Mechanochemical-Assisted Defect Engineering: Enhanced Post-Synthetic Metal Exchange in MOFs

Shunli Shi , Caiju Jin , Chenfa Deng , Bingzhen Zhang , Chenzexi Xu , Jie Hu , Jiaxuan Yang , Weiming Xiao , Shuhua Wang , Chao Chen

EcoEnergy ›› 2025, Vol. 3 ›› Issue (3) : e70010

PDF
EcoEnergy ›› 2025, Vol. 3 ›› Issue (3) : e70010 DOI: 10.1002/ece2.70010
RESEARCH ARTICLE

Mechanochemical-Assisted Defect Engineering: Enhanced Post-Synthetic Metal Exchange in MOFs

Author information +
History +
PDF

Abstract

The post-synthesis metal exchange (PSME) strategy receives substantial attention in the construction of heterometallic mental-organic frameworks (MOFs). However, traditional PSME methods encounter challenges such as prolonged solvothermal incubation and difficulties in introducing secondary metal elements. Thus, developing a rapid, sustainable, and scaled-up PSME approach for MOFs is essential. Herein, we present a mechanochemical-assisted defect engineering strategy that accelerates the PSME process (mechano-PSME). Characterization techniques demonstrate that this strategy swiftly overcomes the energy barriers of the parent MOFs, resulting in the formation of an abundance of defects. This creates an optimal environment for incorporating heterometallics, thus facilitating rapid, batch PSME of MOFs. The experimental results clearly validate the effectiveness of mechano-PSME in producing bimetallic Zr/Hf-based UiO-66, a process challenging to achieve under solvothermal conditions. Additionally, the Zr/Hf-based UiO-66 exhibits improved acidic functionality and exceptional catalytic efficiency in the esterification of levulinic acid. This research paves the way for the sustainable development of functional materials and outlines an ambitious blueprint for innovating multifunctional materials.

Cite this article

Download citation ▾
Shunli Shi, Caiju Jin, Chenfa Deng, Bingzhen Zhang, Chenzexi Xu, Jie Hu, Jiaxuan Yang, Weiming Xiao, Shuhua Wang, Chao Chen. Mechanochemical-Assisted Defect Engineering: Enhanced Post-Synthetic Metal Exchange in MOFs. EcoEnergy, 2025, 3(3): e70010 DOI:10.1002/ece2.70010

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

S. Abednatanzi, P. Gohari Derakhshandeh, H. Depauw, et al., “Mixed-Metal Metal-Organic Frameworks,” Chemical Society Reviews 48, no. 9 (2019): 2535–2565, https://doi.org/10.1039/c8cs00337h.

[2]

M. J. Kalmutzki, N. Hanikel, and O. M. Yaghi, “Secondary Building Units as the Turning Point in the Development of the Reticular Chemistry of MOFs,” Science Advances 4, no. 10 (2018): eaat9180, https://doi.org/10.1126/sciadv.aat9180.

[3]

M. Lalonde, W. Bury, O. Karagiaridi, Z. Brown, J. T. Hupp, and O. K. Farha, “Transmetalation: Routes to Metal Exchange Within Metal-Organic Frameworks,” Journal of Materials Chemistry A 1, no. 18 (2013): 5453–5468, https://doi.org/10.1039/c3ta10784a.

[4]

S. M. Cui, Y. J. Shao, and W. Q. Zhong, “Synthesis and Characterization of Novel Bimetallic Mg-Ca/DOBDC Metal-Organic Frameworks as a High Stability CO Adsorbent,” Chemical Engineering Journal 474 (2023): 145018, https://doi.org/10.1016/j.cej.2023.145018.

[5]

D. Wu, J. G. Cheng, M. Wang, et al., “Design and Preparation of New Luminescent Metal-Organic Frameworks and Different Doped Isomers: Sensing Pollution Ions and Enhancement of Gas Capture Capacity,” Inorganic Chemistry Frontiers 8, no. 2 (2021): 286–295, https://doi.org/10.1039/d0qi01088j.

[6]

C. H. Lau, R. Babarao, and M. R. Hill, “A Route to Drastic Increase of CO2 Uptake in Zr Metal Organic Framework UiO-66,” Chemical Communications 49, no. 35 (2013): 3634–3636, https://doi.org/10.1039/c3cc40470f.

[7]

H. H. He, J. P. Yuan, P. Y. Cai, et al., “Yolk-Shell and Hollow Zr/Ce-UiO-66 for Manipulating Selectivity in Tandem Reactions and Photoreactions,” Journal of the American Chemical Society 145, no. 31 (2023): 17164–17175, https://doi.org/10.1021/jacs.3c03883.

