141). Sci Rep. 2024; 14(1):2455.

[169]

Ren W, Nan F, Li S, Yang S, Ge J, Zhao Z. Red emissive carbon dots prepared from polymers as an efficient nanocarrier for coptisine delivery in vivo and in vitro. ChemMedChem. 2021; 16(4): 646-653.

[170]

Lee B, Stokes GA, Valimukhametova A, et al. Automated approach to in vitro image-guided photothermal therapy with top-down and bottom-up-synthesized graphene quantum dots. Nanomaterials. 2023; 13(5):805.

[171]

Liu R, Huang H, Li H, et al. Metal nanoparticle/carbon quantum dot composite as a photocatalyst for high-efficiency cyclohexane oxidation. ACS Catal. 2014; 4(1): 328-336.

[172]

Qin F, Bai J, Zhu Y, et al. Searching for the true origin of the red fluorescence of leaf-derived carbon dots. Phys Chem Chem Phys. 2023; 25(4): 2762-2769.

[173]

Yang F, Zhou P, Duan C. Solid-phase synthesis of red dual-emissive nitrogen-doped carbon dots for the detection of Cu2+ and glutathione. Microchem J. 2021; 169:106534.

[174]

Meng X, Song Y, Jing Q, Zhao H. Self-precipitation of highly purified red emitting carbon dots as red phosphors. J Phys Chem Lett. 2023; 14(41): 9176-9182.

[175]

Jin J-C, Yu Y, Yan R, et al. N, S-Codoped carbon dots with red fluorescence and their cellular imaging. ACS Appl Bio Mater. 2021; 4(6): 4973-4981.

[176]

Wang J, An J, Zhang G, et al. Photosynthetic-bacteria-derived red emissive carbon dots with low toxicity for lysosomal imaging. Mater Lett. 2022; 307:131093.

[177]

Han J, Han Z, Da X, et al. Preparation and photocatalytic activity of red light-emitting carbon dots/P25 heterojunction photocatalyst with ultra-wide absorption spectrum. Mater Res Express. 2021; 8(2):025002.

[178]

Berenguel-Alonso M, Ortiz-Gómez I, Fernández B, et al. An LTCC monolithic microreactor for the synthesis of carbon dots with photoluminescence imaging of the reaction progress. Sensor Actuator B Chem. 2019; 296:126613.

[179]

Wang J, Wang C-F, Chen S. Amphiphilic egg-derived carbon dots: rapid plasma fabrication, pyrolysis process, and multicolor printing patterns. Angew Chem Int Ed. 2012; 51(37): 9297-9301.

[180]

Shao M, Yu Q, Jing N, et al. Continuous synthesis of carbon dots with full spectrum fluorescence and the mechanism of their multiple color emission. Lab Chip. 2019; 19(23): 3974-3978.

[181]

Fu L, Ji W, He J, Huang C, Li Y, Dou Y. Preparation of honeycomb ceramics purification materials and their adsorption performance. China Powder Sci Technol. 2024; 30(3): 170-182.

[182]

Jeong G, Park CH, Yi D, Yang H. Green synthesis of carbon dots from spent coffee grounds via ball-milling: application in fluorescent chemosensors. J Clean Prod. 2023; 392:136250.

[183]

Hu S, Liu J, Yang J, Wang Y, Cao S. Laser synthesis and size tailor of carbon quantum dots. J Nanoparticle Res. 2011; 13(12): 7247-7252.

[184]

Fan W, He J, Wei H, et al. Broadband nonlinear optical properties of red fluorescent carbon dots. Results Phys. 2022; 38:105591.

[185]

Li H, Ye H-G, Cheng R, et al. Red dual-emissive carbon dots for ratiometric sensing of veterinary drugs. J Lumin. 2021; 236:118092.

[186]

Cui L, Ren X, Wang J, Sun M. Synthesis of homogeneous carbon quantum dots by ultrafast dual-beam pulsed laser ablation for bioimaging. Mater Today Nano. 2020; 12:100091.

[187]

Qiao Z-A, Wang Y, Gao Y, et al. Commercially activated carbon as the source for producing multicolor photoluminescent carbon dots by chemical oxidation. Chem Commun. 2010; 46(46): 8812-8814.

[188]

Yan Z, Shu J, Yu Y, Zhang Z, Liu Z, Chen J. Preparation of carbon quantum dots based on starch and their spectral properties. Luminescence. 2015; 30(4): 388-392.

