An eco-friendly Na-ion battery utilizing biowaste-derived carbon and birnessite with enhanced high voltage reaction

Gregorio F. Ortiz , Ruqin Ma , Mingzeng Luo , Li Yixiao , He Zhanning , Yu Su , Jiale Huang , Yong Yang , Zhanhua Wei

EcoEnergy ›› 2025, Vol. 3 ›› Issue (1) : 180 -191.

PDF
EcoEnergy ›› 2025, Vol. 3 ›› Issue (1) : 180 -191. DOI: 10.1002/ece2.77
RESEARCH ARTICLE

An eco-friendly Na-ion battery utilizing biowaste-derived carbon and birnessite with enhanced high voltage reaction

Author information +
History +
PDF

Abstract

Trigonal birnessite (Na0.5MnO2·0.7H2O) with quasi-hexagonal-stacked particles is synthesized by a simple procedure. The MnO6 layers are expanded (ca. 7.1 Å as confirmed by HRTEM) by sodium ion and water molecules permitting the cyclability of the cathode up to 4.4 V without anionic redox effect. This particular phase exhibits sodium storage performance with 181.2 mA h g-1 reversible capacity, high Coulombic efficiency (99.8%), good rate performance (20-640 mA g-1), and 80% capacity retention over 200 cycles. X-ray adsorption near-edge structure (XANES) spectra at Mn-k edge confirmed that the main redox component is Mn3+/Mn4+. An environmental-friendly Na-ion full cell is assembled with this cathode and biowaste-derived carbon (obtained from trash of lemon peels) anode and provided ∼ 330 Wh kg-1 energy density (at the material's level) which is preserved at ∼71% over 200 cycles. Manganese, sodium, and carbon are cheap and eco-friendly materials for practical energy storage eagerly sought after in the industry.

Keywords

agricultural waste / birnessite / citrus peels / hard carbon / manganese / sodium-ion battery

Cite this article

Download citation ▾
Gregorio F. Ortiz, Ruqin Ma, Mingzeng Luo, Li Yixiao, He Zhanning, Yu Su, Jiale Huang, Yong Yang, Zhanhua Wei. An eco-friendly Na-ion battery utilizing biowaste-derived carbon and birnessite with enhanced high voltage reaction. EcoEnergy, 2025, 3(1): 180-191 DOI:10.1002/ece2.77

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zeng X, Li M, Abd El-Hady D, et al. Commercialization of lithium battery technologies for electric vehicles. Adv Energy Mater. 2019; 9(27):1900161.

[2]

Schmuch R, Wagner R, Hörpel G, Placke T, Winter M. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat Energy. 2018; 3(4): 267-278.

[3]

Wu W, Liang J, Ye S, et al. Cu/Co binary-transition metal glycerolates as anode materials for lithium-ion batteries. EcoEnergy. 2024; 2(1): 169-180.

[4]

Nayak PK, Yang L, Brehm W, Adelhelm P. From lithium-ion to sodium-ion batteries: advantages, challenges, and surprises. Angew Chem Int Ed. 2018; 57(1): 102-120.

[5]

Hwang JY, Myung ST, Sun YK. Sodium-ion batteries: present and future. Chem Soc Rev. 2017; 46(12): 3529-3614.

[6]

Zuo W, Liu R, Ortiz GF, et al. Sodium storage behavior of Na0.66Ni0.33˗xZnxMn0.67O2 (x = 0, 0.07 and 0.14) positive materials in diglyme-based electrolytes. J Power Sources. 2018; 400: 317-324.

[7]

Chen Y, Dong C, Chen L, et al. One stone two birds design for hollow spherical Na4Fe3(PO4)2P2O7/C cathode enabled high-performance sodium-ion batteries from iron rust. EcoMat. 2023; 5(10):e12393.

[8]

Lan X, Li Z, Zeng Y, Han C, Peng J, Cheng H.-M. Phosphorus-basedanodes for fast-charging alkali metal ion batteries. EcoMat. 2024; 6(5):e12452.

