Principles of designing electrocatalysts to boost C–N coupling reactions for urea synthesis

Jingwei Li , Shengkai Li , Yaohao Zhang , Zhao-Qing Liu

EcoEnergy ›› 2024, Vol. 2 ›› Issue (4) : 679 -694.

PDF (4545KB)
EcoEnergy ›› 2024, Vol. 2 ›› Issue (4) : 679 -694. DOI: 10.1002/ece2.72
REVIEW

Principles of designing electrocatalysts to boost C–N coupling reactions for urea synthesis

Author information +
History +
PDF (4545KB)

Abstract

The electrocatalytic C–N coupling reaction can achieve green and sustainable urea synthesis as well as CO2 conversion and nitrogen fixation. However, the electrocatalytic C–N coupling reaction still faces challenges such as difficult adsorption and activation of reactive species, a large number of reactive intermediates, high reaction energy barriers, and inert reactive kinetics, resulting in the low urea yielding rate and Faradic efficiency. The development of efficient catalysts is key to improve the urea yielding rate and Faradic efficiency. This review covers the development history and basic principles of electrocatalytic C–N coupling for urea production, analyzes the nanostructure–catalytic activity relationship as well as the electronic structure–catalytic activity relationship, and discusses the main reaction mechanism of electrocatalytic C–N coupling for urea production. Based on these analyses, the concept of designing efficient C–N coupling catalysts is derived. Finally, the research status of electrocatalytic C–N coupling for urea synthesis is summarized, and the prospect for developing efficient electrocatalysts and C–N coupling mechanism are proposed.

Keywords

C–N coupling / electrocatalysts / electrocatalytic urea synthesis

Cite this article

Download citation ▾
Jingwei Li, Shengkai Li, Yaohao Zhang, Zhao-Qing Liu. Principles of designing electrocatalysts to boost C–N coupling reactions for urea synthesis. EcoEnergy, 2024, 2(4): 679-694 DOI:10.1002/ece2.72

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yu Y, Sun Y, Han J, et al. Achieving efficient urea electrosynthesis through improving the coverage of a crucial intermediate across a broad range of nitrate concentrations. Energy Environ Sci. 2024;17(14):5183-5190.

[2]

Muhyuddin M, Zuccante G, Mustarelli P, et al. Electrochemical urea production using carbon dioxide and nitrate: state of the art and perspectives. Energy Environ Sci. 2024;17(11):3739-3752.

[3]

Zhang S, Jin M, Xu H, et al. An oxygen-coordinated cobalt single-atom electrocatalyst boosting urea and urea peroxide production. Energy Environ Sci. 2024;17(5):1950-1960.

[4]

Huang X, Li Y, Xie S, et al. The tandem nitrate and CO2 reduction for urea electrosynthesis: role of surface N-intermediates in CO2 capture and activation. Angew Chem Int Ed. 2024;63(24):e202403980.

[5]

Chen K, Ma D, Zhang Y, et al. Urea electrosynthesis from nitrate and CO2 on diatomic alloys. Adv Mater. 2024;36(30):e2402160.

[6]

Li M, Shi Q, Li Z, et al. Photoelectrocatalytic synthesis of urea from carbon dioxide and nitrate over a Cu2O photocathode. Angew Chem Int Ed. 2024;136(33):e202406515.

[7]

Wang Y, Xia S, Cai R, et al. Dynamic reconstruction of two-dimensional defective Bi nanosheets for efficient electrocatalytic urea synthesis. Angew Chem Int Ed. 2024;63(16):e202318589.

[8]

Chen X, Lv S, Gu H, et al. Amorphous bismuth-tin oxide nanosheets with optimized C-N coupling for efficient urea synthesis. J Am Chem Soc. 2024;146(19):13527-13535.

[9]

Li P, Wei Y, Yang X, et al. Boosting the urea synthesis rate on Ni single-atom catalysts: the impact of acetonitrile electrolyte in the tandem CO2 reduction/nucleophilic addition reaction. ACS Catal. 2024;14(10):7967-7977.

[10]

Jiang J, Wu G, Sun M, et al. Cu-Mo dual sites in Cu-doped MoSe2 for enhanced electrosynthesis of urea. ACS Nano. 2024;18(21):13745-13754.

[11]

Wan Y, Zheng M, Yan W, Zhang J, Lv R. Fundamentals and rational design of heterogeneous C-N coupling electrocatalysts for urea synthesis at ambient conditions. Adv Energy Mater. 2024;14(28):2303588.

