Current trends in micro-supercapacitor devices

Aparna Paul , Naresh Chandra Murmu , Tapas Kuila

EcoEnergy ›› 2025, Vol. 3 ›› Issue (1) : 3 -24.

PDF
EcoEnergy ›› 2025, Vol. 3 ›› Issue (1) : 3 -24. DOI: 10.1002/ece2.71
REVIEW

Current trends in micro-supercapacitor devices

Author information +
History +
PDF

Abstract

Recently, efforts have been made to design miniaturized energy storage devices according to custom requirements. The application of micro-electronic equipment has increased significantly in information technology and biotechnology. Microelectromechanical systems, nanoelectromechanical systems, maintenance-free wireless sensor networks, implantable medical devices, micro-robots, and integrating energy conversion devices require micropower sources in small dimensions. Conventional supercapacitor devices cannot fulfill such high-power demand, but miniaturization within the microscale helps enhance the working efficiency due to the shortening of diffusion path length. Micro-supercapacitors (MSCs) in the micron to centimeter dimension range integrated with circuits and microelectronic components have gained great interest due to their high-power density, high-frequency response, and long cycling stability. Research on the design and fabrication of MSCs has progressed enormously. Integrating MSCs with other electronic units helps to achieve a highly efficient self-powered system. This review presents a critical summary of the recent progress of novel materials for MSCs, fabrication methods, advanced design, and challenges in the MSCs industry.

Keywords

capacitance / energy density / fabrication method / micro-supercapacitors / potential window

Cite this article

Download citation ▾
Aparna Paul, Naresh Chandra Murmu, Tapas Kuila. Current trends in micro-supercapacitor devices. EcoEnergy, 2025, 3(1): 3-24 DOI:10.1002/ece2.71

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sung JH, Kim SJ, Lee KH. Fabrication of all-solid-state electrochemical microcapacitors. J Power Sources. 2004; 133(2): 312-319.

[2]

Oudenhoven JFM, Baggetto L, Notten PHL. All-solid-state lithium-ion microbatteries: a review of various three-dimensional concepts. Adv Energy Mater. 2010; 1(1): 10-33.

[3]

Paul A, Ghosh S, Kolya H, Kang CW, Murmu NC, Kuila T. High performance asymmetric supercapacitor device based on lanthanum doped nickel-tin oxide/reduced graphene oxide composite. J Energy Storage. 2022; 55:105526.

[4]

Wang X, Chen Y, Schmidt OG, Yan C. Engineered nanomembranes for smart energy storage devices. Chem Soc Rev. 2016; 45(5): 1308-1330.

[5]

Paul A, Ghosh S, Kolya H, Kang CW, Chandra Murmu N, Kuila T. Synthesis of nickel-tin oxide/nitrogen-doped reduced graphene oxide composite for asymmetric supercapacitor device. Chem Eng J. 2022; 443:136453.

[6]

Wang J, Li F, Zhu F, Schmidt OG. Recent progress in micro-supercapacitor design, integration, and functionalization. Small Methods. 2018; 3(8).

[7]

Hong X, He L, Ma X, et al. Microstructuring of carbon/tin quantum dots via a novel photolithography and pyrolysis-reduction process. Nano Res. 2017; 10(11): 3743-3753.

[8]

Paul A, Samanta P, Kolya H, Kang CW, Murmu NC, Kuila T. Rational design of asymmetric aqueous supercapacitor based on the composites of reduced graphene oxide with manganese-doped nickel sulfide-tin sulfide as positive electrode and manganese sulfide negative electrode. J Power Sources. 2023; 580:233352.

[9]

Qi D, Liu Y, Liu Z, Zhang L, Chen X. Design of architectures and materials in in-plane micro-supercapacitors: current status and future challenges. Adv Mater. 2016; 29(5), 1602802.

[10]

Dubal DP, Chodankar NR, Kim DH, Gomez-Romero P. Towards flexible solid-state supercapacitors for smart and wearable electronics. Chem Soc Rev. 2018; 47(6): 2065-2129.

[11]

Kinoshita K, Song X, Kim J, Inaba M. Development of a carbon-based lithium microbattery. J Power Sources. 1999; 81-82: 170-175.

