Unveiling the Remarkable Catalytic Performance of Al2O3@Cu-Ce Core–Shell Nanofiber Catalyst for Carbonyl Sulfide Hydrolysis at Low Temperature
Xin Song , Lina Sun , Panting Gao , Rongji Cui , Weiliang Han , Xiaosheng Huang , Zhicheng Tang
EcoEnergy ›› 2025, Vol. 3 ›› Issue (3) : e70011
Unveiling the Remarkable Catalytic Performance of Al2O3@Cu-Ce Core–Shell Nanofiber Catalyst for Carbonyl Sulfide Hydrolysis at Low Temperature
Carbonyl sulfide represents a significant organic sulfur impurity in furnace gas, and its removal can enhance the economic value of furnace gas. In this study, a series of Al-based core–shell nanofiber catalysts were synthesized and employed for the catalytic hydrolysis of COS. The Al2O3@Cu-Ce catalyst demonstrated a 100% COS conversion efficiency at a gas hourly space velocity of 15 000 h−1 at 70°C. The interaction of Cu and Ce can enhance their dispersion and facilitate the formation of micropores. The formation of Cu2Al4O7 and CeAlO3 resulted in a reduction in the number of micropores and effective active components on the catalyst surface. The primary catalytic roles were played by Cu2+ and Ce3+. The high content of adsorbed state oxygen Oβ and suitable water resistance resulted in enhanced hydrolysis performance. The Al2O3 shell layer is capable of effectively protecting the Cu and Ce components from being covered and consumed, thereby prolonging the lifetime of the catalyst. The addition of Cu resulted in alterations to both the weakly and moderately basic sites, whereas the addition of Ce primarily affected the weakly basic sites. The formation of Cu-O-Ce increased the percentage of CuO in the Cu fraction, thereby enhancing the COS removal performance. There is a competitive adsorption relationship between COS and H2S on the CuO (002) surface. COS, H2O, and H2S compete for adsorption on the Ov-CeO2 (111) surface. Ov-CeO2 (111) promotes the dissociation of H2O and the generation of -SH groups. The hydrolysis process of COS occurs in steps on CuO (002) and Ov-CeO2 (111).
Al-based catalyst / carbonyl sulfide / catalytic hydrolysis / core–shell / nanofiber
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
2025 The Author(s). EcoEnergy published by John Wiley & Sons Australia, Ltd on behalf of China Chemical Safety Association.
/
| 〈 |
|
〉 |