[9]

Delmas C. Sodium and sodium-ion batteries: 50 years of research. Adv Energy Mater. 2018; 8(17):1703137.

[10]

Gupta P, Pushpakanth S, Haider MA, Basu S. Understanding the design of cathode materials for Na-ion batteries. ACS Omega. 2022; 7: 5605-5614.

[11]

Zuo W, Innocenti A, Zarrabeitia M, Bresser D, Yang Y, Passerini S. Layered oxide cathodes for sodium-ion batteries: storage mechanism, electrochemistry, and techno-economics. Acc Chem Res. 2023; 56(3): 284-296.

[12]

Odoom-Wubah T, Rubio S, Tirado JL, et al. Waste Pd/Fish-Collagen as anode for energy storage. Renew Sustain Energy Rev. 2020; 131:109968.

[13]

Rubio S, Odoom-Wubah T, Li Q, et al. Marine shrimp/tin waste as a negative electrode for rechargeable sodium-ion batteries. J Clean Prod. 2022; 359:131994.

[14]

Zhang T, Mao J, Liu X, et al. Pinecone biomass-derived hard carbon anodes for high-performance sodium-ion batteries. RSC Adv. 2017; 7(66): 41504-41511.

[15]

Genier FS, Pathreeker S, Schuarca RL, Islam M, Hosein ID. Hard carbon derived from avocado peels as a high-capacity, fast Na+ diffusion anode material for sodium-ion batteries. ECS Adv. 2022; 1(3):030502.

[16]

Zhu X, Meng F, Zhang Q, et al. LiMnO2 cathode stabilized by interfacial orbital ordering for sustainable lithium-ion batteries. Nat Sustain. 2021; 4(5): 392-401.

[17]

Chen C, Huang W, Li Y, et al. P2/O3 biphasic Fe/Mn-based layered oxide cathode with ultrahigh capacity and great cyclability for sodium ion batteries. Nano Energy. 2021; 90:106504.

[18]

Li J, Hu H, Wang J, Xiao Y. Surface chemistry engineering of layered oxide cathodes for sodium-ion batteries. Carbon Neutralization. 2022; 1(2): 96-116.

[19]

Wang H, Gao X, Zhang S, et al. High-entropy Na-deficient layered oxides for sodium-ion batteries. ACS Nano. 2023; 17(13): 12530-12543.

[20]

Zuo W, Qiu J, Liu X, et al. The stability of P2-layered sodium transition metal oxides in ambient atmospheres. Nat Commun. 2020; 11(1):3544.

[21]

Zuo W, Liu X, Qiu J, et al. Engineering Na+-layer spacings to stabilize Mn-based layered cathodes for sodium-ion batteries. Nat Commun. 2021; 12(1):4903.

[22]

Liu X, Zhong G, Xiao Z, et al. Al and Fe-containing Mn-based layered cathode with controlled vacancies for high-rate sodium ion batteries. Nano Energy. 2020; 76:104997.

[23]

Li Y, Yang Z, Xu S, et al. Air-stable copper-based P2-Na7/9Cu2/9Fe1/9Mn2/3O2 as a new positive electrode material for sodium-ion batteries. Adv Sci. 2015; 2(6):1500031.

[24]

Kumakura S, Tahara Y, Sato S, Kubota K, Komaba S. P’2-Na2/3Mn0.9Me0.1O2 (me= Mg, Ti, Co, Ni, Cu, and Zn): correlation between orthorhombic distortion and electrochemical property. Chem Mater. 2017; 29(21): 8958-8962.

[25]

Zhao Q, Wang R, Gao M, et al. Interfacial engineering of the layered oxide cathode materials for sodium-ion battery. Nano Res. 2024; 17(3): 1441-1464.

[26]

Yabuuchi N, Yoshida H, Komaba S. Crystal structures and electrode performance of alpha-NaFeO2 for rechargeable sodium batteries. Electrochemistry. 2012; 80(10): 716-719.