[12]

Tao Z, Rooney CL, Liang Y, Wang H. Accessing organonitrogen compounds via C-N coupling in electrocatalytic CO2 reduction. J Am Chem Soc. 2021;143(47):19630-19642.

[13]

Liu S, Wang M, Cheng Q, et al. Turning waste into wealth: sustainable production of high-value-added chemicals from catalytic coupling of carbon dioxide and nitrogenous small molecules. ACS Nano. 2022;16(11):17911-17930.

[14]

Li Y, Verma V, Su H, et al. Rationally designed carbon-based catalysts for electrochemical C-N coupling. Adv Energy Mater. 2024;14(28):2401341.

[15]

Meng N, Ma X, Wang C, et al. Oxide-derived core-shell Cu@Zn nanowires for urea electrosynthesis from carbon dioxide and nitrate in water. ACS Nano. 2022;16(6):9095-9104.

[16]

Li N, Gao H, Liu Z, et al. Metalphthalocyanine frameworks grown on TiO2 nanotubes for synergistically and efficiently electrocatalyzing urea production from CO2 and nitrate. Sci China Chem. 2023;66(5):1417-1424.

[17]

Lv L, Tan H, Kong Y, et al. Breaking the scaling relationship in C-N coupling via the doping effects for efficient urea electrosynthesis. Angew Chem Int Ed. 2024;63(24):e202401943.

[18]

Wei X, Chen C, Fu XZ, Wang S. Oxygen vacancies-rich metal oxide for electrocatalytic nitrogen cycle. Adv Energy Mater. 2023;14(1):2303027.

[19]

Fan X, Liu C, He X, et al. Efficient electrochemical Co-reduction of carbon dioxide and nitrate to urea with high faradaic efficiency on cobalt-based dual-sites. Adv Mater. 2024;36(25):e2401221.

[20]

Gao Y, Wang J, Sun M, et al. Tandem catalysts enabling efficient C-N coupling toward the electrosynthesis of urea. Angew Chem Int Ed. 2024;63(23):e202402215.

[21]

Zhan P, Zhuang J, Yang S, et al. Efficient electrosynthesis of urea over single-atom alloy with electronic metal support interaction. Angew Chem Int Ed. 2024;63(33):e202409019.

[22]

Rapson HDC, Bird AE. The electrochemical preparation of glycine. J Appl Chem. 2007;13(6):233-239.

[23]

Chen C, He N, Wang S. Electrocatalytic C-N coupling for urea synthesis. Small Sci. 2021;1(11):2100070.

[24]

Chen C, Zhu X, Wen X, et al. Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions. Nat Chem. 2020;12(8):717-724.

[25]

Yuan M, Chen J, Bai Y, et al. Electrochemical C-N coupling with perovskite hybrids toward efficient urea synthesis. Chem Sci. 2021;12(17):6048-6058.

[26]

Yuan M, Chen J, Bai Y, et al. Unveiling electrochemical urea synthesis by Co-activation of CO2 and N2 with mott-Schottky heterostructure catalysts. Angew Chem Int Ed. 2021;60(19):10910-10918.

[27]

Fu S, Chu K, Guo M, et al. Ultrasonic-assisted hydrothermal synthesis of RhCu alloy nanospheres for electrocatalytic urea production. Chem Commun. 2023;59(29):4344-4347.

[28]

Zhang X, Zhu X, Bo S, et al. Electrocatalytic urea synthesis with 63.5% faradaic efficiency and 100% N-selectivity via one-step C-N coupling. Angew Chem Int Ed. 2023;62(33):e202305447.

[29]

Wu W, Yang Y, Wang Y, et al. Boosting electrosynthesis of urea from N2 and CO2 by defective Cu-Bi. Chem Catal. 2022;2(11):3225-3238.

[30]

Paul S, Sarkar S, Adalder A, Banerjee A, Ghorai UK. Dual metal site-mediated efficient C-N coupling toward electrochemical urea synthesis. J Mater Chem A. 2023;11(25):13249-13254.

[31]

Cao N, Quan Y, Guan A, et al. Oxygen vacancies enhanced cooperative electrocatalytic reduction of carbon dioxide and nitrite ions to urea. J Colloid Interface Sci. 2020;577:109-114.