[12]

Choi N, Chen Z, Freunberger SA, et al. Challenges facing lithium batteries and electrical double-layer capacitors. Angew Chem Int Ed. 2012; 51(40): 9994-10024.

[13]

Nathan M, Golodnitsky D, Yufit V, et al. Three-dimensional thin-film Li-ion microbatteries for autonomous MEMS. J Microelectromech Syst. 2005; 14(5): 879-885.

[14]

Beidaghi M, Gogotsi Y. Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors. Energy Environ Sci. 2014; 7(3):867.

[15]

Noori A, El-Kady MF, Rahmanifar MS, Kaner RB, Mousavi MF. Towards establishing standard performance metrics for batteries, supercapacitors and beyond. Chem Soc Rev. 2019; 48(5): 1272-1341.

[16]

Lim JH, Choi DJ, Kim HK, Cho WI, Yoon YS. Thin film supercapacitors using a sputtered RuO2 electrode. J Electrochem Soc. 2001; 148(3):A275.

[17]

Wang K, Zou W, Quan B, et al. An all-solid-state flexible micro-supercapacitor on a chip. Adv Energy Mater. 2011; 1(6): 1068-1072.

[18]

Zhang H, Cao Y, Chee MOL, Dong P, Ye M, Shen J. Recent advances in micro-supercapacitors. Nanoscale. 2019; 11(13): 5807-5821.

[19]

Liu L, Niu Z, Chen J. Design and integration of flexible planar micro-supercapacitors. Nano Res. 2017; 10(5): 1524-1544.

[20]

Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nat Mater. 2008; 7(11): 845-854.

[21]

Kyeremateng NA, Brousse T, Pech D. Microsupercapacitors as miniaturized energy-storage components for on-chip electronics. Nat Nanotechnol. 2016; 12(1): 7-15.

[22]

Liu Y, He K, Chen G, Leow WR, Chen X. Nature-inspired structural materials for flexible electronic devices. Chem Rev. 2017; 117(20): 12893-12941.

[23]

Wang Y, Zhang YZ, Dubbink D, ten Elshof JE. Inkjet printing of δ-MnO2 nanosheets for flexible solid-state micro-supercapacitor. Nano Energy. 2018; 49: 481-488.

[24]

Vandeginste V. A review of fabrication technologies for carbon electrode-based micro-supercapacitors. Appl Sci. 2022; 12(2):862.

[25]

Holmberg S, Perebikovsky A, Kulinsky L, Madou M. 3-D micro and nano technologies for improvements in electrochemical power devices. Micromachines. 2014; 5(2): 171-203.

[26]

Wang K, Wu H, Meng Y, Wei Z. Conducting polymer nanowire arrays for high performance supercapacitors. Small. 2013; 10(1): 14-31.

[27]

Wang X, Lu X, Liu B, Chen D, Tong Y, Shen G. Flexible energy-storage devices: design consideration and recent progress. Adv Mater. 2014; 26(28): 4763-4782.

[28]

Boruah BD, Maji A, Misra A. Flexible array of microsupercapacitor for additive energy storage performance over a large area. ACS Appl Mater Interfaces. 2018; 10(18): 15864-15872.

[29]

Sung JH, Kim SJ, Lee KH. Fabrication of microcapacitors using conducting polymer microelectrodes. J Power Sources. 2003; 124(1): 343-350.

[30]

Chmiola J, Largeot C, Taberna PL, Simon P, Gogotsi Y. Monolithic carbide-derived carbon films for micro-supercapacitors. Science. 2010; 328(5977): 480-483.

[31]

Bu F, Zhou W, Xu Y, Du Y, Guan C, Huang W. Recent developments of advanced micro-supercapacitors: design, fabrication and applications. npj Flex Electron. 2020; 4(1):31.

[32]

Meng C, Maeng J, John SWM, Irazoqui PP. Ultrasmall integrated 3D micro-supercapacitors solve energy storage for miniature devices. Adv Energy Mater. 2013; 4(7), 1301269.

