Review on polymer electrolytes for lithium-sulfurized polyacrylonitrile batteries

Yan Zhang , Su Wang , Chen Li , Zhaokun Wang , Yue Ma , Xixi Shi , Hongzhou Zhang , Dawei Song , Lianqi Zhang

EcoEnergy ›› 2025, Vol. 3 ›› Issue (1) : 56 -76.

PDF
EcoEnergy ›› 2025, Vol. 3 ›› Issue (1) : 56 -76. DOI: 10.1002/ece2.74
REVIEW

Review on polymer electrolytes for lithium-sulfurized polyacrylonitrile batteries

Author information +
History +
PDF

Abstract

Lithium-sulfur (Li-S) batteries are deemed as the next generation of energy storage devices due to high theoretical specific capacity (1675 mAh g-1) and energy density (2600 Wh kg-1). However, the commercial application has always been constrained by lithium polysulfide (LiPSs) shuttling effects and still has a long way to go. Sulfurized polyacrylonitrile (SPAN) is a promising alternative candidate to replace traditional sulfur cathode and is conducive to eliminating LiPSs by realizing “solid-solid” direct conversion in conventional carbonate electrolytes. However, an over 25% irreversible capacity loss is exhibited inevitably in the first discharge process, the inherent structure of SPAN and the related reaction mechanism remain unclear. In this review, the structure characteristics and electrochemical behaviors of SPAN are summarized for better interpreting current knowledge and favoring the design of high performance materials. In the past few decades, many problems in traditional Li-S batteries have been solved by improving electrolytes. Polymer electrolytes (PEs) have been widely used due to structural designability, multi-functionality, exceptional chemical stability, and excellent processability. Surprisingly, the relevant researches on PEs compatible with SPAN remains limited currently. Therefore, the recent modification strategies of gel polymer electrolytes and solid polymer electrolytes in Li-SPAN batteries are introduced in terms of Li+ transfer and interface engineering, the design principles are concluded, the specific challenges encountered by polymer-based electrolytes are summarized and the instructive directions for future research on PEs are demonstrated, facilitating the commercialization of Li-SPAN batteries.

Keywords

inherent structure / modification strategy / polymer electrolytes / sulfurized polyacrylonitrile

Cite this article

Download citation ▾
Yan Zhang, Su Wang, Chen Li, Zhaokun Wang, Yue Ma, Xixi Shi, Hongzhou Zhang, Dawei Song, Lianqi Zhang. Review on polymer electrolytes for lithium-sulfurized polyacrylonitrile batteries. EcoEnergy, 2025, 3(1): 56-76 DOI:10.1002/ece2.74

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhao M, Li B, Peng H, Yuan H, Wei J, Huang J. Lithium-sulfur batteries under lean electrolyte conditions: challenges and opportunities. Angew Chem Int Ed. 2020; 59(31): 12636-12652.

[2]

Liu T, Dong T, Wang M, et al. Recycled micro-sized silicon anode for high-voltage lithium-ion batteries. Nat Sustain. 2024; 7(8): 1057-1066.

[3]

Yang T, Luo D, Zhang X, et al. Sustainable regeneration of spent cathodes for lithium-ion and post-lithium-ion batteries. Nat Sustain. 2024; 7(6): 776-785.

[4]

Du H, Wang Y, Kang Y, et al. Side reactions/changes in lithium-ion batteries: mechanisms and strategies for creating safer and better batteries. Adv Mater. 2024; 36(29):2401482.

[5]

Liu T, Feng J, Shi Z, et al. Diminishing ether-oxygen content of electrolytes enables temperature-immune lithium metal batteries. Sci China Chem. 2023; 66(9): 2700-2710.

[6]

Fang R, Zhao S, Sun Z, Wang W, Cheng H, Li F. More reliable lithium-sulfur batteries: status, solutions and prospects. Adv Mater. 2017; 29(48):1606823.

[7]

Chung S, Chang C, Manthiram A. Progress on the critical parameters for lithium-sulfur batteries to be practically viable. Adv Funct Mater. 2018; 28(28):1801188.

[8]

Zhang S. Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions. J Power Sources. 2013; 231: 153-162.

[9]

Service R. Lithium-sulfur batteries poised for leap. Science. 2018; 359(6380): 1080-1081.

