High-performance vanadium oxide-based aqueous zinc batteries: Organic molecule modification, challenges, and future prospects

Yueyang Wang , Qi Li , Jiawei Xiong , Linfeng Yu , Qi Li , Yanan Lv , Kovan Khasraw Abdalla , Runze Wang , Xinyu Li , Yi Zhao , Xiaoming Sun

EcoEnergy ›› 2024, Vol. 2 ›› Issue (4) : 652 -678.

PDF (9236KB)
EcoEnergy ›› 2024, Vol. 2 ›› Issue (4) : 652 -678. DOI: 10.1002/ece2.69
REVIEW

High-performance vanadium oxide-based aqueous zinc batteries: Organic molecule modification, challenges, and future prospects

Author information +
History +
PDF (9236KB)

Abstract

Aqueous Zn-vanadium batteries have been attracting significant interest due to the high theoretical capacity, diverse crystalline structures, and cost-effectiveness of vanadium oxide cathodes. Despite these advantages, challenges such as low redox potential, sluggish reaction kinetics, and vanadium dissolution lead to inferior energy density and unsatisfactory lifespan of vanadium oxide cathodes. Addressing these issues, given the abundant redox groups and flexible structures in organic compounds, this study comprehensively reviews the latest developments of organic-modified vanadium-based oxide strategies, especially organic interfacial modification, and preintercalation. The review presents detailed analyses of the energy storage mechanism and multiple electron transfer reactions that contribute to enhanced battery performance, including boosted redox kinetics, higher energy density, and broadened lifespan. Furthermore, the review emphasizes the necessity of in situ characterization and theoretical calculation techniques for the further investigation of appropriate organic “guest” materials and matched redox couples in the organic-vanadium oxide hybrids with muti-energy storage mechanisms. The review also highlights strategies for Zn anode protection and electrolyte solvation regulation, which are critical for developing advanced Zn-vanadium battery systems suitable for large-scale energy storage applications.

Keywords

aqueous Zn batteries / high performance / multiple-electron transfer reactions / organic modification / vanadium-based oxides

Cite this article

Download citation ▾
Yueyang Wang, Qi Li, Jiawei Xiong, Linfeng Yu, Qi Li, Yanan Lv, Kovan Khasraw Abdalla, Runze Wang, Xinyu Li, Yi Zhao, Xiaoming Sun. High-performance vanadium oxide-based aqueous zinc batteries: Organic molecule modification, challenges, and future prospects. EcoEnergy, 2024, 2(4): 652-678 DOI:10.1002/ece2.69

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gourley SWD, Brown R, Adams BD, Higgins D. Zinc-ion batteries for stationary energy storage. Joule. 2023;7(7):1415-1436.

[2]

Zampardi G, La Mantia F. Open challenges and good experimental practices in the research field of aqueous Zn-ion batteries. Nat Commun. 2022;13(1):687.

[3]

Wan J, Wang R, Liu Z, et al. A double-functional additive containing nucleophilic groups for high-performance Zn-ion batteries. ACS Nano. 2023;17(2):1610-1621.

[4]

Wang R, Xin S, Chao D, et al. Fast and regulated zinc deposition in a semiconductor substrate toward high-performance aqueous rechargeable batteries. Adv Funct Mater. 2022;32(51):2207751.

[5]

Wang Y, Jin X, Xiong J, et al. Ultrastable electrolytic Zn-I2 batteries based on nanocarbon wrapped by highly efficient single-atom Fe-NC iodine catalysts. Adv Mater. 2024;36(30):2404093.

[6]

Zhao Y, Zhang P, Liang J, et al. Unlocking layered double hydroxide as a high-performance cathode material for aqueous zinc-ion batteries. Adv Mater. 2022;34(37):2204320.

[7]

Jia X, Liu C, Neale ZG, Yang J, Cao G. Active materials for aqueous zinc ion batteries: synthesis, crystal structure, morphology, and electrochemistry. Chem Rev. 2020;120(15):7795-7866.

[8]

Zhao Y, Wang Y, Zhao Z, et al. Achieving high capacity and long life of aqueous rechargeable zinc battery by using nanoporous-carbon-supported poly(1, 5-naphthalenediamine) nanorods as cathode. Energy Storage Mater. 2020;28:64-72.