[8]

J. Ma, Y. Zhang, B. Wang, Z. Jiang, Q. Zhang, and S. Zhuo, “Interfacial Engineering of Bimetallic Ni/Co-MOFs With H-Substituted Graphdiyne for Ammonia Electrosynthesis From Nitrate,” ACS Nano 17, no. 7 (2023): 6687–6697, https://doi.org/10.1021/acsnano.2c12491.

[9]

B. An, J. Zhang, K. Cheng, P. Ji, C. Wang, and W. Lin, “Confinement of Ultrasmall Cu/ZnOx Nanoparticles in Metal-Organic Frameworks for Selective Methanol Synthesis From Catalytic Hydrogenation of CO2,” Journal of the American Chemical Society 139, no. 10 (2017): 3834–3840, https://doi.org/10.1021/jacs.7b00058.

[10]

Y. Tian, L. Xie, X. Liu, Y. Geng, J. Wang, and M. Ma, “In Situ Synthesis of Self-Supporting Conductive CuCo-Based Bimetal Organic Framework for Sensitive Nonenzymatic Glucose Sensing in Serum and Beverage,” Food Chemistry 437 (2024): 137875, https://doi.org/10.1016/j.foodchem.2023.137875.

[11]

Q. Li, J. B. Wu, L. Huang, et al., “Sulfur Dioxide Gas-Sensitive Materials Based on Zeolitic Imidazolate Framework-Derived Carbon Nanotubes,” Journal of Materials Chemistry A 6, no. 25 (2018): 12115–12124, https://doi.org/10.1039/c8ta02036a.

[12]

X. Zha, W. Yang, L. Shi, et al., “Morphology Control Strategy of Bimetallic MOF Nanosheets for Upgrading the Sensitivity of Noninvasive Glucose Detection,” ACS Applied Materials & Interfaces 14, no. 33 (2022): 37843–37852, https://doi.org/10.1021/acsami.2c10760.

[13]

H.-G. Du, X.-F. Zhang, L.-W. Ding, et al., “Engineering Pore-Size Distribution of Metal-Loaded Carbon Catalysts by In Situ Cavitation for Boosting Electrochemical Mass Transfer,” Applied Catalysis B 342 (2024): 123396, https://doi.org/10.1016/j.apcatb.2023.123396.

[14]

L. Liang, Y. Zhong, J. Chen, J. Zhang, T. Zhang, and Z. Li, “Energetic Bimetallic MOF: A Promising Promoter for Ionic Liquid Hypergolic Ignition,” Inorganic Chemistry 61, no. 37 (2022): 14864–14870, https://doi.org/10.1021/acs.inorgchem.2c02479.

[15]

E. A. Dolgopolova, A. J. Brandt, O. A. Ejegbavwo, et al., “Electronic Properties of Bimetallic Metal-Organic Frameworks (MOFs): Tailoring the Density of Electronic States Through MOF Modularity,” Journal of the American Chemical Society 139, no. 14 (2017): 5201–5209, https://doi.org/10.1021/jacs.7b01125.

[16]

S. S. Li, Y. Q. Gao, N. Li, L. Ge, X. H. Bu, and P. Y. Feng, “Transition Metal-Based Bimetallic MOFs and MOF-Derived Catalysts for Electrochemical Oxygen Evolution Reaction,” Energy & Environmental Science 14, no. 4 (2021): 1897–1927, https://doi.org/10.1039/d0ee03697h.

[17]

L. Chen, H. F. Wang, C. Li, and Q. Xu, “Bimetallic Metal-Organic Frameworks and Their Derivatives,” Chemical Science 11, no. 21 (2020): 5369–5403, https://doi.org/10.1039/d0sc01432j.

[18]

M. Kim, J. F. Cahill, H. Fei, K. A. Prather, and S. M. Cohen, “Postsynthetic Ligand and Cation Exchange in Robust Metal-Organic Frameworks,” Journal of the American Chemical Society 134, no. 43 (2012): 18082–18088, https://doi.org/10.1021/ja3079219.

[19]

Q. Yao, J. Sun, K. Li, J. Su, M. V. Peskov, and X. Zou, “A Series of Isostructural Mesoporous Metal-Organic Frameworks Obtained by Ion-Exchange Induced Single-Crystal to Single-Crystal Transformation,” Dalton Transactions 41, no. 14 (2012): 3953–3955, https://doi.org/10.1039/c2dt12088g.

[20]

H. Fei, J. F. Cahill, K. A. Prather, and S. M. Cohen, “Tandem Postsynthetic Metal Ion and Ligand Exchange in Zeolitic Imidazolate Frameworks,” Inorganic Chemistry 52, no. 7 (2013): 4011–4016, https://doi.org/10.1021/ic400048g.