[189]

Du X, Zhang M, Ma Y, et al. Size-dependent antibacterial of carbon dots by selective absorption and differential oxidative stress of bacteria. J Colloid Interface Sci. 2023; 634: 44-53.

[190]

Zhou J, Sheng Z, Han H, Zou M, Li C. Facile synthesis of fluorescent carbon dots using watermelon peel as a carbon source. Mater Lett. 2012; 66(1): 222-224.

[191]

Meng T, Wang Z, Yuan T, et al. Gram-scale synthesis of highly efficient rare-earth-element-free red/green/blue solid-state bandgap fluorescent carbon quantum rings for white light-emitting diodes. Angew Chem Int Ed. 2021; 60(30): 16343-16348.

[192]

Lu W, Qin X, Liu S, et al. Economical, green synthesis of fluorescent carbon nanoparticles and their use as probes for sensitive and selective detection of mercury(II) ions. Anal Chem. 2012; 84(12): 5351-5357.

[193]

Liu Y, Zhao Y, Zhang Y. One-step green synthesized fluorescent carbon nanodots from bamboo leaves for copper(II) ion detection. Sensor Actuator B Chem. 2014; 196: 647-652.

[194]

Wang L, Wang Y, Xu T, et al. Gram-scale synthesis of single-crystalline graphene quantum dots with superior optical properties. Nat Commun. 2014; 5(1):5357.

[195]

Fu R, Song H, Liu X, et al. Disulfide crosslinking-induced aggregation: towards solid-state fluorescent carbon dots with vastly different emission colors. Chin J Chem. 2023; 41(9): 1007-1014.

[196]

Zhu H, Wang X, Li Y, Wang Z, Yang F, Yang X. Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. Chem Commun. 2009; 2009(34): 5118-5120.

[197]

Feng J, Chen S, Yu Y-L, Wang J-H. Red-emission hydrophobic porphyrin structure carbon dots linked with transferrin for cell imaging. Talanta. 2020; 217:121014.

[198]

Khojiev S, Hojiyeva G, Tursunkulov O, et al. Red emissive upconversion carbon quantum dots modifying TiO2 for enhanced photocatalytic performance. ACS Appl Nano Mater. 2023; 6(16): 14669-14679.

[199]

Zhu L, Wu H, Xie S, Yang H, Shen D. Multicolor lignin-derived carbon quantum dots: controllable synthesis and photocatalytic applications. Appl Surf Sci. 2024; 662:160126.

[200]

Park SY, Lee HU, Park ES, et al. Photoluminescent green carbon nanodots from food-waste-derived sources: large-scale synthesis, properties, and biomedical applications. ACS Appl Mater Interfaces. 2014; 6(5): 3365-3370.

[201]

Dang H, Huang L-K, Zhang Y, Wang C-F, Chen S. Large-scale ultrasonic fabrication of white fluorescent carbon dots. Ind Eng Chem Res. 2016; 55(18): 5335-5341.

[202]

Kim J, Suh JS. Size-controllable and low-cost fabrication of graphene quantum dots using thermal plasma jet. ACS Nano. 2014; 8(5): 4190-4196.

[203]

Zhang Z, Chen X, Fang G, Wu J, Gao A. Self-carbonization synthesis of highly-bright red/near-infrared carbon dots by solvent-free method. J Mater Chem C. 2022; 10(8): 3153-3162.

[204]

Liu R, Wu D, Liu S, Koynov K, Knoll W, Li Q. An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers. Angew Chem Int Ed. 2009; 48(25): 4598-4601.

[205]

Cui L, Ren X, Sun M, Liu H, Xia L. Carbon dots: synthesis, properties and applications. Nanomaterials. 2021; 11(12):3419.

[206]

Ren X, Zhang F, Guo B, Gao N, Zhang X. Synthesis of N-doped micropore carbon quantum dots with high quantum yield and dual-wavelength photoluminescence emission from biomass for cellular imaging. Nanomaterials. 2019; 9(4):495.

[207]

Rocco D, Moldoveanu VG, Feroci M, Bortolami M, Vetica F. Electrochemical synthesis of carbon quantum dots. Chemelectrochem. 2023; 10(3):e202201104.

[208]

Soni H, Pamidimukkala PS. Green synthesis of N, S co-doped carbon quantum dots from triflic acid treated palm shell waste and their application in nitrophenol sensing. Mater Res Bull. 2018; 108: 250-254.