[10]

Tu S, Chen X, Zhao X, et al. A polysulfide-immobilizing polymer retards the shuttling of polysulfide intermediates in lithium-sulfur batteries. Adv Mater. 2018; 30(45):1804581.

[11]

Yang Z, Guo Z, Wang X, et al. Bi-functional material SnSSe/rGO with anionic vacancies serves as a polysulfide shuttling blocker and lithium dendrite inhibitor. Energy Storage Mater. 2024; 67:103276.

[12]

Liu B, Gu H, Torres J, Yin Z, Tricoli A. Balancing polysulfide containment and energy loss in lithium-sulfur batteries. Energy Environ Sci. 2024; 17(3): 1073-1082.

[13]

Lin Q, Liang J, Fang R, et al. A Lewis Acid-Lewis base hybridized electrocatalyst for roundtrip sulfur conversion in lithium-sulfur batteries. Adv Energy Mater. 2024; 14(21):2400786.

[14]

Wang X, Liu S, Yang J, He S, Qiu J. Accelerated sulfur redox kinetics on transition metal sulfide electrocatalysts by modulating electronic-state of active sites. Adv Energy Mater. 2024; 14(25):2400104.

[15]

Lin Y, Zhou Y, Huang S, et al. Catalytic disproportionation for suppressing polysulfide shuttle in Li-S pouch cells: beyond adsorption interactions. Adv Energy Mater. 2022; 12(37):2201912.

[16]

Ding Y, Li X, Chen Y, et al. Hit two birds with one stone: a bi-functional selenium-substituted organosulfur polymer additive for high-performance lithium-sulfur batteries. Chem Eng J. 2024; 482:148803.

[17]

Li S, Dai H, Li Y, et al. Designing Li-protective layer via SOCl2 additive for stabilizing lithium-sulfur battery. Energy Storage Mater. 2019; 18: 222-228.

[18]

Cheng Z, Lian J, Zhang J, Xiang S, Chen B, Zhang Z. Pristine MOF materials for separator application in lithium-sulfur battery. Adv Sci. 2024; 11(31):2404834.

[19]

Chen Z, Chen T, Wang J, et al. A low-dosage flame-retardant inorganic polymer binder for high-energy-density and high-safety lithium-sulfur batteries. Adv Energy Mater. 2024; 14(34):2401568.

[20]

Milroy C, Manthiram A. An elastic, conductive, electroactive nanocomposite binder for flexible sulfur cathodes in lithium-sulfur batteries. Adv Mater. 2016; 28(14): 9744-9755.

[21]

Liu M, Chen P, Pan X, et al. Synergism of flame-retardant, self-healing, high-conductive and polar to a multi-functional binder for lithium-sulfur batteries. Adv Funct Mater. 2022; 32(36):2205031.

[22]

Zhan Y, Zhai P, Song T, Yang W, Li Y. Enhanced performance in lithium metal batteries: a dual-layer solid electrolyte interphase strategy via perfluoropolyether derivative additive. Chem Eng J. 2024; 491:151974.

[23]

Li S, Han Z, Hu W, et al. Manipulating kinetics of sulfurized polyacrylonitrile with tellurium as eutectic accelerator to prevent polysulfide dissolution in lithium-sulfur battery under dissolution-deposition mechanism. Nano Energy. 2019; 60: 153-161.

[24]

Huang Y, Ji Y, Zhang L, Cai C, Fu Y. Integrated configuration design strategy via cathode-gel electrolyte with forged solid electrolyte interface toward advanced lithium-sulfurized polyacrylonitrile batteries. Adv Funct Mater. 2023; 33(44):2306484.

[25]

Wang J, He Y, Yang J. Sulfur-based composite cathode materials for high-energy rechargeable lithium batteries. Adv Mater. 2015; 27(3): 569-575.

[26]

Liu H, Zhang Y, Li Y, Han N, Liu H, Zhang X. Solid-state transformations of active materials in the pores of sulfurized-polyacrylonitrile fiber membranes via nucleophilic reactions for high-loading and free-standing lithium-sulfur battery cathodes. Adv Fiber Mater. 2024; 6(3): 772-785.

[27]

Wang J, Yang J, Wan C, Du K, Xie J, Xu N. Sulfur composite cathode materials for rechargeable lithium batteries. Adv Funct Mater. 2003; 13(6): 487-492.