[27]

Tang Z, Zhang R, Wang H, et al. Revealing the closed pore formation of waste wood-derived hard carbon for advanced sodium-ion battery. Nat Commun. 2023; 14(1):6024.

[28]

Surya K, Michael MS. Hierarchical porous activated carbon prepared from biowaste of lemon peel for electrochemical double layer capacitors. Biomass Bioenergy. 2021; 152:106175.

[29]

Huang S, Qiu X, Wang C, et al. Biomass-derived carbon anodes for sodium-ion batteries. N Carbon Mater. 2023; 38(1): 40-66.

[30]

Lee ME, Kwak HW, Jin HJ, Yun YS. Waste beverage coffee-induced hard carbon granules for sodium-ion batteries. ACS Sustainable Chem Eng. 2019; 7(15): 12734-12740.

[31]

Liu P, Li Y, Hu YS, Li H, Chen L, Huang X. A waste biomass derived hard carbon as a high-performance anode material for sodium-ion batteries. J Mater Chem A. 2016; 4(34): 13046-13052.

[32]

Statista. Lemon and lime production worldwide from 2000 to 2022. https://www.statista.com/statistics/577445/world-lemon-and-lime-production/

[33]

Su D, Wang C, Ahn HJ, Wang G. Single crystalline Na0.7MnO2 nanoplates as cathode materials for sodium-ion batteries with enhanced performance. Chem Eur J. 2013; 19(33): 10884-10889.

[34]

Pamidi V, Trivedi S, Behara S, Fichtner M, Reddy MA. Micron-sized single-crystal cathodes for sodium-ion batteries. iScience. 2022; 25(5):104205.

[35]

Zhang XH, Pang WL, Wan F, et al. P2-Na2/3Ni1/3Mn5/9Al1/9O2 microparticles as superior cathode material for sodium-ion batteries: enhanced properties and mechanism via graphene connection. ACS Appl Mater Interfaces. 2016; 8(32): 20650-20659.

[36]

Yano H, Aimi A, Sakai N, Sasaki T, Fujimoto K. Single-crystal growth of layered birnessite-type manganese oxides and their delamination into MnO2 nanosheets. Cryst Growth Des. 2022; 22(1): 625-632.

[37]

Xia H, Zhu X, Liu J, et al. A monoclinic polymorph of sodium birnessite for ultrafast and ultrastable sodium ion storage. Nat Commun. 2018; 9(1):5100.

[38]

Nam KW, Kim S, Yang E, et al. Critical role of crystal water for a layered cathode material in sodium ion batteries. Chem Mater. 2015; 27(10): 3721-3725.

[39]

Bach S, Pereira-Ramos JP, Baffier N. Investigation of electrochemical lithium insertion in lamellar ternary oxides of the MxMnOy·zH2O group. J Power Sources. 1997; 68(2): 586-589.

[40]

Lanson B, Drits VA, Feng Q, Manceau A. Structure of synthetic Na-birnessite: evidence for a triclinic one-layer unit cell. Am Mineral. 2002; 87(11-12): 1662-1671.

[41]

Aldi KA, Cabana J, Sideris PJ, Grey CP. Investigation of cation ordering in triclinic sodium birnessite via 23Na MAS NMR spectroscopy. Am Mineral. 2012; 97(5-6): 883-889.

[42]

Ching S, Petrovay DJ, Jorgensen ML, Suib SL. Sol-gel synthesis of layered birnessite-type manganese oxides. Inorg Chem. 1997; 36(5): 883-890.

[43]

Jo MR, Kim Y, Yang J, et al. Triggered reversible phase transformation between layered and spinel structure in manganese-based layered compounds. Nat Commun. 2019; 10(1):3385.

[44]

Jiang N, Liu Q, Wang J, et al. Tailoring P2/P3 biphases of layered NaxMnO2 by Co substitution for high-performance sodium-ion battery. Small. 2021; 17(7):2007103.

