Multiple Hydrogen-Bond Cross-Linking Solid–Solid Phase Change Materials for Batteries’ Thermal Management

Xuemei Diao , Peng Wang , Yang Li , Xiao Chen

EcoEnergy ›› 2025, Vol. 3 ›› Issue (3) : e70002

PDF
EcoEnergy ›› 2025, Vol. 3 ›› Issue (3) : e70002 DOI: 10.1002/ece2.70002
RESEARCH HIGHLIGHTS

Multiple Hydrogen-Bond Cross-Linking Solid–Solid Phase Change Materials for Batteries’ Thermal Management

Author information +
History +
PDF

Abstract

Solid–solid phase change materials usually suffer from the challenges of low thermal storage capacity and poor mechanical strength in thermal management applications. Additionally, solid–solid phase change materials are often prepared by a chemical cross-linking strategy, leading to poor recyclability. This study highlights a straightforward and effective strategy to prepare multiple H-bonding cross-linking supramolecular solid–solid phase change materials integrating easy recyclability, high mechanical strength, and high latent heat characteristics for thermal management of lithium batteries.

Keywords

multiple hydrogen bonds cross-linking / phase change materials / thermal energy storage

Cite this article

Download citation ▾
Xuemei Diao, Peng Wang, Yang Li, Xiao Chen. Multiple Hydrogen-Bond Cross-Linking Solid–Solid Phase Change Materials for Batteries’ Thermal Management. EcoEnergy, 2025, 3(3): e70002 DOI:10.1002/ece2.70002

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

G. Wang, Z. Tang, Y. Gao, et al., “Phase Change Thermal Storage Materials for Interdisciplinary Applications,” Chemical Reviews 123, no. 11 (2023): 6953–7024.

[2]

W. Aftab, X. Huang, W. Wu, Z. Liang, A. Mahmood, and R. Zou, “Nanoconfined Phase Change Materials for Thermal Energy Applications,” Energy & Environmental Science 11, no. 6 (2018): 1392–1424.

[3]

W. Aftab, A. Usman, J. Shi, K. Yuan, M. Qin, and R. Zou, “Phase Change Material-Integrated Latent Heat Storage Systems for Sustainable Energy Solutions,” Energy & Environmental Science 14, no. 8 (2021): 4268–4291.

[4]

X. Chen, P. Cheng, Z. Tang, X. Xu, H. Gao, and G. Wang, “Carbon-Based Composite Phase Change Materials for Thermal Energy Storage, Transfer, and Conversion,” Advanced Science 8, no. 9 (2021): 2001274.

[5]

Y. Wu, M. Chen, G. Zhao, et al., “Recyclable Solid–Solid Phase Change Materials With Superior Latent Heat Via Reversible Anhydride-Alcohol Crosslinking for Efficient Thermal Storage,” Advanced Materials 36, no. 16 (2024): 2311717.

[6]

J. Shi, W. Aftab, Z. Liang, et al., “Tuning the Flexibility and Thermal Storage Capacity of Solid–Solid Phase Change Materials towards Wearable Applications,” Journal of Materials Chemistry A 8, no. 38 (2020): 20133–20140.

[7]

A. Usman, F. Xiong, W. Aftab, M. Qin, and R. Zou, “Emerging Solid-To-Solid Phase-Change Materials for Thermal-Energy Harvesting, Storage, and Utilization,” Advanced Materials 34, no. 41 (2022): e2202457.

[8]

Y. Kou, K. Sun, J. Luo, et al., “An Intrinsically Flexible Phase Change Film for Wearable Thermal Managements,” Energy Storage Materials 34 (2021): 508–514.

[9]

G. Zhu, M. Zou, W. Luo, et al., “A Polyurethane Solid–Solid Phase Change Material for Flexible Use in Thermal Management,” Chemical Engineering Journal 488 (2024): 150930.

[10]

S. J. D. Lugger, S. J. A. Houben, Y. Foelen, M. G. Debije, A. P. H. J. Schenning, and D. J. Mulder, “Hydrogen-Bonded Supramolecular Liquid Crystal Polymers: Smart Materials With Stimuli-Responsive, Self-Healing, and Recyclable Properties,” Chemistry Review 122, no. 5 (2022): 4946–4975.

[11]

Z. Guo, X. Lu, X. Wang, X. Li, J. Li, and J. Sun, “Engineering of Chain Rigidity and Hydrogen Bond Cross-Linking Toward Ultra-Strong, Healable, Recyclable, and Water-Resistant Elastomers,” Advanced Materials 35, no. 21 (2023): 2300286.

[12]

J. He, Q. Zhou, Z. Ge, et al., “pH-Gated Switch of LCST-UCST Phase Transition of Hydrogels,” Advanced Functional Materials 34, no. 42 (2024): 2404341.

[13]

C. Wang, X. Geng, J. Chen, et al., “Multiple H-Bonding Cross-Linked Supramolecular Solid-Solid Phase Change Materials for Thermal Energy Storage and Management,” Advanced Materials 36, no. 11 (2024): 2309723.

[14]

X. Chen, P. Cheng, Z. Tang, X. Xu, H. Gao, and G. Wang, “Carbon-Based Composite Phase Change Materials for Thermal Energy Storage, Transfer, and Conversion,” Advanced Science 8, no. 9 (2021): 2001274.

RIGHTS & PERMISSIONS

2025 The Author(s). EcoEnergy published by John Wiley & Sons Australia, Ltd on behalf of China Chemical Safety Association.

AI Summary AI Mindmap
PDF

13

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/