[9]

Yang Y, Zhou J, Wang L, et al. Prussian blue and its analogues as cathode materials for Na-K-Mg-Ca-Zn-and Al-ion batteries. Nano Energy. 2022;99:107424.

[10]

Kim J, Kim Y, Yoo J, Kwon G, Ko Y, Kang K. Organic batteries for a greener rechargeable world. Nat Rev Mater. 2022;8(1):54-70.

[11]

Tang B, Shan L, Liang S, Zhou J. Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ Sci. 2019;12(11):3288-3304.

[12]

Song J, Xu K, Liu N, Reed D, Li X. Crossroads in the renaissance of rechargeable aqueous zinc batteries. Mater Today. 2021;45:191-212.

[13]

Wu X, Hong JJ, Shin W, et al. Diffusion-free grotthuss topochemistry for high-rate and long-life proton batteries. Nat Energy. 2019;4(2):123-130.

[14]

Zhao Y, Zhou R, Song Z, et al. Interfacial designing of MnO2 half-wrapped by aromatic polymers for high-performance aqueous zinc-ion batteries. Angew Chem Int Ed. 2022;61(49):e202212231.

[15]

Zhao Y, Xia X, Li Q, et al. Activating the redox chemistry of MnO2/Mn2+ in aqueous Zn batteries based on multi-ions doping regulation. Energy Storage Mater. 2024;67:103268.

[16]

Zhao Y, Zhang P, Liang J, et al. Uncovering sulfur doping effect in MnO2 nanosheets as an efficient cathode for aqueous zinc ion battery. Energy Storage Mater. 2022;47:424-433.

[17]

Zhao Y, Huang Y, Wu F, Chen R, Li L. High-performance aqueous zinc batteries based on organic/organic cathodes integrating multiredox centers. Adv Mater. 2021;33(52):e2106469.

[18]

Li Q, Abdalla KK, Xiong J, et al. High-energy and durable aqueous Zn batteries enabled by multi-electron transfer reactions. Energy Mater. 2024;4(4):400040.

[19]

Chen Y, Fan K, Gao Y, Wang C. Challenges and perspectives of organic multivalent metal-ion batteries. Adv Mater. 2022;34(52):e2200662.

[20]

Hurlbutt K, Wheeler S, Capone I, Pasta M. Prussian blue analogs as battery materials. Joule. 2018;2(10):1950-1960.

[21]

Wang Y, Li Q, Li Q, et al. Design strategies and challenges of next generation aqueous Zn-organic batteries. Next Energy. 2023;1(4):100061.

[22]

Zeng Y, Lu XF, Zhang SL, Luan D, Li S, Lou XWD. Construction of Co-Mn prussian blue analog hollow spheres for efficient aqueous Zn-ion batteries. Angew Chem Int Ed. 2021;60(41):22189-22194.

[23]

Liu S, Zhu H, Zhang B, et al. Tuning the kinetics of zinc-ion insertion/extraction in V2O5 by in situ polyaniline intercalation enables improved aqueous zinc-ion storage performance. Adv Mater. 2020;32(26):e2001113.

[24]

Fan L, Ru Y, Xue H, Pang H, Xu Q. Vanadium-based materials as positive electrode for aqueous zinc-ion batteries. Adv Sustainable Syst. 2020;4(12):2000178.

[25]

Xu W, Wang Y. Recent progress on zinc-ion rechargeable batteries. Nano-Micro Lett. 2019;11(1):90.

[26]

Zhang N, Dong Y, Jia M, et al. Rechargeable aqueous Zn-V2O5 battery with high energy density and long cycle life. ACS Energy Lett. 2018;3(6):1366-1372.

[27]

Zhao H, Fu Q, Yang D, et al. In operando synchrotron studies of NH4+ preintercalated V2O5.nH2O nanobelts as the cathode material for aqueous rechargeable zinc batteries. ACS Nano. 2020;14(9):11809-11820.

[28]

Zhang N, Jia M, Dong Y, et al. Hydrated layered vanadium oxide as a highly reversible cathode for rechargeable aqueous zinc batteries. Adv Funct Mater. 2019;29(10):1807331.

[29]

Liang W, Rao D, Chen T, Tang R, Li J, Jin H. Zn0.52V2O5-a·1.8H2O cathode stabilized by in situ phase transformation for aqueous zinc-ion batteries with ultra-long cyclability. Angew Chem Int Ed. 2022;61(35):e202207779.