[45]

Nanba Y, Iwao T, de Boisse BM, et al. Redox potential paradox in NaxMO2 for sodium-ion battery cathodes. Chem Mater. 2016; 28(4): 1058-1065.

[46]

Billaud J, Singh G, Armstrong AR, et al. Na0.67Mn1-xMgxO2 (0 ≤ x ≤ 0.2): a high capacity cathode for sodium-ion batteries. Energy Environ Sci. 2014; 7(4): 1387-1391.

[47]

Jiang K, Guo S, Pang WK, et al. Oxygen vacancy promising highly reversible phase transition in layered cathodes for sodium-ion batteries. Nano Res. 2021; 14(11): 4100-4106.

[48]

Shimono T, Tanabe D, Kobayashi W, Nitani H, Moritomo Y. Electronic state of P2-type NaxMO2 (M = Mn and Co) as investigated by in situ X-ray absorption spectroscopy. J Phys Soc Jpn. 2013; 82(12):124717.

[49]

Croy JR, Iddir H, Gallagher K, Johnson CS, Benedek R, Balasubramanian M. First-charge instabilities of layered-layered lithium-ion-battery materials. Phys Chem Chem Phys. 2015; 17(37): 24382-24391.

[50]

Buchholz D, Li J, Passerini S, Aquilanti G, Wang D, Giorgetti M. X-ray absorption spectroscopy investigation of lithium-rich, cobalt-poor layered-oxide cathode material with high capacity. Chemelectrochem. 2015; 2(1): 85-97.

[51]

Li Y, Wang G, Wei T, Fan Z, Yan P. Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors. Nano Energy. 2016; 19: 165-175.

[52]

Jiang Y, He Z, Cui X, et al. Hierarchical porous carbon derived from coal tar pitch by one step carbonization and activation combined with a CaO template for supercapacitors. New J Chem. 2022; 46(13): 6078-6090.

[53]

Ghimbeu CM, Górka J, Simone V, Simonin L, Martinet S, Vix-Guterl C. Insights on the Na+ ion storage mechanism in hard carbon: discrimination between the porosity, surface functional groups and defects. Nano Energy. 2018; 44: 327-335.

[54]

Reddy MA, Helen M, Groß A, Fichtner M, Euchner H. Insight into sodium insertion and the storage mechanism in hard carbon. ACS Energy Lett. 2018; 3(12): 2851-2857.

[55]

Wu C, Yang Y, Zhang Y, et al. Hard carbon for sodium-ion batteries: progress, strategies and future perspective. Chem Sci. 2024; 15(17): 6244-6268.

[56]

Jache B, Adelhelm P. Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of Co-Intercalation phenomena. Angew Chem Int Ed. 2014; 53(38): 10169-10173.

[57]

Cabello M, Bai X, Chyrka T, et al. On the reliability of sodium Co-intercalation in expanded graphite prepared by different methods as anodes for sodium-ion batteries. J Electrochem Soc. 2017; 164(14): A3804-A3813.

[58]

Cabello M, Chyrka T, Klee R, et al. Treasure Na-ion anode from trash coke by adept electrolyte selection. J Power Sources. 2017; 347: 127-135.

[59]

Rubio S, Ruiz R, Zuo W, et al. Insights into the reaction mechanisms of nongraphitic high-surface porous carbons for application in Na- and Mg-ion batteries. ACS Appl Mater Interfaces. 2022; 14(38): 43127-43140.

[60]

Tebyetekerwa M, Duignan TT, Xu Z, Zhao XS. Rechargeable dual-carbon batteries: a sustainable battery technology. Adv Energy Mater. 2022; 12(44):2202450.

[61]

Toby BH, Von Dreele RB. GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J Appl Crystallogr. 2013; 46(2): 544-549.

RIGHTS & PERMISSIONS

2024 The Author(s). EcoEnergy published by John Wiley & Sons Australia, Ltd on behalf of China Chemical Safety Association.

AI Summary AI Mindmap
PDF

25

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/