Application and prospects of interface engineering in energy storage and conversion of graphdiyne-based materials

Juan An , Haohao Zhang , Yijie Wang , Zhen Kong , Wensi Li , Xing Gao , Jibin Song , Yancai Yao

EcoEnergy ›› 2025, Vol. 3 ›› Issue (1) : 77 -104.

PDF
EcoEnergy ›› 2025, Vol. 3 ›› Issue (1) : 77 -104. DOI: 10.1002/ece2.76
REVIEW

Application and prospects of interface engineering in energy storage and conversion of graphdiyne-based materials

Author information +
History +
PDF

Abstract

A new carbon allotrope, graphdiyne (GDY) has great promise for future use. Much interest was piqued when it was initially prepared in 2010. GDY is made up of sp- and sp2-hybridized carbon atoms. It has a one-atom thick two-dimensional structure and many interesting and useful qualities, such as strong chemical bonds, super-large π structures, the ability to change from an alkyne to an alkene, and can be grown on any surface. GDY has become one of the frontier hotspots in chemistry and materials science, with original research achievements in energy conversion and storage, catalysis, intelligent information, life sciences constantly emerging and so on, showing revolutionary performance. In electrochemical cells, the electrode interface content not only accounts for a small proportion in the entire electrode system but it also plays a crucial role, affecting the efficiency, lifespan, power performance, and safety performance of the battery. In view of this, the intrinsic properties of GDY have been thoroughly analyzed, and a new GDY-based electrochemical interface has been proposed by combining the key problems of electrochemical interfaces in electrochemical energy storage and conversion. This has led to new understanding and insights to address many critical scientific issues. In this review, the structure, characteristics, and applications of GDY in interface engineering are presented. In particular, recent advances in GDY and its aggregates in energy storage and conversion are summarized and discussed.

Keywords

electrochemical interfaces / energy storage and conversion / graphdiyne / sp and sp2-hybridized

Cite this article

Download citation ▾
Juan An, Haohao Zhang, Yijie Wang, Zhen Kong, Wensi Li, Xing Gao, Jibin Song, Yancai Yao. Application and prospects of interface engineering in energy storage and conversion of graphdiyne-based materials. EcoEnergy, 2025, 3(1): 77-104 DOI:10.1002/ece2.76

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Coleman J, Lotya M, O'Neill A, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science. 2011; 331(6017): 568-571.

[2]

Geim AK, Grigorieva IV. Van der Waals heterostructures. Nature. 2013; 499(7459): 419-425.

[3]

Nicolosi V, Chhowalla M, Kanatzidis M, Strano M, Coleman J. Liquid exfoliation of layered materials. Science. 2013; 340(6139):1420.

[4]

Wang Q, Kalantar-Zadeh K, Kis A, Coleman J, Strano M. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol. 2012; 7(11): 699-712.

[5]

Kong Z, Liang Z, Huang M, et al. Yolk-shell tin phosphides composites as superior reversibility and stability anodes for lithium/sodium ion batteries. J Alloys Compd. 2023; 930:167328.

[6]

Franklin A. Electronics the road to carbon nanotube transistors. Nature. 2013; 498(7455): 443-444.

[7]

Geim A, Novoselov K. The rise of graphene. Nat Mater. 2007; 6(3): 183-191.

[8]

Jariwala D, Sangwan V, Lauhon L, Marks T, Hersam M. Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chem Soc Rev. 2013; 42(7): 2824-2860.

[9]

Li G, Li Y, Liu H, Guo Y, Zhu D. Architecture of graphdiyne nanoscale films. Chem Commun. 2010; 46(19): 3256-3258.

[10]

Fang Y, Liu Y, Qi L, Xue Y, Li Y. 2D graphdiyne: an emerging carbon material. Chem Soc Rev. 2022; 51(7): 2681-2709.

[11]

Huang C, Li Y, Wang N, et al. Progress in research into 2D graphdiyne-based materials. Chem Rev. 2018; 118(16): 7744-7803.

[12]

Li H, Lim J, Lv Y, Kang B, Lee JY. Graphynes and graphdiynes for energy storage and catalytic utilization: theoretical insights into recent advances. Chem Rev. 2023; 123(8): 4795-4854.

[13]

Wang Z, Song C, Shen H, Ma S, Li G, Li Y. RuOx quantum dots loaded on graphdiyne for high-performance lithium-sulfur batteries. Adv Mater. 2024; 36(9):2307786.