[33]

Hu H, Pei Z, Ye C. Recent advances in designing and fabrication of planar micro-supercapacitors for on-chip energy storage. Energy Storage Mater. 2015; 1: 82-102.

[34]

Zhang J, Zhang G, Zhou T, Sun S. Recent developments of planar micro-supercapacitors: fabrication, properties, and applications. Adv Funct Mater. 2020; 30(19). 1910000.

[35]

Haider WA, Tahir M, He L, et al. Structural engineering and coupling of two-dimensional transition metal compounds for micro-supercapacitor electrodes. ACS Cent Sci. 2020; 6(11): 1901-1915.

[36]

Pech D, Brunet M, Durou H, et al. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat Nanotechnol. 2010; 5(9): 651-654.

[37]

Liu N, Gao Y. Recent progress in micro-supercapacitors with in-plane interdigital electrode architecture. Small. 2017; 13(45), 1701989.

[38]

Hu H, Hua T. An easily manipulated protocol for patterning of MXenes on paper for planar micro-supercapacitors. J Mater Chem A. 2017; 5(37): 19639-19648.

[39]

Li L, Lou Z, Han W, Shen G. Flexible in-plane microsupercapacitors with electrospun NiFe2O4 nanofibers for portable sensing applications. Nanoscale. 2016; 8(32): 14986-14991.

[40]

Yang Y, He L, Tang C, et al. Improved conductivity and capacitance of interdigital carbon microelectrodes through integration with carbon nanotubes for micro-supercapacitors. Nano Res. 2016; 9(8): 2510-2519.

[41]

He L, Hong T, Huang Y, et al. Surface engineering of carbon-based microelectrodes for high-performance microsupercapacitors. Micromachines. 2019; 10(5):307.

[42]

Yang W, He L, Tian X, et al. Carbon-MEMS-based alternating stacked MoS2@rGO-CNT micro-supercapacitor with high capacitance and energy density. Small. 2017; 13(26), 1700639.

[43]

Zhou Z, Panatdasirisuk W, Mathis TS, et al. Layer-by-layer assembly of MXene and carbon nanotubes on electrospun polymer films for flexible energy storage. Nanoscale. 2018; 10(13): 6005-6013.

[44]

Si W, Yan C, Chen Y, Oswald S, Han L, Schmidt OG. On chip, all solid-state and flexible micro-supercapacitors with high performance based on MnOx/Au multilayers. Energy Environ Sci. 2013; 6(11):3218.

[45]

Liu W, Yan X, Chen J, Feng Y, Xue Q. Novel and high-performance asymmetric micro-supercapacitors based on graphene quantum dots and polyaniline nanofibers. Nanoscale. 2013; 5(13):6053.

[46]

Yang P, Ding Y, Lin Z, et al. Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. Nano Lett. 2014; 14(2): 731-736.

[47]

Liu Z, Tian X, Xu X, et al. Capacitance and voltage matching between MnO2 nanoflake cathode and Fe2O3 nanoparticle anode for high-performance asymmetric micro-supercapacitors. Nano Res. 2017; 10(7): 2471-2481.

[48]

Yu C, Gong Y, Chen R, et al. A solid-state fibriform supercapacitor boosted by host-guest hybridization between the carbon nanotube Scaffold and MXene nanosheets. Small. 2018; 14(29).

[49]

Liu Q, Yang J, Luo X, et al. Fabrication of a fibrous MnO2@MXene/CNT electrode for high-performance flexible supercapacitor. Ceram Int. 2020; 46(8): 11874-11881.

[50]

Feng X, Wang S, Das P, et al. Ultrahigh-rate and high-frequency MXene micro-supercapacitors for kHz AC line-filtering. J Energy Chem. 2022; 69: 1-8.

[51]

Kim E, Song J, Song TE, et al. Scalable fabrication of MXene-based flexible micro-supercapacitor with outstanding volumetric capacitance. Chem Eng J. 2022; 450:138456.

[52]

Wang P, Ma X, Lin Z, et al. Well-defined in-textile photolithography towards permeable textile electronics. Nat Commun. 2024; 15(1):887.

