Catalytic Mechanism Studies of Ortho–para H2 Conversion Over Iron Oxide Catalysts
Yusen Chen , Hongying Zhuo , Zheng Shen , Nan Yin , Zhongzheng Zhao , Binglian Liang , Guodong Liu , Xuning Li , Xiaofeng Yang , Yanqiang Huang
EcoEnergy ›› 2025, Vol. 3 ›› Issue (3) : e70004
Catalytic Mechanism Studies of Ortho–para H2 Conversion Over Iron Oxide Catalysts
Hydrogen serves as an ideal clean energy with zero carbon emissions, whereas its large-scale application relies on its liquidation, by which the catalytic conversion of ortho–para H2 at cryogenic temperature is inevitable with iron oxides as a promising catalyst. In this research, iron oxides with varied surface area and diverse phases were synthesized from the precursor of hydrous ferric oxide, including α-Fe2O3, γ-Fe2O3, and Fe3O4. The bulk and surface properties of these catalysts were characterized by XRD, BET, TG, IR, magnetic analysis, hydrogen adsorption, and 57Fe-Mössbauer spectrum. It was suggested that ortho–para H2 conversion is linearly correlated with the specific surface area of α-Fe2O3 which governs the residual magnetic properties as well as the adsorption capacity of molecular H2 on the catalysts, and a nondissociation mechanism of ortho–para H2 conversion was revealed at cryogenic temperature. The hydrate that contributed to the surface area of iron oxides shows a negative effect on the ortho–para H2 conversion. Moreover, by estimating the reaction rate based on the per surface area of iron oxides, the Fe(III) exposed on surfaces exhibited a superior activity irrespective of the bulk magnetism of iron oxides, and the intrinsic activity of iron oxides for ortho–para H2 conversion was found to follow a trend similar to that of α-Fe2O3 ≈ γ-Fe2O3 > Fe3O4. The findings of this study provide valuable insights for the subsequent research on the mechanism of ortho–para H2 conversion and the design of high-performance hydrogen liquefaction catalysts.
hydrogen liquidation / intrinsic activity / iron oxide / non-dissociation mechanism / ortho-para H2 conversion
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
2025 The Author(s). EcoEnergy published by John Wiley & Sons Australia, Ltd on behalf of China Chemical Safety Association.
/
| 〈 |
|
〉 |