[14]

Wang Y, An J, Qi L, et al. Synthesis of crystalline phosphine-graphdiyne with self-adaptive p-π conjugation. J Am Chem Soc. 2023; 145(2): 864-872.

[15]

Gao X, Liu H, Wang D, Zhang J. Graphdiyne: synthesis, properties, and applications. Chem Soc Rev. 2019; 48(3): 908-936.

[16]

An J, Zhang H, Qi L, Li G, Li Y. Self-expanding ion-transport channels on anodes for fast-charging lithium-ion batteries. Angew Chem Int Ed. 2022; 61(7):e202113313.

[17]

Zuo Z, Li Y. Emerging electrochemical energy applications of graphdiyne. Angew Chem Int Ed. 2019; 3(4): 899-903.

[18]

Xu Z, Yang J, Zhang T, Nuli Y, Wang J, Hirano S. Silicon microparticle anodes with self-healing multiple network binder. Joule. 2018; 2(5): 950-961.

[19]

Choi S, Kwon T-W, Coskun A, Choi J. Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries. Science. 2017; 357(6348): 279-283.

[20]

Chen S, Xue Y, Li Y, et al. Controlled synthesis of graphdiyne-based multiscale catalysts for energy conversion. Precis Chem. 2024; 2(7): 355-375.

[21]

An J, Wang F, Li G, Li Y. An ion-pumping interphase on graphdiyne/graphite heterojunction for fast-charging lithium-ion batteries. CCS Chem. 2024; 6(1): 110-124.

[22]

Chen X, Jiang X, Yang N. Graphdiyne electrochemistry: progress and perspectives. Small. 2022; 18(24):2201135.

[23]

Li J, Zhu L, Tung C-H, Wu L-Z. Engineering graphdiyne for solar photocatalysis. Angew Chem Int Ed. 2023; 62(22):e202301384.

[24]

Sheka E. Stretching and breaking of chemical bonds, correlation of electrons, and radical properties of covalent species. Adv Quant Chem. 2015; 70: 111-161.

[25]

Long M, Tang L, Wang D, Li Y, Shuai Z. Electronic structure and carrier mobility in graphdiyne sheet and nanoribbons: theoretical predictions. ACS Nano. 2011; 5(4): 2593-2600.

[26]

Narita N, Nagai S, Suzuki S, Nakao K. Electronic structure of three-dimensional graphyne. Phys Rev B. 2000; 62(16): 11146-11151.

[27]

Matsuoka R, Sakamoto R, Hoshiko K, et al. Crystalline graphdiyne nanosheets produced at a gas/liquid or liquid/liquid interface. J Am Chem Soc. 2017; 139(8): 3145-3152.

[28]

Gao X, Zhu Y, Yi D, et al. Ultrathin graphdiyne film on graphene through solution-phase van der Waals epitaxy. Sci Adv. 2018; 4(7):eaat6378.

[29]

Yue Q, Chang S, Kang J, Tan J, Qin S, Li J. Magnetic and electronic properties of α-graphyne nanoribbons. J Chem Phys. 2012; 136(24):244702.

[30]

Kang J, Li J, Wu F, et al. Elastic, electronic, and optical properties of two-dimensional graphyne sheet. J Phys Chem C. 2011; 115(42): 20466-20470.

[31]

Long M-Q, Tang L, Wang D, Wang L, Shuai Z. Theoretical predictions of size-dependent carrier mobility and polarity in graphene. J Am Chem Soc. 2009; 131(49): 17728-17729.

[32]

Cranford S, Buehler M. Mechanical properties of graphyne. Carbon. 2011; 49(13): 4111-4121.

[33]

Luo G, Qian X, Liu H, et al. Quasiparticle energies and excitonic effects of the two-dimensional carbon allotrope graphdiyne: theory and experiment. Phys Rev B. 2011; 84(7):075439.

[34]

Luo G, Zheng Q, Me W-N, Lu J, Nagase S. Structural, electronic, and optical properties of bulk graphdiyne. J Phys Chem C. 2013; 117(25): 13072-13079.

[35]

Obrovac M, Chevrier V. Alloy negative electrodes for Li-ion batteries. Chem Rev. 2014; 114(23): 11444-11502.

[36]

Ogata K, Jeon S, Ko D, et al. Evolving affinity between Coulombic reversibility and hysteretic phase transformations in nano-structured silicon-based lithium-ion batteries. Nat Commun. 2018; 9: 479.