[30]

Luo Y, Handy J, Das T, et al. Effect of pre-intercalation on Li-ion diffusion mapped by topochemical single-crystal transformation and operando investigation. Nat Mater. 2024;23(7):960-968.

[31]

Wang D, Wang L, Liang G, et al. A superior delta-MnO2 cathode and a self-healing Zn-delta-MnO2 battery. ACS Nano. 2019;13(9):10643-10652.

[32]

Shin J, Choi DS, Lee HJ, Jung Y, Choi JW. Hydrated intercalation for high-performance aqueous zinc ion batteries. Adv Energy Mater. 2019;9(14):1900083.

[33]

Wan F, Niu Z. Design strategies for vanadium-based aqueous zinc-ion batteries. Angew Chem Int Ed. 2019;58(46):16358-16367.

[34]

Verma V, Kumar S, Manalastas W, et al. Layered VOPO4 as a cathode material for rechargeable zinc-ion battery: effect of polypyrrole intercalation in the host and water concentration in the electrolyte. ACS Appl Energy Mater. 2019;2(12):8667-8674.

[35]

Geng H, Cheng M, Wang B, Yang Y, Zhang Y, Li CC. Electronic structure regulation of layered vanadium oxide via interlayer doping strategy toward superior high-rate and low-temperature zinc-ion batteries. Adv Funct Mater. 2019;30(6):1907684.

[36]

Ma L, Li N, Long C, et al. Achieving both high voltage and high capacity in aqueous zinc-ion battery for record high energy density. Adv Funct Mater. 2019;29(46):1906142.

[37]

Xia C, Guo J, Li P, Zhang X, Alshareef HN. Highly stable aqueous zinc-ion storage using a layered calcium vanadium oxide bronze cathode. Angew Chem Int Ed. 2018;57(15):3943-3948.

[38]

Wang K, Yuan R, Li M, et al. Al3+ intercalated NH4V4O10 nanosheet on carbon cloth for high-performance aqueous zinc-ion batteries. Chem Eng J. 2023;471:144655.

[39]

Meng J, Liu Z, Niu C, et al. A synergistic effect between layer surface configurations and K ions of potassium vanadate nanowires for enhanced energy storage performance. J Mater Chem A. 2016;4(13):4893-4899.

[40]

Petkov V, Parvanov V, Trikalitis P, Malliakas C, Vogt T, Kanatzidis MG. Three-dimensional structure of nanocomposites from atomic pair distribution function analysis: study of polyaniline and (polyaniline)0.5V2O5·1.0H2O. J Am Chem Soc. 2005;127(24):8805-8812.

[41]

Tao B, Liu J, Li S, Zhao L. Electrochemical properties of a V2O5/C composite in aqueous solution used for zinc secondary battery. Acta Phys Chim Sin. 2005;21(03):338-342.

[42]

Yamamoto T, Shoji T. Rechargeable Zn|ZnSO4|MnO2-type cells. Inorg Chim Acta. 1986;117(2): L27-L28.

[43]

Yi T.-F, Qiu L, Qu J.-P, Liu H, Zhang J.-H, Zhu Y.-R. Towards high-performance cathodes: design and energy storage mechanism of vanadium oxides-based materials for aqueous Zn-ion batteries. Coord Chem Rev. 2021;446(1):214124.

[44]

Ma X, Cao X, Yao M, et al. Organic-inorganic hybrid cathode with dual energy-storage mechanism for ultrahigh-rate and ultralong-life aqueous zinc-ion batteries. Adv Mater. 2022;34(6):e2105452.

[45]

Yan J, Ang EH, Yang Y, et al. High-voltage zinc-ion batteries: design strategies and challenges. Adv Funct Mater. 2021;31(22):2010213.

[46]

Hu P, Yan M, Zhu T, et al. Zn/V2O5 Aqueous hybrid-ion battery with high voltage platform and long cycle life. ACS Appl Mater Interfaces. 2017;9(49):42717-42722.

[47]

Zhou J, Shan L, Wu Z, Guo X, Fang G, Liang S. Investigation of V2O5 as a low-cost rechargeable aqueous zinc ion battery cathode. Chem Commun. 2018;54(35):4457-4460.