[28]

Zhang X, Ma H, Liu J, et al. Structure and reactions mechanism of sulfurized polyacrylonitrile as cathodes for rechargeable Li-S batteries. Nano Res. 2023; 16(6): 8159-8172.

[29]

Xiang J, Guo Z, Yi Z, et al. Facile synthesis of sulfurized polyacrylonitrile composite as cathode for high-rate lithium-sulfur batteries. J Energy Chem. 2020; 49: 161-165.

[30]

Liu Y, Wang W, Wang A, Jin Z, Zhao H, Yang Y. A polysulfide reduction accelerator-NiS2-modified sulfurized polyacrylonitrile as a high performance cathode material for lithium-sulfur batteries. J Mater Chem. 2017; 5(42): 22120-22124.

[31]

Ahmed M, Lee S, Agostini M, et al. Multiscale understanding of covalently fixed sulfur-polyacrylonitrile composite as advanced cathode for metal-sulfur batteries. Adv Sci. 2021; 8(21):2101123.

[32]

Zhang Q, Ma Q, Wang R, et al. Recent progress in advanced organosulfur cathode materials for rechargeable lithium batteries. Mater Today. 2023; 65: 100-121.

[33]

Ma S, Zhang Z, Wang Y, et al. Iodine-doped sulfurized polyacrylonitrile with enhanced electrochemical performance for lithium sulfur batteries in carbonate electrolyte. Chem Eng J. 2021; 418(15):129410.

[34]

Wang X, Qian Y, Wang L, et al. Sulfurized polyacrylonitrile cathodes with high compatibility in both ether and carbonate electrolytes for ultrastable lithium-sulfur batteries. Adv Funct Mater. 2019; 29(39):1902929.

[35]

Jia P, Wang J, Zheng T, et al. Boosting cathode activity and anode stability of lithium-sulfur batteries with vigorous iodic species triggered by nitrate. Angew Chem Int Ed. 2024; 63(21):e202401055.

[36]

Liu X, Diemant T, Mariani A, et al. Locally concentrated ionic liquid electrolyte with partially solvating diluent for lithium/sulfurized polyacrylonitrile batteries. Adv Mater. 2022; 34(49):2207155.

[37]

Liu J, Zhou Y, Yan T, Gao X. Perspectives of high-performance Li-S battery electrolytes. Adv Funct Mater. 2024; 34(4):2309625.

[38]

Chen J, Fu Y, Guo J. Development of electrolytes under lean condition in lithium-sulfur batteries. Adv Mater. 2024; 36(29):2401263.

[39]

Wang W, Zhang J, Chou J, et al. Solidifying cathode-electrolyte interface for lithium-sulfur batteries. Adv Energy Mater. 2021; 11(2):2000791.

[40]

Agnihotri T, Ahmed S, Tamilarasan E, Hasan R, Su W, Hwang B. Transitioning towards asymmetric gel polymer electrolytes for lithium batteries: progress and prospects. Adv Funct Mater. 2024; 34(13):2311215.

[41]

Liu W, Liu P, Mitlin D. Review of emerging concepts in SEI analysis and artificial SEI membranes for lithium, sodium, and potassium metal battery anodes. Adv Energy Mater. 2020; 10(43):2002297.

[42]

Ma T, Ni Y, Li D, et al. Reversible solid-solid conversion of sulfurized polyacrylonitrile cathodes in lithium-sulfur batteries by weakly solvating ether electrolytes. Angew Chem Int Ed. 2023; 62(43):e202310761.

[43]

Tao J, Wang Y, Zheng X, et al. A review: polyacrylonitrile as high-performance piezoelectric materials. Nano Energy. 2023; 118:108987.

[44]

Wang L, He X, Li J, Chen M, Gao J, Jiang C. Charge/discharge characteristics of sulfurized polyacrylonitrile composite with different sulfur content in carbonate based electrolyte for lithium batteries. Electrochim Acta. 2012; 72: 114-119.

[45]

Zhang N, Zhao X, Liu G, et al. Solid electrolyte membranes for all-solid-state rechargeable batteries. eTransportation. 2024; 20:100319.

[46]

Ma Q, Fu S, Wu A, et al. Designing bidirectionally functional polymer electrolytes for stable solid Li. Adv Energy Mater. 2024; 9: 810-818.