[209]

Zhang Z, Song S, Ding Y, et al. Ultrasonic enhanced liquid-liquid interfacial reaction for improving the synthesis of Iron-doped carbon dots (Fe-CDs) for achieving superior photocatalytic performance. J Colloid Interface Sci. 2024; 669: 816-824.

[210]

Rong M-C, Zhang K-X, Wang Y-R, Chen X. The synthesis of B, N-carbon dots by a combustion method and the application of fluorescence detection for Cu2+. Chin Chem Lett. 2017; 28(5): 1119-1124.

[211]

Mao X, Zhao X, Hu H, et al. One-step hydrothermal method synthesized pH-dependent carbon dots for multistage anti-counterfeiting. Spectrochim Acta Mol Biomol Spectrosc. 2023; 303:123257.

[212]

Zhou J, Booker C, Li R, et al. An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs). J Am Chem Soc. 2007; 129(4): 744-745.

[213]

Zhu J, Zhu M, Zhang R, He Z, Xiong L, Guo L. Corrosion inhibition behavior of electrochemically synthesized carbon dots on Q235 carbon steel. J Adhes Sci Technol. 2023; 37(13): 1997-2009.

[214]

Luo B, Yang H, Zhou B, et al. Facile synthesis of luffa sponge activated carbon fiber based carbon quantum dots with green fluorescence and their application in Cr(VI) determination. ACS Omega. 2020; 5(10): 5540-5547.

[215]

Wang Y, Yang Z, Zhang C, et al. Fabricating carbon quantum dots of graphitic carbon nitride vis ultrasonic exfoliation for highly efficient H2O2 production. Ultrason Sonochem. 2023; 99:106582.

[216]

Bian Z, Wallum A, Mehmood A, et al. Properties of carbon dots versus small molecules from “bottom-up” synthesis. ACS Nano. 2023; 17(22): 22788-22799.

[217]

Zhang S, Zhang L, Huang L, et al. Study on the fluorescence properties of carbon dots prepared via combustion process. J Lumin. 2019; 206: 608-612.

[218]

Murru C, Badía-Laíño R, Díaz-García ME. Synthesis and characterization of green carbon dots for scavenging radical oxygen species in aqueous and oil samples. Antioxidants. 2020; 9(11):1147.

[219]

Šafranko S, Stanković A, Hajra S, et al. Preparation of multifunctional N-doped carbon quantum dots from citrus clementina peel: investigating targeted pharmacological activities and the potential application for Fe3+ Sensing. Pharmaceuticals. 2021; 14(9):857.

[220]

Dimos K. Carbon quantum dots: surface passivation and functionalization. Curr Org Chem. 2016; 20(6): 682-695.

[221]

Mikhail MM, Ahmed HB, Abdallah AEM, El-Shahat M, Emam HE. Surface passivation of carbon dots for tunable biological performance. J Fluoresc. 2024.

[222]

Mewada A, Vishwakarma R, Zhu R, Umeno M. Carbon-dot doped, transfer-free, low-temperature, high mobility graphene using microwave plasma CVD. RSC Adv. 2022; 12(32): 20610-20617.

[223]

Lan M, Zhao S, Wu S, et al. Optically tunable fluorescent carbon nanoparticles and their application in fluorometric sensing of copper ions. Nano Res. 2019; 12(10): 2576-2583.

[224]

Gencer O, Çeven ÖF, Ünlü C. Triggering excitation independent fluorescence in zinc(II) incorporated carbon dots: surface passivation of carbon dots with zinc(II) ions by microwave assisted synthesis methods. Diam Relat Mater. 2022; 123:108874.

[225]

Pappalardo JS, Macairan J-R, Macina A, et al. Effects of polydopamine-passivation on the optical properties of carbon dots and its potential use in vivo. Phys Chem Chem Phys. 2020; 22(29): 16595-16605.

[226]

Rao X, Yuan M, Jiang H, Li L, Liu Z. A universal strategy to obtain chiroptical carbon quantum dots through the optically active surface passivation procedure. New J Chem. 2019; 43(35): 13735-13740.

[227]

Ayaz F, Alas MO, Genc R. Differential immunomodulatory effect of carbon dots influenced by the type of surface passivation agent. Inflammation. 2020; 43(2): 777-783.

[228]

Tejwan N, Saini AK, Sharma A, Singh TA, Kumar N, Das J. Metal-doped and hybrid carbon dots: a comprehensive review on their synthesis and biomedical applications. J Contr Release. 2021; 330: 132-150.