[32]

Meng N, Huang Y, Liu Y, Yu Y, Zhang B. Electrosynthesis of urea from nitrite and CO2 over oxygen vacancy-rich ZnO porous nanosheets. Cell Reports Physical Science. 2021;2(3):100369.

[33]

Liu S, Yin S, Wang Z, et al. AuCu nanofibers for electrosynthesis of urea from carbon dioxide and nitrite. Cell Reports Physical Science. 2022;3(5):100869.

[34]

Zhang D, Xue Y, Zheng X, Zhang C, Li Y. Multi-heterointerfaces for selective and efficient urea production. Natl Sci Rev. 2023;10(2):nwaC209.

[35]

Dong WJ, Menzel JP, Ye Z, et al. Photoelectrochemical urea synthesis from nitrate and carbon dioxide on GaN nanowires. ACS Catal. 2024;14(4):2588-2596.

[36]

Lv C, Zhong L, Liu H, et al. Selective electrocatalytic synthesis of urea with nitrate and carbon dioxide. Nat Sustain. 2021;4(10):868-876.

[37]

Zhang X, Zhu X, Bo S, et al. Identifying and tailoring C-N coupling site for efficient urea synthesis over diatomic Fe-Ni catalyst. Nat Commun. 2022;13(1):5337.

[38]

Lv C, Lee C, Zhong L, et al. A Defect engineered electrocatalyst that promotes high-efficiency urea synthesis under ambient conditions. ACS Nano. 2022;16(5):8213-8222.

[39]

Wang H, Jiang Y, Li S, et al. Realizing efficient C-N coupling via electrochemical co-reduction of CO2 and NO3- on AuPd nanoalloy to form urea: key C-N coupling intermediates. Appl Catal B Environ. 2022;318:121819.

[40]

Geng J, Ji S, Jin M, et al. Ambient electrosynthesis of urea with nitrate and carbon dioxide over iron-based dual-sites. Angew Chem Int Ed. 2023;62(6):e202210958.

[41]

Liu Y, Tu X, Wei X, et al. C-bound or O-bound surface: which one boosts electrocatalytic urea synthesis? Angew Chem Int Ed. 2023;62(19):e202300387.

[42]

Shin S, Sultan S, Chen Z.-X, et al. Copper with an atomic-scale spacing for efficient electrocatalytic co-reduction of carbon dioxide and nitrate to urea. Energy Environ Sci. 2023;16(5):2003-2013.

[43]

Qiu M, Zhu X, Bo S, et al. Boosting electrocatalytic urea production via promoting asymmetric C-N coupling. CCS Chem. 2023;5(11):2617-2627.

[44]

Zhao Y, Ding Y, Li W, et al. Efficient urea electrosynthesis from carbon dioxide and nitrate via alternating Cu-W bimetallic C-N coupling sites. Nat Commun. 2023;14(1):4491.

[45]

Sun M, Wu G, Jiang J, et al. Carbon-anchored Molybdenum oxide nanoclusters as efficient catalysts for the electrosynthesis of ammonia and urea. Angew Chem Int Ed. 2023;62(19):e202301957.

[46]

Liu J, Guo X, Frauenheim T, Gu Y, Kou L. Urea Electrosynthesis accelerated by theoretical simulations. Adv Funct Mater. 2023;34(14):2313420.

[47]

Mao Y, Jiang Y, Gou Q, et al. Indium-activated bismuth-based catalysts for efficient electrocatalytic synthesis of urea. Appl Catal B Environ. 2024;340:123189.

[48]

Fang H, Wang Z, Kuo C.-H, et al. Highly efficient and selective electrosynthesis of urea via co-reduction of carbon dioxide and nitrate over the TiN catalyst. Chem Eng J. 2024;486:150178.

[49]

Li Y, Zheng S, Liu H, et al. Sequential co-reduction of nitrate and carbon dioxide enables selective urea electrosynthesis. Nat Commun. 2024;15(1):176.

[50]

Qiu W, Qin S, Li Y, et al. Overcoming electrostatic interaction via pulsed electroreduction for boosting the electrocatalytic urea synthesis. Angew Chem Int Ed. 2024;63(24):e202402684.

[51]

Liu X, Kumar PV, Chen Q, et al. Carbon nanotubes with fluorine-rich surface as metal-free electrocatalyst for effective synthesis of urea from nitrate and CO2. Appl Catal B Environ. 2022;316:121618.

[52]

Zhang S, Geng J, Zhao Z, et al. High-efficiency electrosynthesis of urea over bacterial cellulose regulated Pd-Cu bimetallic catalyst. EES Catal. 2023;1:45-53.