[48]

Wu T, Zhu K, Qin C, Huang K. Unraveling the role of structural water in bilayer V2O5 during Zn2+-intercalation: insights from DFT calculations. J Mater Chem A. 2019;7(10):5612-5620.

[49]

Guo X, Fang G, Zhang W, et al. Mechanistic insights of Zn2+ storage in sodium vanadates. Adv Energy Mater. 2018;8(27):1801819.

[50]

Engstrom AM, Doyle FM. Exploring the cycle behavior of electrodeposited vanadium oxide electrochemical capacitor electrodes in various aqueous environments. J Power Sources. 2013;228(15):120-131.

[51]

Dai Y, Zhang C, Li J, et al. Inhibition of vanadium cathodes dissolution in aqueous Zn-ion batteries. Adv Mater. 2024;36(14):e2310645.

[52]

Yang G, Li Q, Ma K, Hong C, Wang C. The degradation mechanism of vanadium oxide-based aqueous zinc-ion batteries. J Mater Chem A. 2020;8(16):8084-8095.

[53]

Yan H, Zhang X, Yang Z, et al. Insight into the electrolyte strategies for aqueous zinc ion batteries. Coord Chem Rev. 2022;452(1):214297.

[54]

Lukatskaya MR, Feldblyum JI, Mackanic DG, et al. Concentrated mixed cation acetate “water-in-salt”solutions as green and low-cost high voltage electrolytes for aqueous batteries. Energy Environ Sci. 2018;11(10):2876-2883.

[55]

Wang Z, Li H, Tang Z, et al. Hydrogel electrolytes for flexible aqueous energy storage devices. Adv Funct Mater. 2018;28(48):1804560.

[56]

Bai Y, Qin Y, Hao J, Zhang H, Li CM. Advances and perspectives of ion-intercalated vanadium oxide cathodes for high-performance aqueous zinc ion battery. Adv Funct Mater. 2023;34(11):2310393.

[57]

Guo Y, Jiang H, Liu B, et al. Better engineering layered vanadium oxides for aqueous zinc-ion batteries: going beyond widening the interlayer spacing. SmartMat. 2023;5(1):e1231.

[58]

Pang Q, Sun C, Yu Y, et al. H2V3O8 nanowire/graphene electrodes for aqueous rechargeable zinc ion batteries with high rate capability and large capacity. Adv Energy Mater. 2018;8(19):1800144.

[59]

Kong D, Li X, Zhang Y, et al. Encapsulating V2O5 into carbon nanotubes enables the synthesis of flexible high-performance lithium ion batteries. Energy Environ Sci. 2016;9(3):906-911.

[60]

Zhang W, Liang S, Fang G, Yang Y, Zhou J. Ultra-high mass-loading cathode for aqueous zinc-ion battery based on graphene-wrapped aluminum vanadate nanobelts. Nano-Micro Lett. 2019;11(1):69.

[61]

Boruah BD, Mathieson A, Wen B, Feldmann S, Dose WM, De Volder M. Photo-rechargeable zinc-ion batteries. Energy Environ Sci. 2020;13(8):2414-2421.

[62]

Deng S, Yuan Z, Tie Z, Wang C, Song L, Niu Z. Electrochemically induced metal-organic-framework-derived amorphous V2O5 for superior rate aqueous zinc-ion batteries. Angew Chem Int Ed. 2020;132(49):22186-22190.

[63]

Yang Y, Tang Y, Liang S, et al. Transition metal ion-preintercalated V2O5 as high-performance aqueous zinc-ion battery cathode with broad temperature adaptability. Nano Energy. 2019;61:617-625.

[64]

Lv T, Zhu G, Dong S, et al. Co-intercalation of dual charge carriers in metal-ion-confining layered vanadium oxide nanobelts for aqueous zinc-ion batteries. Angew Chem Int Ed. 2023;62(5):e202216089.

[65]

Zafar ZA, Abbas G, Knizek K, et al. Chaotropic anion based “water-in-salt” electrolyte realizes a high voltage Zn-graphite dual-ion battery. J Mater Chem A. 2022;10(4):2064-2074.

[66]

Yuan T, Cheng H, Li X, et al. Organic macromolecule regulated the structure of vanadium oxide with high capacity and stability for aqueous zinc-ion batteries. Appl Surf Sci. 2022;592(1):153295.