[229]

Shang R, Steinmann SN, Xu B-Q, Sautet P. Mononuclear Fe in N-doped carbon: computational elucidation of active sites for electrochemical oxygen reduction and oxygen evolution reactions. Catal Sci Technol. 2020; 10(4): 1006-1014.

[230]

Fu Q, Sun S, Li N, Lu K, Dong Z. Based on halogen-doped carbon dots: a review. Mater Today Chem. 2023; 34:101769.

[231]

Chen S, Liu X, Li S, et al. Impact of nitrogen doping on the polarization properties of carbon quantum dots. Opt Mater. 2024; 149:115034.

[232]

Holá K, Sudolská M, Kalytchuk S, et al. Graphitic nitrogen triggers red fluorescence in carbon dots. ACS Nano. 2017; 11(12): 12402-12410.

[233]

Rahmawati I, Indriyati , Permatasari FA, et al. Modulating photothermal properties of carbon dots through nitrogen incorporation enables efficient solar water evaporation. ACS Appl Nano Mater. 2023; 6(4): 2517-2526.

[234]

Zhang J, Guan L, Luo T, et al. Fluorine doping induced fluorescence emission redshift of CDs. J Mol Struct. 2024; 1307:138003.

[235]

Wang J, Xu M, Wang D, et al. Copper-doped carbon dots for optical bioimaging and photodynamic therapy. Inorg Chem. 2019; 58(19): 13394-13402.

[236]

Tian B, Liu S, Feng L, et al. Renal-clearable nickel-doped carbon dots with boosted photothermal conversion efficiency for multimodal imaging-guided cancer therapy in the second near-infrared biowindow. Adv Funct Mater. 2021; 31(26):2100549.

[237]

Jiang L, Ding H, Xu M, et al. UV-Vis-NIR full-range responsive carbon dots with large multiphoton absorption cross sections and deep-red fluorescence at nucleoli and in vivo. Small. 2020; 16(19):2000680.

[238]

Meng L, Wu H. Preparation of carbon quantum dots and their application in the detection of vitamin B2. RSC Adv. 2024; 14(22): 15499-15506.

[239]

Das S, Sankar Mondal U, Paul S. Highly fluorescent metal doped carbon quantum dots prepared from hen feather demonstrating pH-dependent dual sensing of 4-nitrophenol and Hg2+ ion. Appl Surf Sci. 2023; 638:157998.

[240]

Ru Y, Waterhouse GIN, Lu S. Aggregation in carbon dots. Aggregate. 2022; 3(6):e296.

[241]

Xu W, Zeng F, Han Q, Peng Z. Recent advancements of solid-state emissive carbon dots: a review. Coord Chem Rev. 2024; 498:215469.

[242]

Song S-Y, Liu K-K, Cao Q, et al. Ultraviolet phosphorescent carbon nanodots. Light Sci Appl. 2022; 11(1):146.

[243]

Zheng G, Wang T, Lou Q, et al. Localized excitonic electroluminescence from carbon nanodots. J Phys Chem Lett. 2022; 13(6): 1587-1595.

[244]

Song D, Xu W, Luo M, et al. Influence of carbon nano-dots in water on sonoluminescence. Nanoscale. 2021; 13(33): 14130-14138.

[245]

Jiang K, Hu S, Wang Y, Li Z, Lin H. Photo-stimulated polychromatic room temperature phosphorescence of carbon dots. Small. 2020; 16(31):2001909.

[246]

Liu Y, Wang B, Zhang Y, et al. Perylenedioic acid-derived carbon dots with near 100% quantum yield in aqueous solution for lasing and lighting. Adv Funct Mater. 2024; 34(36):2401353.

[247]

Tian L, Li Z, Wang P, Zhai X, Wang X, Li T. Carbon quantum dots for advanced electrocatalysis. J Energy Chem. 2021; 55: 279-294.

[248]

Ding K, Ye Y, Hu J, et al. Aerophilic triphase interface tuned by carbon dots driving durable and flexible rechargeable Zn-air batteries. Nano-Micro Lett. 2023; 15(1):28.

[249]

Yang J, Zhang F, Chen J. Structural design and application of fiber-based electrocatalytic materials. China Powder Sci Technol. 2024; 30(4): 161-170.

[250]

Xiang Y, Xu L, Yang L, et al. Natural stibnite for lithium-/sodium-ion batteries: carbon dots evoked high initial coulombic efficiency. Nano-Micro Lett. 2022; 14(1):136.