[47]

Pei F, Wu L, Zhang Y, et al. Interfacial self-healing polymer electrolytes for long-cycle solid-state lithium-sulfur. Nat Commun. 2024; 15(1):351.

[48]

Wang Z, Shen L, Deng S, Cui P, Yao X. 10 μm-Thick high-strength solid polymer electrolytes with excellent interface compatibility for flexible all-solid-state lithium-metal batteries. Adv Mater. 2021; 33(25):2100353.

[49]

Zhao X, Wang C, Li Z, Hu X, Razzaqab A, Deng Z. Sulfurized polyacrylonitrile for high-performance lithium sulfur batteries: advances and prospects. J Mater Chem A. 2021; 9(35): 19282-19297.

[50]

Zhang X, Gao P, Wu Z, et al. Pinned electrode/electrolyte interphase and its formation origin for sulfurized polyacrylonitrile cathode in stable lithium batteries. ACS Appl Mater Interfaces. 2022; 14(46): 52046-52057.

[51]

Lei Y, Ossonon B, Chen J, Perreault J, Tavares AC. Electrochemical characterization of graphene-type materials obtained by electrochemical exfoliation of graphite. J Electroanal Chem. 2021; 887:115084.

[52]

Fanous J, Wegner M, Grimminger J, Andresen Ä, Buchmeiser MR. Structure-related electrochemistry of sulfur-poly(acrylonitrile)composite cathode materials for rechargeable lithium batteries. Chem Mater. 2011; 23(22): 5024-5028.

[53]

Jin Z, Liu Y, Wang W, et al. A new insight into the lithium storage mechanism of sulfurized polyacrylonitrile with no soluble intermediates. Energy Storage Mater. 2018; 14: 272-278.

[54]

Wang W, Cao Z, Elia G, et al. Recognizing the mechanism of sulfurizedpolyacrylonitrile cathode materials for Li-S batteries and beyond in Al-S batteries. ACS Energy Lett. 2018; 3(12): 2899-2907.

[55]

Weret M, Kuo C, Zeleke T, et al. Mechanistic understanding of the sulfurized-poly(acrylonitrile) cathode for lithium-sulfur batteries. Energy Storage Mater. 2020; 26: 483-493.

[56]

Wang S, Lu B, Cheng D, et al. Structural transformation in a sulfurized polymer cathode to enable long-life rechargeable lithium-sulfur batteries. J Am Chem Soc. 2023; 145(17): 9624-9633.

[57]

Doan T, Ghaznavi M, Zhao Y, et al. Binding mechanism of sulfur and dehydrogenated polyacrylonitrile in sulfur/polymer composite cathode. J Power Sources. 2013; 241: 61-69.

[58]

Wei S, Ma L, Hendrickson K, Tu Z, Archer L. Metal-sulfur battery cathodes based on PAN-sulfur composites. J Am Chem Soc. 2015; 137(37): 12143-12152.

[59]

Yu X, Xie J, Li Y, Huang H, Lai C, Wang K. Stable-cycle and high-capacity conductive sulfur-containing cathode materials for rechargeable lithium batteries. J Power Sources. 2005; 146(1-2): 335-339.

[60]

Wang K, Zhao T, Liu Y, et al. Accelerating redox kinetics of sulfurized polyacrylonitrile nanosheets by trace doping of element. Chem Eng J. 2024; 487:150330.

[61]

Fanous J, Wegner M, Grimminger J, et al. Correlation of the electrochemistry of poly(acrylonitrile)-sulfur composite cathodes with their molecular structure. J Mater Chem. 2012; 22(43): 23240-23245.

[62]

Li H, Xue W, Xu W, Wang L, Liu T. Controllable synthesis of sulfurized polyacrylonitrile nanofibers for high performance lithium-sulfur batteries. Compos Commun. 2021; 24:100675.

[63]

Wang L, He X, Li J, et al. Analysis of the synthesis process of sulphur-poly(acrylonitrile)-based cathode materials for lithium batteries. J Mater Chem. 2012; 22(41): 22077-22081.

[64]

Páez A, Chemes D, Sham E, Davies L, Tesio A, Flexer V. Low-temperature synthesis of a sulfur-polyacrylonitrile composite cathode for lithium-sulfur batteries. ChemistrySelect. 2020; 5(18): 5465-5472.