[53]

Lim JA, Lee WH, Lee HS, Lee JH, Park YD, Cho K. Self-organization of ink-jet-printed triisopropylsilylethynyl pentacene via evaporation-induced flows in a drying droplet. Adv Funct Mater. 2008; 18(2): 229-234.

[54]

Perelaer J, Smith PJ, Wijnen MMP, et al. Droplet tailoring using evaporative inkjet printing. Macromol Chem Phys. 2009; 210(5): 387-393.

[55]

Singh M, Haverinen HM, Dhagat P, Jabbour GE. Inkjet printing—process and its applications. Adv Mater. 2010; 22(6): 673-685.

[56]

Hirt L, Reiser A, Spolenak R, Zambelli T. Additive manufacturing of metal structures at the micrometer scale. Adv Mater. 2017; 29(17), 1604211.

[57]

Eggers H, Schackmar F, Abzieher T, et al. Inkjet-printed micrometer-thick perovskite solar cells with large columnar grains. Adv Energy Mater. 2019; 10(6), 1903184.

[58]

Elder B, Neupane R, Tokita E, Ghosh U, Hales S, Kong YL. Nanomaterial patterning in 3D printing. Adv Mater. 2020; 32(17), 1907142.

[59]

Hu G, Kang J, Ng LWT, et al. Functional inks and printing of two-dimensional materials. Chem Soc Rev. 2018; 47(9): 3265-3300.

[60]

Raut NC, Al-Shamery K. Inkjet printing metals on flexible materials for plastic and paper electronics. J Mater Chem C. 2018; 6(7): 1618-1641.

[61]

Pech D, Brunet M, Taberna PL, et al. Elaboration of a microstructured inkjet-printed carbon electrochemical capacitor. J Power Sources. 2010; 195(4): 1266-1269.

[62]

Wang S, Wu ZS, Zhou F, et al. All-solid-state high-energy planar hybrid micro-supercapacitors based on 2D VN nanosheets and Co(OH)2 nanoflowers. npj 2D Mater Appl. 2018; 2(1):7.

[63]

Liu S, Xie J, Li H, et al. Nitrogen-doped reduced graphene oxide for high-performance flexible all-solid-state micro-supercapacitors. J Mater Chem A. 2014; 2(42): 18125-18131.

[64]

Bellani S, Petroni E, Del Rio Castillo AE, et al. Scalable production of graphene inks via wet-jet milling exfoliation for screen-printed micro-supercapacitors. Adv Funct Mater. 2019; 29(14), 1807659.

[65]

Giannakou P, Masteghin MG, Slade RCT, Hinder SJ, Shkunov M. Energy storage on demand: ultra-high-rate and high-energy-density inkjet-printed NiO micro-supercapacitors. J Mater Chem A. 2019; 7(37): 21496-21506.

[66]

Sundriyal P, Bhattacharya S. Scalable Micro-fabrication of flexible, solid-state, inexpensive, and high-performance planar micro-supercapacitors through inkjet printing. ACS Appl Energy Mater. 2019; 2(3): 1876-1890.

[67]

Bräuniger Y, Lochmann S, Grothe J, Hantusch M, Kaskel S. Piezoelectric inkjet printing of nanoporous carbons for micro-supercapacitor devices. ACS Appl Energy Mater. 2021; 4(2): 1560-1567.

[68]

Lukatskaya MR, Kota S, Lin Z, et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat Energy. 2017; 2(8):17105.

[69]

Zhang CJ, Kremer MP, Seral-Ascaso A, et al. Stamping of flexible, coplanar micro-supercapacitors using MXene inks. Adv Funct Mater. 2018; 28(9), 1705506.

[70]

Hart JL, Hantanasirisakul K, Lang AC, et al. Control of MXenes' electronic properties through termination and intercalation. Nat Commun. 2019; 10(1):522.

[71]

Huang L, Gu X, Zheng G. Tuning active sites of MXene for efficient electrocatalytic N2 fixation. Chem. 2019; 5(1): 15-17.

[72]

Liu S, Li J, Yan X, et al. Superhierarchical cobalt-embedded nitrogen-doped porous carbon nanosheets as two-in-one hosts for high-performance lithium-sulfur batteries. Adv Mater. 2018; 30(12), 1706895.