[21]

S. Yuan, W. Lu, Y. P. Chen, et al., “Sequential Linker Installation: Precise Placement of Functional Groups in Multivariate Metal-Organic Frameworks,” Journal of the American Chemical Society 137, no. 9 (2015): 3177–3180, https://doi.org/10.1021/ja512762r.

[22]

J. D. Evans, C. J. Sumby, and C. J. Doonan, “Post-Synthetic Metalation of Metal-Organic Frameworks,” Chemical Society Reviews 43, no. 16 (2014): 5933–5951, https://doi.org/10.1039/c4cs00076e.

[23]

Z. Yin, S. Wan, J. Yang, M. Kurmoo, and M. H. Zeng, “Recent Advances in Post-Synthetic Modification of Metal-Organic Frameworks: New Types and Tandem Reactions,” Coordination Chemistry Reviews 378 (2019): 500–512, https://doi.org/10.1016/j.ccr.2017.11.015.

[24]

M. Kim, J. F. Cahill, Y. X. Su, K. A. Prather, and S. M. Cohen, “Postsynthetic Ligand Exchange as a Route to Functionalization of 'Inert' Metal-Organic Frameworks,” Chemical Science 3, no. 1 (2012): 126–130, https://doi.org/10.1039/c1sc00394a.

[25]

J. Q. Jiang, C. X. Yang, and X. P. Yan, “Postsynthetic Ligand Exchange for the Synthesis of Benzotriazole-Containing Zeolitic Imidazolate Framework,” Chemical Communications 51, no. 30 (2015): 6540–6543, https://doi.org/10.1039/c5cc00366k.

[26]

X. Liu, Y. Li, L. Zeng, et al., “A Review on Mechanochemistry: Approaching Advanced Energy Materials With Greener Force,” Advanced Materials 34, no. 46 (2022): e2108327, https://doi.org/10.1002/adma.202108327.

[27]

F. Cuccu, L. De Luca, F. Delogu, et al., “Mechanochemistry: New Tools to Navigate the Uncharted Territory of ‘Impossible’ Reactions,” ChemSusChem 15, no. 17 (2022): e202200362, https://doi.org/10.1002/cssc.202200362.

[28]

T. Friscic, C. Mottillo, and H. M. Titi, “Mechanochemistry for Synthesis,” Angewandte Chemie International Edition in English 59, no. 3 (2020): 1018–1029, https://doi.org/10.1002/anie.201906755.

[29]

C. J. Jin, S. L. Shi, S. Liao, et al., “Post-Synthetic Ligand Exchange by Mechanochemistry: Toward Green, Efficient, and Large-Scale Preparation of Functional Metal-Organic Frameworks,” Chemistry of Materials 35, no. 11 (2023): 4489–4497, https://doi.org/10.1021/acs.chemmater.3c00652.

[30]

J. X. Li, G. G. Chang, G. Tian, et al., “Near-Linear Controllable Synthesis of Mesoporosity in Hierarchical UiO-66 by Template-Free Nucleation-Competition,” Advanced Functional Materials 31, no. 30 (2021): 2102868, https://doi.org/10.1002/adfm.202102868.

[31]

X. Yan, K. Wang, X. Xu, et al., “Bronsted Basicity in Metal-Organic Framework-808 and Its Application in Base-Free Catalysis,” Inorganic Chemistry 57, no. 14 (2018): 8033–8036, https://doi.org/10.1021/acs.inorgchem.8b01044.

[32]

Y. Feng, Q. Chen, M. Q. Jiang, and J. F. Yao, “Tailoring the Properties of UiO-66 through Defect Engineering: A Review,” Industrial & Engineering Chemistry Research 58, no. 38 (2019): 17646–17659, https://doi.org/10.1021/acs.iecr.9b03188.

[33]

G. C. Shearer, S. Chavan, J. Ethiraj, et al., “Tuned to Perfection: Ironing Out the Defects in Metal-Organic Framework UiO-66,” Chemistry of Materials 26, no. 14 (2014): 4068–4071, https://doi.org/10.1021/cm501859p.

[34]

S. Q. Wang, X. Z. Wang, X. M. Cheng, J. Ma, and W. Y. Sun, “Tailoring Defect-Type and Ligand-Vacancies in Zr(IV) Frameworks for CO Photoreduction,” Journal of Materials Chemistry A 10, no. 31 (2022): 16396–16402, https://doi.org/10.1039/d2ta04528a.

[35]

U. Gelius, P. F. Hedén, J. Hedman, et al., “Molecular Spectroscopy by Means of ESCA III. Carbon Compounds,” Physica Scripta 2, no. 1–2 (1970): 70–80, https://doi.org/10.1088/0031-8949/2/1-2/014.