[65]

Liu Y, Wang W, Wang A, Jin Z, Zhao H, Yang Y. Effect of vapor pressure on performance of sulfurized polyacrylonitrile cathodes for Li/S batteries. RSC Adv. 2016; 6(108): 106625-106630.

[66]

Wang J, Yang J, Xie J, Xu N. A novel conductive polymersulfur composite cathode material for rechargeable lithium batteries. Adv Mater. 2002; 14(13-14): 963-965.

[67]

Liu Y, Haridas A, Cho K, Lee Y, Ahn J. Highly ordered mesoporous sulfurized polyacrylonitrile cathode material for high-rate lithium sulfur batteries. J Phys Chem C. 2017; 121(47): 26172-26179.

[68]

Lei J, Chen J, Zhang H, et al. High molecular weight polyacrylonitrile precursor for S@pPAN composite cathode materials with high specific capacity for rechargeable lithium batteries. ACS Appl Mater Interfaces. 2020; 12(30): 33702-33709.

[69]

Yang H, Chen J, Yang J, Wang J. Prospect of sulfurized pyrolyzed poly(acrylonitrile) (S@pPAN) cathode materials for rechargeable lithium batteries. Angew Chem Int Ed. 2020; 59(19): 7306-7318.

[70]

Fanous J, Wegner M, Spera M, Buchmeiser M. High energy density poly(acrylonitrile)-sulfur composite-based lithiumsulfur batteries. J Electrochem Soc. 2013; 160(8): A1169-A1170.

[71]

Wang Y, Shuai Y, Chen K. Diphenyl guanidine as vulcanization accelerators in sulfurized polyacrylonitrile for high performance lithium-sulfur battery. Chem Eng J. 2020; 388:124378.

[72]

Liu Y, Wang W, Wang A, Jin Z, Zhao H, Yang Y. A polysulfide reduction accelerator-NiS2-modified sulfurized polyacrylonitrile as a high performance cathode material for lithium-sulfur batteries. J Mater Chem A. 2017; 42: 22027-22392.

[73]

Li Y, He R, Liu H, et al. Construction of CoS2 reduction accelerator-modified sulfurized polyacrylonitrile nanofibers as high-performance cathode materials for practical lithium-sulfur batteries. ACS Appl Energy Mater. 2023; 6(16): 8466-8478.

[74]

Beltran S, Balbuena P. Sulfurized polyacrylonitrile for high-performance lithium-sulfur batteries: in-depth computational approach revealing multiple sulfur's reduction pathways and hidden Li+ storage mechanisms for extra discharge capacity. ACS Appl Mater Interfaces. 2021; 13(1): 491-502.

[75]

Xue W, Xu W, Wang W, Gao G, Wang L. Iodine-doped fibrous sulfurized polyacrylonitrile with accelerated reaction kinetics. Compos Commun. 2022; 30:101078.

[76]

Xu Z, Zou R, Liu W, et al. Design of atomic cobalt selenide-doped sulfurized polyacrylonitrile cathode with enhanced electrochemical kinetics for high performance lithium-SPAN batteries. Chem Eng J. 2023; 471:144581.

[77]

Zhang W, Zhang Y, Peng L, et al. Elevating reactivity and cyclability of all-solid-state lithium-sulfur batteries by the combination of tellurium-doping and surface coating. Nano Energy. 2020; 76:105083.

[78]

Phan A, Le P, Wang C. Realizing high-energy and long-life Li/SPAN batteries. Joule. 2024; 8(6): 1601-1618.

[79]

Yang H, Qiao Y, Chang Z, He P, Zhou H. Designing cation-solvent fully coordinated electrolyte for high-energy-density lithium-sulfur full cell based on solid-solid conversion. Angew Chem Int Ed. 2021; 60(32): 17726-17734.

[80]

Li X, Banis M, Lushington A, et al. A high-energy sulfur cathode in carbonate electrolyte by eliminating polysulfides via solid-phase lithium-sulfur transformation. Nat Commun. 2018; 9(1):4509.

[81]

Li S, Zhang W, Zheng J, Lv M, Song H, Du L. Inhibition of polysulfide shuttles in Li-S batteries: modified separators and solid-state electrolytes. Adv Energy Mater. 2021; 11(2):2000779.

[82]

Li G, Wang S, Zhang Y, Li M, Chen Z, Lu J. Revisiting the role of polysulfides in lithium-sulfur batteries. Adv Mater. 2018; 30(22):1705590.