[73]

Vural M, Pena-Francesch A, Bars-Pomes J, et al. Inkjet printing of self-assembled 2D titanium carbide and protein electrodes for stimuli-responsive electromagnetic shielding. Adv Funct Mater. 2018; 28(32), 1801972.

[74]

Jiang Q, Lei Y, Liang H, Xi K, Xia C, Alshareef HN. Review of MXene electrochemical microsupercapacitors. Energy Storage Mater. 2020; 27: 78-95.

[75]

Lyu Z, Lim GJH, Koh JJ, et al. Design and manufacture of 3D-printed batteries. Joule. 2021; 5(1): 89-114.

[76]

Zhang C, McKeon L, Kremer MP, et al. Additive-free MXene inks and direct printing of micro-supercapacitors. Nat Commun. 2019; 10(1):1795.

[77]

Ma J, Zheng S, Cao Y, et al. Aqueous MXene/PH1000 hybrid inks for inkjet-printing micro-supercapacitors with unprecedented volumetric capacitance and modular self-powered microelectronics. Adv Energy Mater. 2021; 11(23), 2100746.

[78]

Sun P, Liu J, Liu Q, et al. Nitrogen and sulfur co-doped MXene ink without additive for high-performance inkjet-printing micro-supercapacitors. Chem Eng J. 2022; 450:138372.

[79]

Xu Y, Schwab MG, Strudwick AJ, et al. Screen-printable thin film supercapacitor device utilizing graphene/polyaniline inks. Adv Energy Mater. 2013; 3(8): 1035-1040.

[80]

Hyun WJ, Secor EB, Hersam MC, Frisbie CD, Francis LF. High-resolution patterning of graphene by screen printing with a silicon stencil for highly flexible printed electronics. Adv Mater. 2014; 27(1): 109-115.

[81]

Lu Q, Liu L, Yang S, et al. Facile synthesis of amorphous FeOOH/MnO2 composites as screen-printed electrode materials for all-printed solid-state flexible supercapacitors. J Power Sources. 2017; 361: 31-38.

[82]

Shen K, Ding J, Yang S. 3D printing quasi-solid-state asymmetric micro-supercapacitors with ultrahigh areal energy density. Adv Energy Mater. 2018; 8(20), 1800408.

[83]

Li H, Liu S, Li X, Wu ZS, Liang J. Screen-printing fabrication of high volumetric energy density micro-supercapacitors based on high-resolution thixotropic-ternary hybrid interdigital micro-electrodes. Mater Chem Front. 2019; 3(4): 626-635.

[84]

Guo J, Song H, Liu H, et al. Polypyrrole-interface-functionalized nano-magnetite epoxy nanocomposites as electromagnetic wave absorbers with enhanced flame retardancy. J Mater Chem C. 2017; 5(22): 5334-5344.

[85]

Song H, Li T, Han Y, et al. Synthesis, core-shell structures and properties of fluorene/polypyrrole composite. Polym Sci Ser B. 2017; 59(5): 610-615.

[86]

Wu W. Inorganic nanomaterials for printed electronics: a review. Nanoscale. 2017; 9(22): 7342-7372.

[87]

Liu L, Lu Q, Yang S, et al. All-printed solid-state microsupercapacitors derived from self-template synthesis of Ag@PPy nanocomposites. Adv Mater Technol. 2017; 3(1), 1700206.

[88]

Tian W, Li Y, Zhou J, et al. Implantable and biodegradable micro-supercapacitor based on a superassembled three-dimensional network Zn@PPy hybrid electrode. ACS Appl Mater Interfaces. 2021; 13(7): 8285-8293.

[89]

Chen H, Chen S, Zhang Y, Ren H, Hu X, Bai Y. Sand-milling fabrication of screen-printable graphene composite inks for high-performance planar micro-supercapacitors. ACS Appl Mater Interfaces. 2020; 12(50): 56319-56329.

