Topological electride Hf2Se: Enhanced hydrogen evolution reaction activity from nontrivial topological Fermi arc

Weizhen Meng , Jiayu Jiang , Hongbo Wu , Yalong Jiao , Xiaoming Zhang , Zhenxiang Cheng , Xiaotian Wang

EcoEnergy ›› 2025, Vol. 3 ›› Issue (2) : 432 -440.

PDF
EcoEnergy ›› 2025, Vol. 3 ›› Issue (2) : 432 -440. DOI: 10.1002/ece2.82
RESEARCH ARTICLE

Topological electride Hf2Se: Enhanced hydrogen evolution reaction activity from nontrivial topological Fermi arc

Author information +
History +
PDF

Abstract

Recently, the emergence of topological electride catalysts has attracted significant attention in the fields of condensed matter physics, chemistry, and materials science. In this study, we found that electride Hf2Se exhibits various types of topological quantum states under the constraint of symmetric operations, particularly the Weyl point (WP) located at the K valley. The WP is closely aligned with the Fermi level and generates an extensive Fermi arc surface state on the (001) surface. In addition, electride Hf2Se exhibits a lower work function on the (001) surface. Remarkably, electride Hf2Se exhibits extremely high stability in both air and water environments. The catalytic activity of electride Hf2Se for hydrogen evolution reaction (HER) was significantly improved by utilizing its robust surface state and low work function. Therefore, we provide a new insight into the application of electrides in HER.

Keywords

inorganic electrides / topological catalysis / topological semimetals

Cite this article

Download citation ▾
Weizhen Meng, Jiayu Jiang, Hongbo Wu, Yalong Jiao, Xiaoming Zhang, Zhenxiang Cheng, Xiaotian Wang. Topological electride Hf2Se: Enhanced hydrogen evolution reaction activity from nontrivial topological Fermi arc. EcoEnergy, 2025, 3(2): 432-440 DOI:10.1002/ece2.82

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hosono H, Kitano M. Advances in materials and applications of inorganic electrides. Chem Rev. 2021; 121(5): 3121-3185.

[2]

Meng W, Wang J, Xiaotian W, et al. Multi-dimensional inorganic electrides for energy conversion and storage. J Mater Chem A. 2024; 12(5): 2583-2604.

[3]

Zhang X, Yang G. Recent advances and applications of inorganic electrides. J Phys Chem Lett. 2020; 11(10): 3841-3852.

[4]

Wang J, Hanzawa K, Hiramatsu H, et al. Exploration of stable strontium phosphide-based electrides: theoretical structure prediction and experimental validation. J Am Chem Soc. 2017; 139(44): 15668-15680.

[5]

Zhang X, Xiao Z, Lei H, et al. Two-dimensional transition-metal electride Y2C. Chem Mater. 2014; 26(22): 6638-6643.

[6]

Toda Y, Kubota Y, Hirano M, Hirayama H, Hosono H. Surface of room-temperature-stable electride [Ca24Al28O64]4+(e)4: preparation and its characterization by atomic-resolution scanning tunneling microscopy. ACS Nano. 2011; 5(3): 1907-1914.

[7]

Lee K, Kim SW, Toda Y, Matsuishi S, Hosono H. Dicalcium nitride as a two-dimensional electride with an anionic electron layer. Nature. 2013; 494(7437): 336-340.

[8]

Lee SY, Lim DC, Khan MS, et al. Magnetic quasi-atomic electrons driven reversible structural and magnetic transitions between electride and its hydrides. Nat Commun. 2023; 14(1):5469.

[9]

Zhao S, Li Z, Yang J. Obtaining two-dimensional electron gas in free space without resorting to electron doping: an electride based design. J Am Chem Soc. 2014; 136(38): 13313-13318.

[10]

Hirayama M, Matsuishi S, Hosono H, Murakami S. Electrides as a new platform of topological materials. Phys Rev X. 2018; 8(3):031067.

[11]

Nie S, Bernevig BA, Wang Z. Sixfold excitations in electrides. Phys Rev Res. 2021; 3(1):L012028.

[12]

Li W, Liu C, Gu C, Choi JH, Wang S, Jiang J. Interlayer charge transfer regulates single-atom catalytic activity on electride/graphene 2D heterojunctions. J Am Chem Soc. 2023; 145(8): 4774-4783.