[83]

Cheng X, Pan J, Zhao Y, Liao M, Peng H. Gel polymer electrolytes for electrochemical energy storage. Adv Energy Mater. 2018; 8(7):1702184.

[84]

Qian J, Jin B, Li Y, Zhan X, Hou Y, Zhang Q. Research progress on gel polymer electrolytes for lithium-sulfur batteries. J Electroanal Chem. 2021; 56: 420-437.

[85]

Pei F, Dai S, Guo B, et al. Titanium-oxo cluster reinforced gel polymer electrolyte enabling lithium-sulfur batteries with high gravimetric energy densities. Energy Environ Sci. 2021; 14(2): 975-985.

[86]

Zhou J, Ji H, Liu J, Qian T, Yan C. A new high ionic conductive gel polymer electrolyte enables highly stable quasi-solid-state lithium sulfur battery. Energy Storage Mater. 2019; 22: 256-264.

[87]

Li Z, Fu J, Zhou X, et al. Ionic conduction in polymer-based solid electrolytes. Adv Sci. 2023; 10:2201718.

[88]

Ma C, Cui W, Liu X, Ding Y, Wang Y. In situ preparation of gel polymer electrolyte for lithium batteries: progress and perspectives. InfoMat. 2022; 4(2):e12232.

[89]

Jeddi K, Ghaznavi M, Chen P. A novel polymer electrolyte to improve the cycle life of high performance lithium-sulfur batteries. J Mater Chem A. 2013; 1(8): 2769-2772.

[90]

Liu Y, Yang D, Yan W, et al. Synergy of sulfur/polyacrylonitrile composite and gel polymer electrolyte promises heat-resistant lithium-sulfur batteries. iScience. 2019; 19: 316-325.

[91]

Zhang Y, Zhao Y, Bakenov Z, Gosselink D, Chen P. Poly(vinylidene fluoride-co-hexafluoropropylene)/poly(methylmethacrylate)/nanoclay composite gel polymer electrolyte for lithium/sulfur batteries. J Solid State Electrochem. 2014; 18(4): 1111-1116.

[92]

Jeddi K, Sarikhani K, Qazvini N, Chen P. Stabilizing lithium/sulfur batteries by a composite polymer electrolyte containing mesoporous silica particles. J Power Sources. 2014; 245: 656-662.

[93]

Zhang H, Lu H, Chen J, Nuli Y, Wang J. A novel filler for gel polymer electrolyte with a high lithium-ion transference number toward stable cycling for lithium-metal anodes in lithium-sulfur batteries. ACS Appl Mater Interfaces. 2021; 13(41): 48622-48633.

[94]

Huang H, Ding F, Zhong H, et al. Nano-SiO2-embedded poly(propylene carbonate)-based composite gel polymer electrolyte for Lithium-sulfur batteries. J Mater Chem A. 2018; 6(20): 9539-9549.

[95]

Gao G, Wang J, Zhang X, Li H, Wang L, Liu T. An ionic liquid enhanced gel polymer electrolyte for high performance lithium-metal batteries based on sulfurized polyacrylonitrile cathode. Compos Commun. 2022; 31:101100.

[96]

Hao Q, Gao Y, Chen F, Chen X, Qi Y, Li N. SnCl4 initiated formation of polymerized solid polymer electrolytes for lithium metal batteries with fast ion transport interfaces. Chem Eng J. 2024; 481:148666.

[97]

Utomo N, Deng Y, Zhao Q, Liu X, Archer L. Structure and evolution of quasi-solid-state hybrid electrolytes formed inside electrochemical cells. Adv Mater. 2022; 34(32):2110333.

[98]

Meisner Q, Jiang S, Cao P, Glossmann T, Hintennachd Aand Zhang Z. An in situ generated polymer electrolyte via anionic ring-opening polymerization for lithium-sulfur batteries. J Mater Chem A. 2021; 9(46): 25927-25933.

[99]

Huang Y, Wang Y, Fu Y. All-cellulose gel electrolyte with black phosphorus based lithium ion conductors toward advanced lithium-sulfurized polyacrylonitrile batteries. Carbohyd Polum. 2022; 296:119950.