[67]

Hu L, Wu Z, Lu C, Ye F, Liu Q, Sun Z. Principles of interlayer-spacing regulation of layered vanadium phosphates for superior zinc-ion batteries. Energy Environ Sci. 2021;14(7):4095-4106.

[68]

Li K, Lv J, Cao T, Gong Y, Zhang DL. Anthraquinone-intercalated V2O5 with Al3+ for superior zinc-ion batteries: reversible transformation between disorder and order. Chem Commun. 2022;58(88):12365-12368.

[69]

Bin D, Huo W, Yuan Y, et al. Organic-inorganic-induced polymer intercalation into layered composites for aqueous zinc-ion battery. Chem. 2020;6(4):968-984.

[70]

Kundu D, Adams BD, Duffort V, Vajargah SH, Nazar LF. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat Energy. 2016;1(10):16119.

[71]

Chen X, Wang L, Li H, Cheng F, Chen J. Porous V2O5 nanofibers as cathode materials for rechargeable aqueous zinc-ion batteries. J Energy Chem. 2019;38:20-25.

[72]

Lai J, Zhu H, Zhu X, Koritala H, Wang Y. Interlayer-expanded V6O13·nH2O architecture constructed for an advanced rechargeable aqueous zinc-ion battery. ACS Appl Energy Mater. 2019;2(3):1988-1996.

[73]

Wang X, Zhang Z, Xiong S, et al. A high-rate and ultrastable aqueous zinc-ion battery with a novel MgV2O6·1.7H2O nanobelt cathode. Small. 2021;17(20):e2100318.

[74]

Li Z, Ganapathy S, Xu Y, Zhou Z, Sarilar M, Wagemaker M. Mechanistic insight into the electrochemical performance of Zn/VO2 batteries with an aqueous ZnSO4 electrolyte. Adv Energy Mater. 2019;9(22):1900237.

[75]

Tao Y, Huang D, Chen H, Luo Y. Electrochemical generation of hydrated zinc vanadium oxide with boosted intercalation pseudocapacitive storage for a high-rate flexible zinc-ion battery. ACS Appl Mater Interfaces. 2021;13(14):16576-16584.

[76]

Zhu K, Wu T, Sun S, van den Bergh W, Stefik M, Huang K. Synergistic H+/Zn2+ dual ion insertion mechanism in high-capacity and ultra-stable hydrated VO2 cathode for aqueous Zn-ion batteries. Energy Storage Mater. 2020;29:60-70.

[77]

Pan Q, Dong R, Lv H, Sun X, Song Y, Liu X.-X. Fundamental understanding of the proton and zinc storage in vanadium oxide for aqueous zinc-ion batteries. Chem Eng J. 2021;419(1):129491.

[78]

Wan F, Zhang L, Dai X, Wang X, Niu Z, Chen J. Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat Commun. 2018;9(1):1656.

[79]

Huang J, Dong X, Guo Z, Wang Y. Progress of organic electrodes in aqueous electrolyte for energy storage and conversion. Angew Chem Int Ed. 2020;59(42):18322-18333.

[80]

Tie Z, Niu Z. Design strategies for high-performance aqueous Zn/organic batteries. Angew Chem Int Ed. 2020;59(48):21293-21303.

[81]

Lu Y, Chen J. Prospects of organic electrode materials for practical lithium batteries. Nat Rev Chem. 2020;4(3):127-142.

[82]

Zhang Z, Xi B, Wang X, et al. Oxygen defects engineering of VO2·xH2O nanosheets via in situ polypyrrole polymerization for efficient aqueous zinc ion storage. Adv Funct Mater. 2021;31(34):2103070.

[83]

Guo CX, Sun K, Ouyang J, Lu X. Layered V2O5/PEDOT nanowires and ultrathin nanobelts fabricated with a silk reelinglike process. Chem Mater. 2015;27(16):5813-5819.

[84]

Liu Y, Hu P, Liu H, Wu X, Zhi C. Tetragonal VO2 hollow nanospheres as robust cathode material for aqueous zinc ion batteries. Mater Today Energy. 2020;17:100431.

[85]

Yang H, Wang Y, Wang P, et al. Three-in-one organic-inorganic heterostructures:From scalable ball-milling synthesis to freestanding cathodes with high areal capacity for aqueous zinc-ion batteries. Chem Eng J. 2023;457(1):141140.

