An eco-friendly Na-ion battery utilizing biowaste-derived carbon and birnessite with enhanced high voltage reaction
Gregorio F. Ortiz , Ruqin Ma , Mingzeng Luo , Li Yixiao , He Zhanning , Yu Su , Jiale Huang , Yong Yang , Zhanhua Wei
EcoEnergy ›› 2025, Vol. 3 ›› Issue (1) : 180 -191.
An eco-friendly Na-ion battery utilizing biowaste-derived carbon and birnessite with enhanced high voltage reaction
Trigonal birnessite (Na0.5MnO2·0.7H2O) with quasi-hexagonal-stacked particles is synthesized by a simple procedure. The MnO6 layers are expanded (ca. 7.1 Å as confirmed by HRTEM) by sodium ion and water molecules permitting the cyclability of the cathode up to 4.4 V without anionic redox effect. This particular phase exhibits sodium storage performance with 181.2 mA h g-1 reversible capacity, high Coulombic efficiency (99.8%), good rate performance (20-640 mA g-1), and 80% capacity retention over 200 cycles. X-ray adsorption near-edge structure (XANES) spectra at Mn-k edge confirmed that the main redox component is Mn3+/Mn4+. An environmental-friendly Na-ion full cell is assembled with this cathode and biowaste-derived carbon (obtained from trash of lemon peels) anode and provided ∼ 330 Wh kg-1 energy density (at the material's level) which is preserved at ∼71% over 200 cycles. Manganese, sodium, and carbon are cheap and eco-friendly materials for practical energy storage eagerly sought after in the industry.
agricultural waste / birnessite / citrus peels / hard carbon / manganese / sodium-ion battery
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
Statista. Lemon and lime production worldwide from 2000 to 2022. https://www.statista.com/statistics/577445/world-lemon-and-lime-production/ |
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
2024 The Author(s). EcoEnergy published by John Wiley & Sons Australia, Ltd on behalf of China Chemical Safety Association.
/
| 〈 |
|
〉 |