[13]

Lu Y, Li J, Tada T, et al. Water durable electride Y5Si3: electronic structure and catalytic activity for ammonia synthesis. J Am Chem Soc. 2016; 138(12): 3970-3973.

[14]

Li K, Gong Y, Wang J, Hosono H. Electron-deficient-type electride Ca5Pb3: extension of electride chemical space. J Am Chem Soc. 2021; 143(23): 8821-8828.

[15]

Hua E, Choi S, Ren S, et al. Negatively charged platinum nanoparticles on dititanium oxide electride for ultra-durable electrocatalytic oxygen reduction. Energy Environ Sci. 2023; 16(10): 4464-4473.

[16]

Zhu Q, Frolov T, Choudhary K. Computational discovery of inorganic electrides from an automated screening. Matter. 2019; 1(5): 1293-1303.

[17]

Zhang X, Meng W, Liu Y, Dai X, Kou L. Magnetic electrides: high-throughput material screening, intriguing properties, and applications. J Am Chem Soc. 2023; 145(9): 5523-5535.

[18]

Burton LA, Ricci F, Chen W, Rignanese GM, Hautier G. High-throughput identification of electrides from all known inorganic materials. Chem Mater. 2018; 30(21): 7521-7526.

[19]

Kang SH, Bang J, Chung K, et al. Water-and acid-stable self-passivated dihafnium sulfide electride and its persistent electrocatalytic reaction. Sci Adv. 2020; 6(23):eaba7416.

[20]

Kang SH, Thapa D, Regmi B, et al. Chemically stable low-dimensional electrides in transition metal-rich monochalcogenides: theoretical and experimental explorations. J Am Chem Soc. 2022; 144(10): 4496-4506.

[21]

Li G, Felser C. Heterogeneous catalysis at the surface of topological materials. Appl Phys Lett. 2020; 116(7):070501.

[22]

Wang L, Yang Y, Wang J, et al. Excellent catalytic performance toward the hydrogen evolution reaction in topological semimetals. EcoMat. 2023; 5(4):e12316.

[23]

Luo H, Yu P, Li G, Yan K. Topological quantum materials for energy conversion and storage. Nat Rev Phys. 2022; 4(9): 611-624.

[24]

Zhang X, Wang X, He T, et al. Magnetic topological materials in two-dimensional: theory, materials realization and application prospects. Sci Bull. 2023; 68(21): 2639-2657.

[25]

Zhang X, Wang L, Li M, et al. Topological surface state: universal catalytic descriptor in topological catalysis. Mater Today. 2023; 67: 23-32.

[26]

Meng W, Zhang X, Liu Y, et al. Multifold fermions and Fermi arcs boosted catalysis in nanoporous electride 12CaO· 7Al2O3. Adv Sci. 2023; 10(6):2205940.

[27]

Yang Q, Li G, Manna K, Fan F, Felser C, Sun Y. Topological engineering of Pt-group-metal-based chiral crystals toward high-efficiency hydrogen evolution catalysts. Adv Mater. 2020; 32(14):1908518.

[28]

Kong X, Jiang T, Gao J, et al. Development of a Ni-doped VAl3 topological semimetal with a significantly enhanced HER catalytic performance. J Phys Chem Lett. 2021; 12(15): 3740-3748.

[29]

He Z, Wang L, Liu Y, et al. Nodal chain semimetal Co2MnGa: a magnetic catalyst with topological significance. Chem Eng J. 2023; 481:148123.

[30]

Bradlyn B, Elcoro L, Cano J, et al. Topological quantum chemistry. Nature. 2017; 547(7663): 298-305.

[31]

Wang J, Sui X, Gao S, Duan W, Liu F, Huang B. Anomalous Dirac plasmons in 1D topological electrides. Phys Rev Lett. 2019; 123(20):206402.

[32]

Liu S, Wang C, Liu L, et al. Ferromagnetic Weyl fermions in two-dimensional layered electride Gd2C. Phys Rev Lett. 2020; 125(18):187203.

[33]

Meng W, Zhang X, Liu Y, Dai X. Antiferromagnetism caused by excess electrons and multiple topological electronic states in the electride Ba4Al5·e-. Phys Rev B. 2021; 104(19):195145.

[34]

Zhang X, Guo R, Jin L, Dai X, Liu G. Intermetallic Ca3Pb: a topological zero-dimensional electride material. J Mater Chem C. 2018; 3: 575-581.