[53]

Wei X, Wen X, Liu Y, et al. Oxygen vacancy-mediated selective C-N coupling toward electrocatalytic urea synthesis. J Am Chem Soc. 2022;144(26):11530-11535.

[54]

Liu C, Tong H, Wang P, et al. The asymmetric orbital hybridization in single-atom-dimers for urea synthesis by optimizing the C-N coupling reaction pathway. Appl Catal B Environ. 2023;336:122917.

[55]

Mao Y, Jiang Y, Liu H, et al. Ambient electrocatalytic synthesis of urea by co-reduction of NO3 and CO2 over graphene-supported In2O3. Chin Chem Lett. 2024;35(3):108540.

[56]

Chen C, Li S, Zhu X, et al. Balancing sub-reaction activity to boost electrocatalytic urea synthesis using a metal-free electrocatalyst. Carbon Energy. 2023;5(10):e345.

[57]

Zhang MD, Huang JR, Liao PQ, Chen XM. Utilisation of carbon dioxide and nitrate for urea electrosynthesis with a Cu-based metal-organic framework. Chem Commun. 2024;60(27):3669-3672.

[58]

Li Z, Zhou P, Zhou M, et al. Synergistic electrocatalysis of crystal facet and O-vacancy for enhancive urea synthesis from nitrate and CO2. Appl Catal B Environ. 2023;338:122962.

[59]

Hou T, Ding J, Zhang H, et al. FeNi3 nanoparticles for electrocatalytic synthesis of urea from carbon dioxide and nitrate. Mater Chem Front. 2023;7(20):4952-4960.

[60]

Shi Z, Chen J, Li K, Liu Y, Tang Y, Zhang L. Flue gas to urea: a path of flue gas resourceful utilization through electrocatalysis. Chem Eng J. 2023;461:141933.

[61]

Zhao J, Yuan Y, Zhao F, et al. Identifying the facet-dependent active sites of Cu2O for selective C-N coupling toward electrocatalytic urea synthesis. Appl Catal B Environ. 2024;340:123265.

[62]

Wang Y, Wang Y, Zhao Q, et al. Efficient C-N coupling in electrocatalytic urea generation on copper carbonate hydroxide electrocatalysts. J Energy Chem. 2024;93:289-298.

[63]

Mao Y, Ren F, Gou Q, et al. Enhanced performance of oxygen vacancy-rich In-TiO2 materials for electrocatalytic urea synthesis via a relay catalysis strategy. Chem Eng J. 2024;485:150052.

[64]

Chen Y, Liu Y, Hu S, Wu D, Zhang M, Cheng Z. Exploration of a novel electrochemical CN coupling process: urea synthesis from direct air carbon capture with nitrate wastewater. Sci Total Environ. 2024;913:169722.

[65]

Zhang D, Xue Y, Zheng X, Zhang C, Li Y. Multi-heterointerfaces for selective and efficient urea production. Nat Sci Rev. 2023;10(2):nwaC209.

[66]

Liu J, Lv X, Ma Y, Smith SC, Gu Y, Kou L. Electrocatalytic urea synthesis via N2 dimerization and universal descriptor. ACS Nano. 2023;17(24):25667-25678.

[67]

Liu X, Jiao Y, Zheng Y, Jaroniec M, Qiao SZ. Mechanism of C-N bonds formation in electrocatalytic urea production revealed by ab initio molecular dynamics simulation. Nat Commun. 2022;13(1):5471.

[68]

Feng Y, Yang H, Zhang Y, et al. Te-Doped Pd Nanocrystal for electrochemical urea production by efficiently coupling carbon dioxide reduction with nitrite reduction. Nano Lett. 2020;20(11):8282-8289.

[69]

Li R, Zhao J, Liu B, Wang D. Atomic distance engineering in metal catalysts to regulate catalytic performance. Adv Mater. 2024;36(3):2308653.

[70]

Ma F, Zhang P, Zheng X, et al. Steering the site distance of atomic Cu-Cu pairs by first-shell halogen coordination boosts CO2-to-C2 selectivity. Angew Chem Int Ed. 2024:e202412785.

RIGHTS & PERMISSIONS

2024 The Author(s). EcoEnergy published by John Wiley & Sons Australia, Ltd on behalf of China Chemical Safety Association.

AI Summary AI Mindmap
PDF (4545KB)

646

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/