[86]

Kundu D, Hosseini VS, Wan L, Adams B, Prendergast D, Nazar LF. Aqueous vs. nonaqueous Zn-ion batteries: consequences of the desolvation penalty at the interface. Energy Environ Sci. 2018;11(4):881-892.

[87]

Yin C, Pan C, Liao X, Pan Y, Yuan L. Regulating the interlayer spacing of vanadium oxide by in situ polyaniline intercalation enables an improved aqueous zinc-ion storage performance. ACS Appl Mater Interfaces. 2021;13(33):39347-39354.

[88]

Yuan X, Nie Y, Zou T, et al. Polyaniline-intercalated vanadium dioxide nanoflakes for high-performance aqueous zinc ion batteries. ACS Appl Energy Mater. 2022;5(11):13692-13701.

[89]

Chen S, Li K, Hui KS, Zhang J. Regulation of lamellar structure of vanadium oxide via polyaniline intercalation for high-performance aqueous zinc-ion battery. Adv Funct Mater. 2020;30(43):2003890.

[90]

Li R, Xing F, Li T, et al. Intercalated polyaniline in V2O5 as a unique vanadium oxide bronze cathode for highly stable aqueous zinc ion battery. Energy Storage Mater. 2021;38:590-598.

[91]

Du Y, Wang X, Sun J. Tunable oxygen vacancy concentration in vanadium oxide as mass-produced cathode for aqueous zinc-ion batteries. Nano Res. 2020;14(3):754-761.

[92]

Li K, Gong Y, Lin JH. Benzoquinone-intercalated vanadium oxide in the electrolyte with Al3+ for zinc-ion storage: dual-pillar effect and reversible disorder-order conversion. Chem Eng J. 2023;452(15):139621.

[93]

Zhu M, Wang H, Lin W, et al. Amphipathic molecules endowing highly structure robust and fast kinetic vanadium-based cathode for high-performance zinc-ion batteries. Small Structures. 2022;3(6):2200016.

[94]

Zong Q, Zhuang Y, Liu C, et al. Dual effects of metal and organic ions co-intercalation boosting the kinetics and stability of hydrated vanadate cathodes for aqueous zinc-ion batteries. Adv Energy Mater. 2023;13(31):2301480.

[95]

Wan F, Hao Z, Wang S, et al. A universal compensation strategy to anchor polar organic molecules in bilayered hydrated vanadates for promoting aqueous zinc-ion storage. Adv Mater. 2021;33(36):e2102701.

[96]

Pomerantseva E. Chemical preintercalation synthesis of versatile electrode materials for electrochemical energy storage. Acc Chem Res. 2023;56(1):13-24.

[97]

Sang Z, Hou F, Liang J. Recent progress on organic-inorganic hybrid cathodes for aqueous zinc ion batteries. Next Energy. 2023;1(4):100067.

[98]

Huang J, Wang Z, Hou M, et al. Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery. Nat Commun. 2018;9(1):2906.

[99]

Abdalla KK, Wang Y, Abdalla KK, et al. Rational design and prospects for advanced aqueous Zn-organic batteries enabled by multielectron redox reactions. Sci China Mater. 2024;67(5):1367-1378.

[100]

He T, Weng S, Ye Y, et al. Cation-deficient Zn0.3(NH4)0.3V4O10·0.91H2O for rechargeable aqueous zinc battery with superior low-temperature performance. Energy Storage Mater. 2021;38:389-396.

[101]

Zhao X, Mao L, Cheng Q, et al. Interlayer engineering of preintercalated layered oxides as cathode for emerging multivalent metal-ion batteries: zinc and beyond. Energy Storage Mater. 2021;38:397-437.

[102]

Xia Y, Wang X, Zhou J. N-Methylpyrrolidone assisted tetrachlorobenzoquinone intercalating V2O5 as cathode for aqueous zinc-ion battery. Chem Commun. 2023;59(41):6199-6202.

[103]

Ruan P, Liang S, Lu B, Fan HJ, Zhou J. Design strategies for high-energy-density aqueous zinc batteries. Angew Chem Int Ed. 2022;61(17):e202200598.

[104]

Dou X, Xie X, Liang S, Fang G. Low-current-density stability of vanadium-based cathodes for aqueous zinc-ion batteries. Sci Bull. 2024;69(6):833-845.