[90]

Xu S, Dall'Agnese Y, Wei G, Zhang C, Gogotsi Y, Han W. Screen-printable microscale hybrid device based on MXene and layered double hydroxide electrodes for powering force sensors. Nano Energy. 2018; 50: 479-488.

[91]

Yu L, Fan Z, Shao Y, Tian Z, Sun J, Liu Z. Versatile N-doped MXene ink for printed electrochemical energy storage application. Adv Energy Mater. 2019; 9(34), 1901839.

[92]

Abdolhosseinzadeh S, Schneider R, Verma A, Heier J, Nüesch F, Zhang CJ. Turning trash into treasure: additive free MXene sediment inks for screen-printed micro-supercapacitors. Adv Mater. 2020; 32(17), 2000716

[93]

Li H, Li X, Liang J, Chen Y. Hydrous RuO2-decorated MXene coordinating with silver nanowire inks enabling fully printed micro-supercapacitors with extraordinary volumetric performance. Adv Energy Mater. 2019; 9(15), 1803987.

[94]

Farahani RD, Dubé M, Therriault D. Three-dimensional printing of multifunctional nanocomposites: manufacturing techniques and applications. Adv Mater. 2016; 28(28): 5794-5821.

[95]

Zhakeyev A, Wang P, Zhang L, Shu W, Wang H, Xuan J. Additive manufacturing: unlocking the evolution of energy materials. Adv Sci. 2017; 4(10), 1700187.

[96]

Zhang F, Wei M, Viswanathan VV, et al. 3D printing technologies for electrochemical energy storage. Nano Energy. 2017; 40: 418-431.

[97]

Li H, Liang J. Recent development of printed micro-supercapacitors: printable materials, printing technologies, and perspectives. Adv Mater. 2019; 32(3), 1805864.

[98]

Zhang W, Liu H, Zhang X, Li X, Zhang G, Cao P. 3D printed micro-electrochemical energy storage devices: from design to integration. Adv Funct Mater. 2021; 31(40), 2104909.

[99]

Yu W, Zhou H, Li BQ, Ding S. 3D printing of carbon nanotubes-based microsupercapacitors. ACS Appl Mater Interfaces. 2017; 9(5): 4597-4604.

[100]

He W, Zhang W, Li Y, Jing X. A high concentration graphene dispersion stabilized by polyaniline nanofibers. Synth Met. 2012; 162(13-14): 1107-1113.

[101]

You X, Yang J, Dong S. Structural and functional applications of 3D-printed graphene-based architectures. J Mater Sci. 2021; 56(15): 9007-9046.

[102]

Yao Y, Fu KK, Yan C, et al. Three-dimensional printable high-temperature and high-rate heaters. ACS Nano. 2016; 10(5): 5272-5279.

[103]

Lai F, Yang C, Lian R, et al. Three-phase boundary in cross-coupled micro-mesoporous networks enabling 3D-printed and ionogel-based quasi-solid-state micro-supercapacitors. Adv Mater. 2020; 32(40), 2002474.

[104]

Orangi J, Hamade F, Davis VA, Beidaghi M. 3D printing of additive-free 2D Ti3C2Tx (MXene) ink for fabrication of micro-supercapacitors with ultra-high energy densities. ACS Nano. 2019; 14(1): 640-650.

[105]

Li X, Li H, Fan X, Shi X, Liang J. 3D-printed stretchable micro-supercapacitor with remarkable areal performance. Adv Energy Mater. 2020; 10(14), 1903794.

[106]

Zhao Y, Liu F, Zhao Z, et al. Direct ink printing reduced graphene oxide/KCu7S4 electrodes for high-performance supercapacitors. Adv Compos Hybrid Mater. 2022; 5(2): 1516-1526.

[107]

Chen Y, Guo M, Xu L, et al. In-situ selective surface engineering of graphene micro-supercapacitor chips. Nano Res. 2021; 15(2): 1492-1499.

[108]

Huang Q, Liu X, Wang J. 3D printed pure carbon-based electrodes for zinc-ion hybrid supercapacitor. Carbon Trends. 2022; 9:100222.

[109]

Liu B, Cao Z, Yang Z, et al. Flexible micro-supercapacitors fabricated from MnO2 nanosheet/graphene composites with black phosphorus additive. Prog Nat Sci: Mater Int. 2022; 32(1): 10-19.