[35]

Huang H, Jin K, Zhang S, Liu F. Topological electride Y2C. Nano Lett. 2018; 18(3): 1972-1977.

[36]

Park C, Kim SW, Yoon M. First-principles prediction of new electrides with nontrivial band topology based on one-dimensional building blocks. Phys Rev Lett. 2018; 120(2):026401.

[37]

Liu S, Wang C, Jeon H, Jia Y, Cho JH. Emerging two-dimensional magnetism in nonmagnetic electrides Hf2X (X= S, Se, Te). Phys Rev B. 2022; 105(22):L220401.

[38]

Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B. 1999; 59(3): 1758-1775.

[39]

Blöchl PE. Projector augmented-wave method. Phys Rev B. 1994; 50(24): 17953-17979.

[40]

Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996; 77(18): 3865-3868.

[41]

Marzari N, Vanderbilt D. Maximally localized generalized Wannier functions for composite energy bands. Phys Rev B. 1997; 56(20): 12847-12865.

[42]

Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B. 1990; 41(11): 7892-7895.

[43]

Sancho MPL, Sancho JML, Sancho JML, Rubio J. Highly convergent schemes for the calculation of bulk and surface Green functions. J Phys F Met Phys. 1985; 15(4): 851-858.

[44]

Wang X, Qiu X, Sun C, et al. Layered transition metal electride Hf2Se with coexisting two-dimensional anionic d-electrons and Hf-Hf metallic bonds. Chin Phys Lett. 2021; 38(1):017302.

[45]

Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A. 1976; 32(5): 751-767.

[46]

Weaver SM, Sundberg JD, Slamowitz CC, et al. Counting electrons in electrides. J Am Chem Soc. 2023; 145(48): 26472-26476.

[47]

Huang H, Liu J, Vanderbilt D, Duan W. Topological nodal-line semimetals in alkaline-earth stannides, germanides, and silicides. Phys Rev B. 2016; 93(20):201114.

[48]

Weber SF, Griffin SM, Neaton JB. Topological semimetal features in the multiferroic hexagonal manganites. Phys Rev Mater. 2019; 3(6):064206.

[49]

Slot MR, Gardenier TS, Jacobse PH, et al. Experimental realization and characterization of an electronic Lieb lattice. Nat Phys. 2017; 13(7): 672-676.

[50]

Telychko M, Li G, Mutombo P, et al. Ultrahigh-yield on-surface synthesis and assembly of circumcoronene into a chiral electronic Kagome-honeycomb lattice. Sci Adv. 2021; 7(3):eabf0269.

[51]

Meng W, Wu H, Jiao Y, et al. Honeycomb electron lattice induced Dirac fermion with trigonal warping in bilayer electrides. Small. 2023; 20(20):2309962.

[52]

Rajamathi CR, Gupta U, Kumar N, et al. Weyl semimetals as hydrogen evolution catalysts. Adv Mater. 2017; 29(19):1606202.

[53]

Ling C, Ouyang Y, Shi L, Yuan S, Chen Q, Wang J. Template-grown MoS2 nanowires catalyze the hydrogen evolution reaction: ultralow kinetic barriers with high active site density. ACS Catal. 2017; 7(8): 5097-5102.

[54]

Zhu S, Qin X, Xiao F, et al. The role of ruthenium in improving the kinetics of hydrogen oxidation and evolution reactions of platinum. Nat Catal. 2021; 4(8): 711-718.

[55]

Siddharthan E, Ghosh S, Thapa R. Bond exchange mechanism: unveiling the volmer-tafel pathway and an electronic descriptor for predicting hydrogen evolution reaction activity of borophene. ACS Appl Energy Mater. 2023; 6(17): 8941-8948.

[56]

Li G, Xu Q, Shi W, et al. Obstructed surface states as the descriptor for predicting catalytic active sites in inorganic crystalline materials. Sci Adv. 2019; 5:eaaw9867.

[57]

Li G, Xu Y, Song Z, et al. Obstructed surface states as the descriptor for predicting catalytic active sites in inorganic crystalline materials. Adv Mater. 2022; 34(26):2201328.

RIGHTS & PERMISSIONS

2024 The Author(s). EcoEnergy published by John Wiley & Sons Australia, Ltd on behalf of China Chemical Safety Association.

AI Summary AI Mindmap
PDF

17

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/