[36]

P. Hu, X. P. Liang, M. Yaseen, et al., “Preparation of Highly-Hydrophobic Novel N-Coordinated UiO-66(Zr) With Dopamine via Fast Mechano-Chemical Method for (CHO-/Cl-)-VOCs Competitive Adsorption in Humid Environment,” Chemical Engineering Journal 332 (2018): 608–618, https://doi.org/10.1016/j.cej.2017.09.115.

[37]

X. Chang, X. F. Yang, Y. Qiao, et al., “Confined Heteropoly Blues in Defected Zr-MOF (Bottle Around Ship) for High-Efficiency Oxidative Desulfurization,” Small 16, no. 14 (2020): e1906432, https://doi.org/10.1002/smll.201906432.

[38]

W. Yang, T. Yu, L. Sun, et al., “Pore-Expanded UiO-66 Pellets for Efficient Bisphenol A Adsorption,” Chemical Engineering Journal 455 (2023): 140843, https://doi.org/10.1016/j.cej.2022.140843.

[39]

C. M. Granadeiro, S. O. Ribeiro, M. Karmaoui, et al., “Production of Ultra-Deep Sulfur-Free Diesels Using a Sustainable Catalytic System Based on UiO-66 (Zr),” Chemical Communications 51, no. 72 (2015): 13818–13821, https://doi.org/10.1039/c5cc03958d.

[40]

W. M. Xiao, Q. L. Dong, Y. Wang, Y. Li, S. J. Deng, and N. Zhang, “Time Modulation of Defects in UiO-66 and Application in Oxidative Desulfurization,” CrystEngComm 20, no. 38 (2018): 5658–5662, https://doi.org/10.1039/c8ce00795k.

[41]

P. H. M. Andrade, N. Henry, C. Volkringer, et al., “Iodine Uptake by Zr-/Hf-Based UiO-66 Materials: The Influence of Metal Substitution on Iodine Evolution,” ACS Applied Materials & Interfaces 14, no. 26 (2022): 29916–29933, https://doi.org/10.1021/acsami.2c07288.

[42]

Z. Fang, B. Bueken, D. E. De Vos, and R. A. Fischer, “Defect-Engineered Metal-Organic Frameworks,” Angewandte Chemie International Edition in English 54, no. 25 (2015): 7234–7254, https://doi.org/10.1002/anie.201411540.

[43]

S. Dissegna, K. Epp, W. R. Heinz, G. Kieslich, and R. A. Fischer, “Defective Metal-Organic Frameworks,” Advanced Materials 30, no. 37 (2018): e1704501, https://doi.org/10.1002/adma.201704501.

[44]

N. Y. Topsoe, “Characterization of the Nature of Surface Sites on Vanadia Titania Catalysts by FTIR,” Journal of Catalysis 128, no. 2 (1991): 499–511, https://doi.org/10.1016/0021-9517(91)90307-P.

[45]

F. C. Tai, S. C. Lee, J. Chen, C. Wei, and S. H. Chang, “Multipeak Fitting Analysis of Raman Spectra on DLCH Film,” Journal of Raman Spectroscopy 40, no. 8 (2009): 1055–1059, https://doi.org/10.1002/jrs.2234.

[46]

Y. Zhang, T. S. Lee, J. M. Favale, et al., “Delayed Fluorescence From a Zirconium(IV) Photosensitizer With Ligand-to-Metal Charge-Transfer Excited States,” Nature Chemistry 12, no. 4 (2020): 345–352, https://doi.org/10.1038/s41557-020-0430-7.

[47]

G. Ye, H. L. Wang, X. Y. Zeng, L. Wang, and J. Wang, “Defect-Rich Bimetallic UiO-66(Hf-Zr): Solvent-Free Rapid Synthesis and Robust Ambient-Temperature Oxidative Desulfurization Performance,” Applied Catalysis B: Environmental 299 (2021): 120659, https://doi.org/10.1016/j.apcatb.2021.120659.

[48]

Z. Hu, A. Nalaparaju, Y. Peng, J. Jiang, and D. Zhao, “Modulated Hydrothermal Synthesis of UiO-66(Hf)-Type Metal-Organic Frameworks for Optimal Carbon Dioxide Separation,” Inorganic Chemistry 55, no. 3 (2016): 1134–1141, https://doi.org/10.1021/acs.inorgchem.5b02312.

[49]

A. Démolis, N. Essayem, and F. Rataboul, “Synthesis and Applications of Alkyl Levulinates,” ACS Sustainable Chemistry & Engineering 2, no. 6 (2014): 1338–1352, https://doi.org/10.1021/sc500082n.

RIGHTS & PERMISSIONS

2025 The Author(s). EcoEnergy published by John Wiley & Sons Australia, Ltd on behalf of China Chemical Safety Association.

AI Summary AI Mindmap
PDF

14

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/