[110]

Kim NY, Oh IH, Chang ST. Paper-based solid-state micro-supercapacitors fabricated by hydrophobic wax barrier printing. Korean J Chem Eng. 2024; 41(3): 763-772.

[111]

Wen F, Hao C, Xiang J, et al. Enhanced laser scribed flexible graphene-based micro-supercapacitor performance with reduction of carbon nanotubes diameter. Carbon. 2014; 75: 236-243.

[112]

Ye R, Peng Z, Wang T, et al. In situ formation of metal oxide nanocrystals embedded in laser-induced graphene. ACS Nano. 2015; 9(9): 9244-9251.

[113]

Wang S, Wu ZS, Zheng S, et al. Scalable fabrication of photochemically reduced graphene-based monolithic micro-supercapacitors with superior energy and power densities. ACS Nano. 2017; 11(4): 4283-4291.

[114]

Hwang JY, El-Kady MF, Wang Y, et al. Direct preparation and processing of graphene/RuO2 nanocomposite electrodes for high-performance capacitive energy storage. Nano Energy. 2015; 18: 57-70.

[115]

Fornasini L, Scaravonati S, Magnani G, et al. In situ decoration of laser-scribed graphene with TiO2 nanoparticles for scalable high-performance micro-supercapacitors. Carbon. 2021; 176: 296-306.

[116]

Khodabandehlo A, Noori A, Rahmanifar MS, El-Kady MF, Kaner RB, Mousavi MF. Laser-scribed graphene-polyaniline microsupercapacitor for internet-of-things applications. Adv Funct Mater. 2022; 32(39), 2204555.

[117]

Xie Y, Zhang J, Xu H, Zhou T. Laser-assisted mask-free patterning strategy for high-performance hybrid micro-supercapacitors with 3D current collectors. Chem Eng J. 2022; 437:135493.

[118]

Yue Y, Liu N, Ma Y, et al. Highly self-healable 3D microsupercapacitor with MXene-graphene composite aerogel. ACS Nano. 2018; 12(5): 4224-4232.

[119]

Rao Y, Yuan M, Gao B, Li H, Yu J, Chen X. Laser-scribed phosphorus-doped graphene derived from Kevlar textile for enhanced wearable micro-supercapacitor. J Colloid Interface Sci. 2023; 630: 586-594.

[120]

Yuan M, Luo F, Rao Y, et al. SWCNT-bridged laser-induced graphene fibers decorated with MnO2 nanoparticles for high-performance flexible micro-supercapacitors. Carbon. 2021; 183: 128-137.

[121]

Chen Z, Chen Y, Zhao Y, et al. B/N-enriched semi-conductive polymer film for micro-supercapacitors with Ac line-filtering performance. Langmuir. 2021; 37(7): 2523-2531.

[122]

Wang L, Ding Y, Xu Z, et al. Picosecond ultraviolet laser patterned in-plane asymmetric micro-supercapacitors with high-precision capacity matching. Energy Storage Mater. 2024; 65:103132.

[123]

Cheng SKS, Li T, Meena SS, et al. Advances in microfluidic technologies for energy storage and release systems. Adv Energy Sustain Res. 2022; 3(10), 2200060.

[124]

Xue M, Xie Z, Zhang L, et al. Microfluidic etching for fabrication of flexible and all-solid-state micro supercapacitor based on MnO2 nanoparticles. Nanoscale. 2011; 3(7):2703.

[125]

Qiu H, Cheng H, Meng J, Wu G, Chen S. Magnetothermal microfluidic-assisted hierarchical microfibers for ultrahigh-energy-density supercapacitors. Angew Chem. 2020; 132(20): 8008-8017.

[126]

Esfahani MZ, Khosravi M. Stamp-assisted flexible graphene-based micro-supercapacitors. J Power Sources. 2020; 462:228166.

[127]

Guan T, Shen S, Cheng Z, Wu G, Bao N. Microfluidic-assembled hierarchical macro-microporous graphene fabrics towards high-performance robust supercapacitors. Chem Eng J. 2022; 440:135878.