[100]

Zhang Y, Wang Z, Pan Y, et al. Tailoring a multi-system adaptable gel polymer electrolyte for the realization of carbonate ester and ether-based Li-SPAN batteries. Energy Environ Sci. 2024; 17(7): 2576-2587.

[101]

Li H, Kuai Y, Yang J, Hirano S, Nuli Y, Wang J. A new flame-retardant polymer electrolyte with enhanced Li-ion conductivity for safe lithium-sulfur batteries. J Energy Chem. 2022; 65: 616-622.

[102]

Lu H, Wang Q, Chen J, et al. Gel electrolyte with flame retardant polymer stabilizing lithium metal towards lithium-sulfur battery. Energy Storage Mater. 2023; 61:102994.

[103]

Wang Z, Guo Q, Jiang R, et al. Porous poly(vinylidene fluoride) supported three-dimensional poly (ethylene glycol) thin solid polymer electrolyte for flexible high temperature all-solid-state lithium metal batteries. Chem Eng J. 2022; 435:135106.

[104]

Liang H, Wang L, Wang A, et al. Tailoring practically accessible polymer/inorganic composite electrolytes for all-solid-state lithium metal batteries: a review. Nano-Micro Lett. 2023; 15(1):42.

[105]

Temeche E, Zhang X, Laine R. Solid electrolytes for Li-S batteries: solid solutions of poly(ethyleneoxide) with LixPON- and LixSiPON-Based Polymers. ACS Appl Mater Interfaces. 2020; 12(27): 30353-30364.

[106]

Zhang X, Zhang T, Shao Y, et al. Composite electrolytes based on poly(ethylene oxide) and lithium borohydrides for all-solid-state lithium-sulfur batteries. ACS Sustainable Chem Eng. 2021; 9(15): 5396-5404.

[107]

Wang Y, Wang G, He P, Hu J, Jiang J, Fan L. Sandwich structured NASICON-type electrolyte matched with sulfurized polyacrylonitrile cathode for high performance solid-state lithium-sulfurbatteries. Chem Eng J. 2020; 393:124705.

[108]

Li M, Frerichs J, Kolek M, et al. Solid-state lithium-sulfur battery enabled by thio-lisicon/polymer composite electrolyte and sulfurized polyacrylonitrile cathode. Adv Funct Mater. 2020; 30(14):1910123.

[109]

Li Z, Lu W, Zhang N, et al. Single ion conducting lithium sulfur polymer batteries with improved safety and stability. J Mater Chem A. 2018; 6(29): 14330-14338.

[110]

Nie L, Zhu J, Wu X, et al. A large-scale fabrication of flexible, ultrathin, and robust solid electrolyte for solid-state lithium-sulfur batteries. Adv Mater. 2024; 36(29):2400115.

[111]

Li C, Zhang Q, Sheng J, et al. A quasi-intercalation reaction for fast sulfur redox kinetics in solid-state lithium-sulfur batteries. Energy Environ Sci. 2022; 15(10): 4289-4300.

[112]

Zhu Y, Lao Z, Zhang M, et al. A locally solvent-tethered polymer electrolyte for long-life lithium metal batteries. Nat Commun. 2024; 15(1):3914.

[113]

Xu F, Deng S, Guo Q, Zhou D, Yao X. Quasi-ionic liquid enabling single-phase poly(vinylidene fluoride)-based polymer electrolytes for solid-state LiNi0.6Co0.2Mn0.2O2||Li batteries with rigid-flexible coupling interphase. Small Methods. 2021; 5(7):2100262.

[114]

Luo S, Zhao E, Gu Y, et al. Flexible, solid-state, fiber-network-reinforced composite solid electrolyte for long lifespan solid lithium-sulfurized polyacrylonitrile battery. Nano Res. 2022; 15(4): 3290-3298.

[115]

Dong D, Zhou B, Sun Y, et al. Polymer Electrolyte Glue: a universal interfacial modification strategy for all-solid-state Li batteries. Nano Lett. 2019; 19(4): 2343-2349.

[116]

Sun Y, Zhong G, Zhao Z, et al. Polymeric sulfur as a Li ion conductor. Nano Lett. 2020; 20(3): 2191-2196.

RIGHTS & PERMISSIONS

2024 The Author(s). EcoEnergy published by John Wiley & Sons Australia, Ltd on behalf of China Chemical Safety Association.

AI Summary AI Mindmap
PDF

37

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/