[251]

Liu Z, Sun B, Zhang Y, Zhang Q, Fan L. Polymer-adjusted zinc anode towards high-performance aqueous zinc ion batteries. Prog Polym Sci. 2024; 152:101817.

[252]

Xu J, Li H, Jin Y, et al. Understanding the electrical mechanisms in aqueous zinc metal batteries: from electrostatic interactions to electric field regulation. Adv Mater. 2024; 36(3):2309726.

[253]

Xu J, Lv W, Yang W, et al. In situ construction of protective films on Zn metal anodes via natural protein additives enabling high-performance zinc ion batteries. ACS Nano. 2022; 16(7): 11392-11404.

[254]

Shi M, Zhu H, Chen C, Jiang J, Zhao L, Yan C. Synergistically coupling of graphene quantum dots with Zn-intercalated MnO2 cathode for high-performance aqueous Zn-ion batteries. Int J Miner Metall Mater. 2022; 30(1): 25-32.

[255]

Deng S, Tie Z, Yue F, Cao H, Yao M, Niu Z. Rational design of ZnMn2O4 quantum dots in a carbon framework for durable aqueous zinc-ion batteries. Angew Chem Int Ed. 2022; 61(12):e202115877.

[256]

Yan J, Ang EH, Yang Y, et al. High-voltage zinc-ion batteries: design strategies and challenges. Adv Funct Mater. 2021; 31(22):2010213.

[257]

Qin D, Ding J, Liang C, et al. Addressing challenges and enhancing performance of manganese-based cathode materials in aqueous zinc-ion batteries. Acta Phys - Chim Sin. 2024; 0(0):2310034.

[258]

Guo R, Ni L, Zhang H, et al. MnO2 nanowires anchored with graphene quantum dots for stable aqueous zinc-ion batteries. ACS Appl Energy Mater. 2021; 4(10): 10940-10947.

[259]

Wu L, Li X, Lu G, Wang Y, Zhang Z. Carbon quantum dot-assisted VO2(D) welding on holey graphene for zinc-ion battery cathode materials. J Electroanal Chem. 2024; 953:118006.

[260]

Wu T-H, Chen J-A, Su J-H, Ting Y-H. Decorating carbon quantum dots onto VO2 nanorods to boost electron and ion transport kinetics for high-performance zinc-ion batteries. J Energy Storage. 2023; 74:109340.

[261]

Xue Y, Zhou H, Ji Z, et al. In-situ coupling of N-doped carbon dots with manganese hexacyanoferrate as a cathode material for aqueous zinc-ion batteries. Appl Surf Sci. 2023; 633:157580.

[262]

Han W, Lee H, Liu Y, et al. Toward highly reversible aqueous zinc-ion batteries: nanoscale-regulated zinc nucleation via graphene quantum dots functionalized with multiple functional groups. Chem Eng J. 2023; 452:139090.

[263]

Tang B, Shan L, Liang S, Zhou J. Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ Sci. 2019; 12(11): 3288-3304.

[264]

Li Y, Zhao J, Hu Q, et al. Prussian blue analogs cathodes for aqueous zinc ion batteries. Mater Today Energy. 2022; 29:101095.

[265]

Ding S, Wang H, Dai X, et al. Mn-modulated Co-N-C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chin J Struct Chem. 2024; 34(7):100302.

[266]

Liu W, Liu W, Hou T, et al. Coupling Co-Ni phosphides for energy-saving alkaline seawater splitting. Nano Res. 2024; 17(6): 4797-4806.

[267]

Ma J, Huang F, Xu A, et al. Three-phase-heterojunction Cu/Cu2O-Sb2O3 catalyst enables efficient CO2 electroreduction to CO and high-performance aqueous Zn-CO2 battery. Adv Sci. 2024; 11(16):2306858.

[268]

Liu X, Chen M, Ma J, et al. Advances in the synthesis strategies of carbon-based single⁃atom catalysts and their electrochemical applications. China Powder Sci Technol. 2024; 30(5): 35-45.

[269]

Ji Y, Yu Z, Yan L, Song W. Research progress in preparation, modification and application of biomass-based single-atom catalysts. China Powder Sci Technol. 2023; 29(4): 100-107.

[270]

Zhang C, Xu H, Wang Y, et al. Research progress on preparation and application of polyaniline and its composite materials. China Powder Sci Technol. 2023; 29(5): 70-80.