[128]

Chen Y, Li X, Bi Z, Li G, He X, Gao X. Stamp-assisted printing of nanotextured electrodes for high-performance flexible planar micro-supercapacitors. Chem Eng J. 2018; 353: 499-506.

[129]

Shi Q, Xiang Y, Ji G, et al. Flexible planar-integrated micro-supercapacitors from electrochemically exfoliated graphene as advanced electrodes prepared by flash foam-assisted stamp technique on paper. Energy Technol. 2019; 7(11), 1900664.

[130]

Hyun WJ, Secor EB, Kim C, Hersam MC, Francis LF, Frisbie CD. Scalable, self-aligned printing of flexible graphene micro-supercapacitors. Adv Energy Mater. 2017; 7(17), 1700285.

[131]

Li F, Qu J, Li Y, et al. Stamping fabrication of flexible planar micro-supercapacitors using porous graphene inks. Adv Sci. 2020; 7(19), 2001561.

[132]

Chen X, Luan H, Gu M. Beyond high-voltage capacitors: supercapacitor arrays based on laser-scribed subwavelength-featured graphene patterns. ACS Appl Energy Mater. 2022; 5(8): 9315-9323.

[133]

Kamboj N, Purkait T, Das M, Sarkar S, Hazra KS, Dey RS. Ultralong cycle life and outstanding capacitive performance of a 10.8 V metal free micro-supercapacitor with highly conducting and robust laser-irradiated graphene for an integrated storage device. Energy Environ Sci. 2019; 12(8): 2507-2517.

[134]

Tagliaferri S, Nagaraju G, Panagiotopoulos A, et al. Aqueous inks of pristine graphene for 3D printed microsupercapacitors with high capacitance. ACS Nano. 2021; 15(9): 15342-15353.

[135]

Xia M, Ning J, Feng X, et al. Ionization-bombardment assisted deposition of MXene/SiC heterostructure for micro-supercapacitor with enhanced sodium storage. Chem Eng J. 2022; 428:131114.

[136]

Yang HJ, Lee J-W, Seo SH, et al. Fully stretchable self-charging power unit with micro-supercapacitor and triboelectric nanogenerator based on oxidized single-walled carbon nanotube/polymer electrodes. Nano Energy. 2021; 86:106083.

[137]

Park H, Song C, Jin SW, et al. High performance flexible micro-supercapacitor for powering a vertically integrated skin-attachable strain sensor on a bio-inspired adhesive. Nano Energy. 2021; 83:105837.

[138]

Cheng W, Fu J, Hu H, Ho D. Interlayer structure engineering of MXene-based capacitor-type electrode for hybrid micro-supercapacitor toward battery-level energy density. Adv Sci. 2021; 8(16), 2100775.

[139]

Chae C, Kim YB, Lee SS, et al. 3D-printed solid-state microsupercapacitors. Energy Storage Mater. 2021; 40: 1-9.

[140]

Karbhal I, Basu A, Patrike A, Shelke MV. Laser patterning of boron carbon nitride electrodes for flexible micro-supercapacitor with remarkable electrochemical stability/capacity. Carbon. 2021; 171: 750-757.

[141]

Li X, Li H, Fan X, Shi X, Liang J. 3D-printed stretchable micro-supercapacitor with remarkable areal performance. Adv Energy Mater. 2020; 10(14), 1903794.

[142]

Liu L, Lu Q, Yang S, et al. All printed solid-state microsupercapacitors derived from self-template synthesis of Ag@PPy nanocomposites. Adv Mater Technol. 2017; 3(1), 1700206.

[143]

Shi X, Zhou F, Peng J, Wu R, Wu Z, Bao X. One-step scalable fabrication of graphene-integrated micro-supercapacitors with remarkable flexibility and exceptional performance uniformity. Adv Funct Mater. 2019; 29(50), 1902860.

RIGHTS & PERMISSIONS

2024 The Author(s). EcoEnergy published by John Wiley & Sons Australia, Ltd on behalf of China Chemical Safety Association.

AI Summary AI Mindmap
PDF

30

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/