[37]

Shang H, Zuo Z, Yu L, Wang F, He F, Li Y. Low-temperature growth of all-carbon graphdiyne on a silicon anode for high-performance lithium-ion batteries. Adv Mater. 2018; 30(27):1801459.

[38]

Li L, Zuo Z, Shang H, Wang F, Li Y. In-situ constructing 3D graphdiyne as all-carbon binder for high-performance silicon anode. Nano Energy. 2018; 53: 135-143.

[39]

Tabassum H, Zou R, Mahmood A, et al. A universal strategy for hollow metal oxide nanoparticles encapsulated into B/N co-doped graphitic nanotubes as high-performance lithium-ion battery anodes. Adv Mater. 2018; 30(8):1705441.

[40]

Peng L, Xiong P, Ma L, et al. Holey two-dimensional transition metal oxide nanosheets for efficient energy storage. Nat Commun. 2017; 8:15139.

[41]

AbdelHamid A, Mendoza-Garcia A, Lee S, Ying J. Metal oxide- and metal-loaded mesoporous carbon for practical high-performance Li-ion battery anodes. Nano Energy. 2024; 119:109025.

[42]

Ryu J, Han D-Y, Hong D, Park S. A polymeric separator membrane with chemoresistance and high Li-ion flux for high-energy-density lithium metal batteries. Energy Storage Mater. 2022; 45: 941-951.

[43]

Reddy M, Rao G, Chowdari B. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem Rev. 2013; 113(7): 5364-5457.

[44]

Wang F, Zuo Z, Li L, He F, Lu F, Li Y. A universal strategy for constructing seamless graphdiyne on metal oxides to stabilize the electrochemical structure and interface. Adv Mater. 2019; 31(6):1806272.

[45]

Zhang F, Dong J, Yi D, et al. Archimedean polyhedron LiCoO2 for ultrafast rechargeable Li-ion batteries. Chem Eng J. 2021; 423:130122.

[46]

Ahn J, Im H-G, Lee Y, et al. A novel organosilicon-type binder for LiCoO2 cathode in Li-ion batteries. Energy Storage Mater. 2022; 49: 58-66.

[47]

Sun G, Yu F-D, Lu M, et al. Surface chemical heterogeneous distribution in over-lithiated Li1+xCoO2 electrodes. Nat Commun. 2022; 13(1):6464.

[48]

Gong S, Wang S, Liu J, Guo Y, Wang Q. Graphdiyne as an ideal monolayer coating material for lithium-ion battery cathodes with ultralow areal density and ultrafast Li penetration. J Mater Chem A. 2018; 6(26): 12630-12636.

[49]

Liang G, Wu Z, Didier C, et al. A long cycle-life high-voltage spinel lithium-ion battery electrode achieved by site-selective doping. Angew Chem Int Ed. 2020; 59(26): 10594-10602.

[50]

Piao J-Y, Sun Y-G, Duan S-Y, et al. Stabilizing cathode materials of lithium-ion batteries by controlling interstitial sites on the surface. Chem. 2018; 4(7): 1685-1695.

[51]

Piao J-Y, Gu L, Wei Z, et al. Phase control on surface for the stabilization of high energy cathode materials of lithium ion batteries. J Am Chem Soc. 2019; 141(12): 4900-4907.

[52]

Xu G, Pang C, Chen B, et al. Prescribing functional additives for treating the poor performances of high-voltage (5 V-class) LiNi0.5Mn1.5O4/MCMB Li-ion batteries. Adv Energy Mater. 2018; 8(9):1701398.

[53]

Asl H, Manthiram A. Reining in dissolved transition-metal ions. Science. 2020; 369(6500): 140-141.

[54]

Cheng X-B, Yan C, Chen X, et al. Implantable solid electrolyte interphase in lithium-metal batteries. Chem. 2017; 2(2): 258-270.

[55]

Chang Q, Wang F, Zuo Z, et al. High voltage-stabilized graphdiyne cathode interface. Small. 2021; 17(38):2102066.

[56]

Jaffe S. Vulnerable links in the lithium-ion battery supply chain. Joule. 2017; 1(2): 225-228.

[57]

Katsuyama Y, Kobayashi H, Iwase K, Gambe Y, Honma I. Are redox-active organic small molecules applicable for high-voltage (>4 V) lithium-ion battery cathodes? Adv Sci. 2022; 9(12):2200187.