[105]

Xu D, Wang H, Li F, et al. Conformal conducting polymer shells on V2O5 nanosheet arrays as a high-rate and stable zinc-ion battery cathode. Adv Mater Interfac. 2018;6(2):1801506.

[106]

Tang B, Zhou J, Fang G, et al. Engineering the interplanar spacing of ammonium vanadates as a high-performance aqueous zinc-ion battery cathode. J Mater Chem A. 2019;7(3):940-945.

[107]

Tong Y, Zang Y, Su S, et al. Methylene blue intercalated vanadium oxide with synergistic energy storage mechanism for highly efficient aqueous zinc ion batteries. J Energy Chem. 2023;77:269-279.

[108]

Zhao X, Liang X, Li Y, Chen Q, Chen M. Challenges and design strategies for high performance aqueous zinc ion batteries. Energy Storage Mater. 2021;42:533-569.

[109]

Sun Q, Chang L, Liu Y, et al. Chrysanthemum-like polyaniline-anchored PANI0.22·V2O5·0.88H2O-hybridized cathode for high-stable aqueous zinc-ion batteries. ACS Appl Energy Mater. 2023;6(5):3102-3112.

[110]

Jiang Y, Wu Z, Ye F, et al. Spontaneous knitting behavior of 6.7-nm thin (NH4)0.38V2O5 nano-ribbons for binder-free zinc-ion batteries. Energy Storage Mater. 2021;42:286-294.

[111]

Feng Z, Sun J, Liu Y, et al. Polypyrrole-intercalation tuning lamellar structure of V2O5·nH2O boosts fast zinc-ion kinetics for aqueous zinc-ion battery. J Power Sources. 2022;536(15):231489.

[112]

Verma V, Kumar S, Manalastas W, Srinivasan M. Undesired reactions in aqueous rechargeable zinc ion batteries. ACS Energy Lett. 2021;6(5):1773-1785.

[113]

Wang X, Zhang Z, Xi B, et al. Advances and perspectives of cathode storage chemistry in aqueous zinc-ion batteries. ACS Nano. 2021;15(6):9244-9272.

[114]

Lu Y, Zhu T, van den Bergh W, Stefik M, Huang K. A high performing Zn-ion battery cathode enabled by in situ transformation of V2O5 atomic layers. Angew Chem Int Ed. 2020;59(39):17004-17011.

[115]

Hou Z, Zhang X, Li X, Zhu Y, Liang J, Qian Y. Surfactant widens the electrochemical window of an aqueous electrolyte for better rechargeable aqueous sodium/zinc battery. J Mater Chem A. 2017;5(2):730-738.

[116]

Nian Q, Zhang X, Feng Y, et al. Designing electrolyte structure to suppress hydrogen evolution reaction in aqueous batteries. ACS Energy Lett. 2021;6(6):2174-2180.

[117]

Zhao K, Fan G, Liu J, et al. Boosting the kinetics and stability of Zn anodes in aqueous electrolytes with supramolecular cyclodextrin additives. J Am Chem Soc. 2022;144(25):11129-11137.

[118]

Chang N, Li T, Li R, et al. An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices. Energy Environ Sci. 2020;13(10):3527-3535.

[119]

Zhang F, Sun X, Du M, et al. Weaker interactions in Zn2+ and organic ion-pre-intercalated vanadium oxide toward highly reversible zinc-ion batteries. Energy Environ Mater. 2020;4(4):620-630.

[120]

He W, Fan Z, Huang Z, et al. A Li+ and PANI co-intercalation strategy for hydrated V2O5 to enhance zinc ion storage performance. J Mater Chem A. 2022;10(36):18962-18971.

[121]

Yong B, Ma D, Wang Y, Mi H, He C, Zhang P. Understanding the design principles of advanced aqueous zinc-ion battery cathodes: from transport kinetics to structural engineering, and future perspectives. Adv Energy Mater. 2020;10(45):2002354.

[122]

Zhang MY, Song Y, Mu X, et al. Decavanadate doped polyaniline for aqueous zinc batteries. Small. 2022;18(16):e2107689.

[123]

Du Y, Wang X, Man J, Sun J. A novel organic-inorganic hybrid V2O5@polyaniline as high-performance cathode for aqueous zinc-ion batteries. Mater Lett. 2020;272(1):127813.