[271]

Cai H, Zhang P, Li B, Zhu Y, Zhang Z, Guo W. High-entropy oxides for energy-related electrocatalysis. Mater Today Catal. 2024; 4:100039.

[272]

Liu W, Tang J, Kong C, et al. A p-block dopant enables energy-efficient hydrogen production from biomass. Chem Commun. 2024; 60(38): 5058-5061.

[273]

Xu J, Han P, Jin Y, et al. Hybrid molecular sieve-based interfacial layer with physical confinement and desolvation effect for dendrite-free zinc metal anodes. ACS Nano. 2024; 18(28): 18592-18603.

[274]

Wang T, Zhang Y, You J, Hu F. Recent progress in aqueous zinc-ion batteries: from fundamentalscience to structure design. Chem Rec. 2023; 23(5):e202200309.

[275]

Zhang H, Li S, Xu L, et al. High-yield carbon dots interlayer for ultra-stable zinc batteries. Adv Energy Mater. 2022; 12(26):2200665.

[276]

Liu Y, Lu X, Lai F, et al. Rechargeable aqueous Zn-based energy storage devices. Joule. 2021; 5(11): 2845-2903.

[277]

Xu Z, Li H, Liu Y, et al. Durable modulation of Zn(002) plane depositionviareproducible zincophilic carbon quantum dots towards low N/P ratio zinc-ion batteries. Mater Horiz. 2023; 10(9): 3680-3693.

[278]

Song TB, Huang ZH, Zhang XR, Ni JW, Xiong HM. Nitrogen doped and sulfonated carbon dots as a multifunctional additive to realize highly reversible aqueous zinc ion batteries. Small. 2023; 19(31):2205558.

[279]

Zhang W, Dong M, Jiang K, et al. Self-repairing interphase reconstructed in each cycle for highly reversible aqueous zinc batteries. Nat Commun. 2022; 13(1):5348.

[280]

Zhang H, Guo R, Li S, et al. Graphene quantum dots enable dendrite-free zinc ion battery. Nano Energy. 2022; 92:106752.

[281]

Wang D, Zhao D, Chen M, et al. In-situ constructed solvated carbon quantum dot clusters to achieve uniform Zn plating in aqueous zinc ion batteries. J Power Sources. 2024; 602:234244.

[282]

Zhang J, Zhao Z, Yang Z, et al. A high-performance zinc anode enabled by carbon quantum dots with H2O-structure-regulating capabilities. Energy Storage Mater. 2023; 61:102904.

[283]

Wang H, Zhou A, Hu X, et al. Bifunctional dynamic adaptive interphase reconfiguration for zinc deposition modulation and side reaction suppression in aqueous zinc ion batteries. ACS Nano. 2023; 17(12): 11946-11956.

[284]

Du F, Wu F, Ma L, et al. A review on advanced optimization strategies of separators for aqueous zinc-ion batteries. Funct Mater Lett. 2023; 16(08):2340017.

[285]

Huang J-Q, Chong WG, Zhang B. Tackling the challenges of aqueous Zn-ion batteries via functional separator design. J Power Sources. 2024; 594:234036.

[286]

Huang D, Zhou X, Liu L, et al. Improved electrochemical performance of aqueous zinc-ion batteries with modified glass fiber separator by Ketjen Black. Colloids Surf A Physicochem Eng Asp. 2023; 663:130991.

[287]

Lu G, Meng G, Liu Q, et al. Advanced strategies for solid electrolyte interface design with MOF materials. Adv Powder Mater. 2024; 3(1):100154.

[288]

Wang Z, Yan Y, Zhang Y, et al. Single-atomic Co-B2N2 sites anchored on carbon nanotube arrays promote lithium polysulfide conversion in lithium-sulfur batteries. Carbon Energy. 2023; 5(11):e306.

[289]

Pang Q, Li J, Yan L. Research progress of photothermal material-wood evaporators for solar-driven interfacial evaporation. China Powder. Sci Technol. 2024; 30(1): 90-102.

[290]

Su C, Gao X, Liu K, et al. From lab to market: a review of commercialization and advances for binders in lithium-zinc-sodium-ion batteries. Nano Res Energy. 2024; 3(1):e9120094.

RIGHTS & PERMISSIONS

2024 The Author(s). EcoEnergy published by John Wiley & Sons Australia, Ltd on behalf of China Chemical Safety Association.

AI Summary AI Mindmap
PDF

25

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/