[58]

Lu Y, Han H, Yang Z, et al. High-capacity dilithium hydroquinone cathode material for lithium-ion batteries. Natl Sci Rev. 2024; 11(6):nwae146.

[59]

Li A, Xu Y, Shi J, Yuan B, Cheng F, Zhang W. Lithium-copolymerized polyimide cathodes for stable and fast lithium-ion storage. Chem Eng J. 2024; 481:148503.

[60]

Rodriguez-Perez I, Yuan Y, Bommier C, et al. Mg-ion battery electrode: an organic solid's herringbone structure squeezed upon Mg-ion insertion. J Am Chem Soc. 2017; 139(37): 13031-13037.

[61]

Fan L, Ma R, Wang J, Yang H, Lu B. An ultrafast and highly stable potassium-organic battery. Adv Mater. 2018; 30(51):1805486.

[62]

Lu Y, Chen J. Prospects of organic electrode materials for practical lithium batteries. Nat Rev Chem. 2020; 4(3): 127-142.

[63]

Hu P, He X, Ng M, et al. Trisulfide-bond acenes for organic batteries. Angew Chem Int Ed. 2019; 58(38): 13513-13521.

[64]

Jiang Q, Xiong P, Liu J, et al. A redox-active 2D metal-organic framework for efficient lithium storage with extraordinary high capacity. Angew Chem Int Ed. 2020; 59(13): 5273-5277.

[65]

Tang M, Zhu S, Liu Z, et al. Tailoring π-conjugated systems: from π-π stacking to high-rate-performance organic cathodes. Chem. 2018; 4(11): 2600-2614.

[66]

Li L, Zuo Z, Wang F, et al. In situ coating graphdiyne for high-energy-density and stable organic cathodes. Adv Mater. 2020; 32(14):2000140.

[67]

Tian Y, Zeng G, Rutt A, et al. Promises and challenges of next-generation “Beyond li-ion” batteries for electric vehicles and grid decarbonization. Chem Rev. 2021; 121(3): 1623-1669.

[68]

Zhu Z, Jiang T, Ali M, Meng Y, Cui Y. Rechargeable batteries for grid scale energy storage. Chem Rev. 2022; 122(22): 16610-16751.

[69]

Kong Z, Liu X, Wang T, et al. Three-dimensional hollow spheres of porous SnO2/rGO composite as high-performance anode for sodium ion batteries. Appl Surf Sci. 2019; 479: 198-208.

[70]

Meng Y, An J, Chen L, et al. A NaNi0.5Mn0.5SnxO2, cathode with anti-structural deformation enhancing long lifespan and super power for a sodium ion battery. Chem Commun. 2020; 56(58): 8079-8082.

[71]

Hwang J-Y, Myung S-T, Sun Y-K. Sodium-ion batteries: present and future. Chem Soc Rev. 2017; 46(12): 3529-3614.

[72]

Yabuuchi N, Kubota K, Dahbi M, Komaba S. Research development on sodium-ion batteries. Chem Rev. 2014; 114(23): 11636-11682.

[73]

Wu X, Lan X, Hu R, et al. Tin-based anode materials for stable sodium storage: progress and perspective. Adv Mater. 2022; 34(7):2106895.

[74]

Ni J, Zhu X, Yuan Y, et al. Rooting binder-free tin nanoarrays into copper substrate via tin-copper alloying for robust energy storage. Nat Commun. 2020; 11(1):1212.

[75]

Ying H, Han W-Q. Metallic Sn-based anode materials: application in high-performance lithium-ion and sodium-ion batteries. Adv Sci. 2017; 4(11):1700298.

[76]

Qin J, Wang T, Liu D, et al. A top-down strategy toward SnSb in-plane nanoconfined 3D N-doped porous graphene composite microspheres for high performance Na-ion battery anode. Adv Mater. 2018; 30(9):1704670.

[77]

Daali A, Zhou X, Zhao C, et al. In situ microscopy and spectroscopy characterization of microsized Sn anode for sodium-ion batteries. Nano Energy. 2023; 115:108753.

[78]

Cheng S, Zuo Z, Li Y. Self-adaptive graphdiyne/Sn interface for high-performance sodium storage. Adv Sci. 2024:2401240.

[79]

Cheng S, Zuo Z, Li Y. Controlled growth of a 2D/2D heterojunction for high-performance sodium ion storage. Mater Chem Front. 2024; 8(7): 1835-1843.