[124]

Pu X, Zhao D, Fu C, et al. Understanding and calibration of charge storage mechanism in cyclic voltammetry curves. Angew Chem Int Ed. 2021;60(39):21310-21318.

[125]

Kang W, Zhang B, Wang Z, et al. Synchronous organic-inorganic co-intercalated ammonium vanadate cathode for advanced aqueous zinc-ion batteries. J Energy Chem. 2024;94:608-617.

[126]

Bi W, Gao G, Wu G, Atif M, AlSalhi MS, Cao G. Sodium vanadate/PEDOT nanocables rich with oxygen vacancies for high energy conversion efficiency zinc ion batteries. Energy Storage Mater. 2021;40:209-218.

[127]

Xu Y, Fan G, Sun PX, et al. Carbon nitride pillared vanadate via chemical pre-intercalation towards high-performance aqueous zinc-ion batteries. Angew Chem Int Ed. 2023;62(26):e202303529.

[128]

Wu B, Luo W, Li M, Zeng L, Mai L. Achieving better aqueous rechargeable zinc ion batteries with heterostructure electrodes. Nano Res. 2021;14(9):3174-3187.

[129]

Li G, Sun L, Zhang S, et al. Developing cathode materials for aqueous zinc ion batteries: challenges and practical prospects. Adv Funct Mater. 2023;34(5):2301291.

[130]

Zhao R, Dong X, Liang P, et al. Prioritizing hetero-metallic interfaces via thermodynamics inertia and kinetics zincophilia metrics for tough Zn-based aqueous batteries. Adv Mater. 2023;35(17):e2209288.

[131]

Bu F, Sun Z, Zhou W, et al. Reviving Zn(0) dendrites to electroactive Zn2+ by mesoporous mxene with active edge sites. J Am Chem Soc. 2023;145(44):24284-24293.

[132]

Hou Z, Zhang T, Liu X, et al. A solid-to-solid metallic conversion electrochemistry toward 91%zinc utilization for sustainable aqueous batteries. Sci Adv. 2022;8(41):eabp8960.

[133]

Zhang C, Li H, Zeng X, et al. Accelerated diffusion kinetics in ZnTe/CoTe2 heterojunctions for high rate potassium storage. Adv Energy Mater. 2022;12(41):2202577.

[134]

Liu Z, Wang R, Ma Q, et al. A dual-functional organic electrolyte additive with regulating suitable overpotential for building highly reversible aqueous zinc ion batteries. Adv Funct Mater. 2023;34(5):2214538.

[135]

Zhang S, Qiu L, Zheng Y, et al. Rational design of core-shell ZnTe@N-doped carbon nanowires for high gravimetric and volumetric alkali metal ion storage. Adv Funct Mater. 2020;31(3):2006425.

[136]

Chen J, Xiong J, Ye M, et al. Suppression of hydrogen evolution reaction by modulating the surface redox potential toward long-life zinc metal anodes. Adv Funct Mater. 2023;34(16):2312564.

[137]

Min K, Choi B, Park K, Cho E. Machine learning assisted optimization of electrochemical properties for Ni-rich cathode materials. Sci Rep. 2018;8(1):15778.

[138]

Yu H, Yang K, Zhang L, et al. Multi-output ensemble deep learning: a framework for simultaneous prediction of multiple electrode material properties. Chem Eng J. 2023;475(1):146280.

[139]

Lv C, Zhou X, Zhong L, et al. Machine learning: an advanced platform for materials development and state prediction in lithium-ion batteries. Adv Mater. 2022;34(25):e2101474.

[140]

Tang S, Liu Y, Li L, et al. Electrochemical behavior simulation of high specific energy power lithium-ion batteries based on numerical model. Ionics. 2020;26(11):5513-5523.

[141]

Castro MT, Del Rosario JAD, Chong MN, Chuang P.-YA, Lee J, Ocon JD. Multiphysics modeling of lithium-ion, lead-acid, and vanadium redox flow batteries. J Energy Storage. 2021;42:102982.

RIGHTS & PERMISSIONS

2024 The Author(s). EcoEnergy published by John Wiley & Sons Australia, Ltd on behalf of China Chemical Safety Association.

AI Summary AI Mindmap
PDF (9236KB)

363

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/