[80]

Liu J, Zhang L, Wang K, et al. Adaptive interfacial contact between copper nanoparticles and triazine functionalized graphdiyne substrate for improved lithium/sodium storage. Adv Funct Mater. 2023; 33(49):2305254.

[81]

Li J, Xie Z, Xiong Y, et al. Architecture of beta-graphdiyne-containing thin film using modified Glaser-Hay coupling reaction for enhanced photocatalytic property of TiO2. Adv Mater. 2017; 29(19):1700421.

[82]

Fang R, Zhao S, Sun Z, et al. More reliable lithium-sulfur batteries: status, solutions and prospects. Adv Mater. 2017; 29(48):1606823.

[83]

Qi X, Yang F, Sang P, et al. Electrochemical reactivation of dead Li2S for Li-S batteries in non-solvating electrolytes. Angew Chem Int Ed. 2023; 62(9):e202218803.

[84]

Kim S, Gao X, Liao S-L, et al. Solvation-property relationship of lithium-sulphur battery electrolytes. Nat Commun. 2024; 15(1):1268.

[85]

Ji H, Wang Z, Sun Y, et al. Weakening Li+ de-solvation barrier for cryogenic Li-S pouch cells. Adv Mater. 2023; 35(9):2208590.

[86]

Zhang Y, Zhang X, Shao G, et al. Lithium-sulfur batteries meet electrospinning: recent advances and the key parameters for high gravimetric and volume energy density. Adv Sci. 2022; 9(4):2103879.

[87]

Zhou G, Chen H, Cui Y. Formulating energy density for designing practical lithium-sulfur batteries. Nat Energy. 2022; 7(4): 312-319.

[88]

Fu A, Wang C, Pei F, et al. Recent advances in hollow porous carbon materials for lithium-sulfur batteries. Small. 2019; 15(10):1804786.

[89]

Zou F, Liu K, Cheng C-F, Ji Y, Zhu Y. Metal-organic frameworks (MOFs) derived carbon-coated NiS nanoparticles anchored on graphene layers for high-performance Li-S cathode material. Nanotechnology. 2020; 31(48):485404.

[90]

Wang F, Zuo Z, Li L, He F, Li Y. Graphdiyne nanostructure for high-performance lithium-sulfur batteries. Nano Energy. 2020; 68:104307.

[91]

Zhao C, Xu G-L, Yu Z, et al. A high-energy and long-cycling lithium-sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites. Nat Nanotechnol. 2021; 16(2): 166-173.

[92]

Feng S, Fu Z-H, Chen X, et al. An electrocatalytic model of the sulfur reduction reaction in lithium-sulfur batteries. Angew Chem Int Ed. 2022; 61(12):e202211448.

[93]

Ye Z, Jiang Y, Yang T, et al. Engineering catalytic CoSe-ZnSe heterojunctions anchored on graphene aerogels for bidirectional sulfur conversion reactions. Adv Sci. 2022; 9(1):2103456.

[94]

Liang Z, Shen J, Xu X, et al. Advances in the development of single-atom catalysts for high-energy-density lithium-sulfur batteries. Adv Mater. 2022; 34(30):2200102.

[95]

Zhang Y, Kang C, Zhao W, et al. d-p Hybridization-induced “trapping-coupling-conversion” enables high-efficiency Nb single-atom catalysis for Li-S batteries. J Am Chem Soc. 2023; 145(3): 1728-1739.

[96]

Greenburg L, Gao X, Zhang P, et al. Ni anchored to hydrogen-substituted graphdiyne for lithium sulfide cathodes in lithium-sulfur batteries. Nano Lett. 2023; 23(13): 5967-5974.

[97]

Wang Y, He J, Zhang Z, Liu Z, Huang C, Jin Y. Graphdiyne-modified polyimide separator: a polysulfide-immobilizing net hinders the shuttling of polysulfides in lithium-sulfur battery. ACS Appl Mater Interfaces. 2019; 11(39): 35738-35745.

[98]

Kong S, Cai D, Li G, et al. Hydrogen-substituted graphdiyne/graphene as an sp/sp2 hybridized carbon interlayer for lithium-sulfur batteries. Nanoscale. 2021; 13(6): 3817-3826.

[99]

Cheng X-B, Zhang R, Zhao C-Z, Zhang Q. Toward safe lithium metal anode in rechargeable batteries: a review. Chem Rev. 2017; 117(15): 10403-10473.

[100]

Sun Y, Liu N, Cui Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat Energy. 2016; 1(7):16071.

[101]

Yuan S, Kong T, Zhang Y, et al. Advanced electrolyte design for high-energy-density Li-metal batteries under practical conditions. Angew Chem Int Ed. 2021; 60(49): 25624-25638.

[102]

Wu B, Chen C, Raijmakers L, et al. Li-growth and SEI engineering for anode-free Li-metal rechargeable batteries: a review of current advances. Energy Storage Mater. 2023; 57: 508-539.

[103]

Shen X, Liu H, Cheng X-B, Yan C, Huang J-Q. Beyond lithium ion batteries: higher energy density battery systems based on lithium metal anodes. Energy Storage Mater. 2018; 12: 161-175.

[104]

Wang H, Yu Z, Kong X, et al. Liquid electrolyte: the nexus of practical lithium metal batteries. Joule. 2022; 6(3): 588-616.

[105]

Liu Y, Liu Q, Xin L, et al. Making Li-metal electrodes rechargeable by controlling the dendrite growth direction. Nat Energy. 2017; 2(7):17083.

[106]

Shang H, Zuo Z, Dong X, et al. Efficiently suppressing lithium dendrites on atomic level by ultrafiltration membrane of graphdiyne. Mater Today Energy. 2018; 10: 191-199.

[107]

Shang H, Zuo Z, Li Y. Highly lithiophilic graphdiyne nanofilm on 3D free-standing Cu nanowires for high-energy-density electrodes. ACS Appl Mater Interfaces. 2019; 11(19): 17678-17685.

[108]

Sun L, Li M, Gu J, et al. High-zeta-potential accelerates interface charge transfer in lithium anodes via MXene-graphdiyne heterojunction layers. Chem Eng J. 2023; 469:144014.

[109]

Zhao Z, Fan X, Ding J, Hu W, Zhong C, Lu J. Challenges in zinc electrodes for alkaline zinc-air batteries: obstacles to commercialization. ACS Energy Lett. 2019; 4(9): 2259-2270.

[110]

Yang Q, Guo Y, Yan B, et al. Hydrogen-substituted graphdiyne ion tunnels directing concentration redistribution for commercial-grade dendrite-free zinc anodes. Adv Mater. 2020; 32(25):2001755.

[111]

Luan X, Qi L, Zheng Z, Gao Y, Xue Y, Li Y. Step by step induced growth of zinc-metal interface on graphdiyne for aqueous zinc-ion batteries. Angew Chem Int Ed. 2023; 62(8):e202215968.

[112]

Sakamoto R, Fukui N, Maeda H, Matsuoka R, Toyoda R, Nishihara H. The accelerating world of graphdiynes. Adv Mater. 2019; 31(42):1804211.

[113]

Li M, Wang Z-K, Kang T, et al. Graphdiyne-modified cross-linkable fullerene as an efficient electron-transporting layer in organometal halide perovskite solar cells. Nano Energy. 2018; 43: 47-54.

[114]

Bi F, Yam C, Zhao C, et al. Enhanced photocurrent in heterostructures formed between CH3NH3PbI3 perovskite films and graphdiyne. Phys Chem Chem Phys. 2020; 22(11): 6239-6246.

[115]

Guo Y, Xue Y, Li C, Li X. Electronic properties of the graphdiyne/CH3NH3PbI3 interface: a first-principles study. Phys Status Solidi RRL. 2020; 14(1):1900544.

[116]

Li J, Jiu T, Chen S, et al. Graphdiyne as a host active material for perovskite solar cell application. Nano Lett. 2018; 18(11): 6941-6947.

[117]

Li J, Jiu T, Duan C, et al. Improved electron transport in MAPbI3 perovskite solar cells based on dual doping graphdiyne. Nano Energy. 2018; 46: 331-337.

[118]

Zhang S, Si H, Fan W, et al. Graphdiyne: bridging SnO2 and perovskite in planar solar cells. Angew Chem Int Ed. 2020; 59(28): 11573-11582.

[119]

Li T, Wang X, Jin Z, Tsubaki N. Enhanced kinetics of photocatalytic hydrogen evolution by interfacial Co-C bonded strongly coupled S-scheme inorganic perovskite/organic graphdiyne (CnH2n-2) heterojunction. Chem Eng J. 2023; 477:147018.

RIGHTS & PERMISSIONS

2024 The Author(s). EcoEnergy published by John Wiley & Sons Australia, Ltd on behalf of China Chemical Safety Association.

AI Summary AI Mindmap
PDF

14

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/