Advances in the understanding of selective CO2 reduction catalysis

Ruihu Lu , Yan Liu , Ziyun Wang

EcoEnergy ›› 2024, Vol. 2 ›› Issue (4) : 695 -713.

PDF (3375KB)
EcoEnergy ›› 2024, Vol. 2 ›› Issue (4) : 695 -713. DOI: 10.1002/ece2.67
REVIEW

Advances in the understanding of selective CO2 reduction catalysis

Author information +
History +
PDF (3375KB)

Abstract

The electrochemical synthesis for value-added chemicals and fuels via carbon dioxide reduction reaction (CO2RR) offers an effective route to close the anthropogenic carbon cycle and store renewable energy. Currently, the copper-based catalyst is still the only choice for generating various CO2RR species beyond two electron products. However, the wide range of CO2RR products generated on copper leads to low selectivity, and their low concentrations in electrolytes pose great costs in the downstream purification process and significantly challenge the scalability of this technology. To make this technology economically viable, enhancing product selectivity is crucial. In this review, we identify the primary CO2RR species and discuss the latest insights into the reaction mechanisms controlling CO2RR selectivity. Then, we examined factors that affect CO2RR selectivity. Emphasizing these factors in catalyst design, we highlight the importance of advanced technologies to expand our knowledge and prospects for the future of the CO2RR.

Keywords

copper surface / CO 2 reduction reaction / CO 2RR intermediates / electrocatalysts / selectivity

Cite this article

Download citation ▾
Ruihu Lu, Yan Liu, Ziyun Wang. Advances in the understanding of selective CO2 reduction catalysis. EcoEnergy, 2024, 2(4): 695-713 DOI:10.1002/ece2.67

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hartfield G, Blunden J, Arndt DS. State of the climate in 2017. Bull Am Meteorol Soc. 2018;99(8): Si-S310.

[2]

Vaziri Rad MA, Kasaeian A, Niu X, Zhang K, Mahian O. Excess electricity problem in off-grid hybrid renewable energy systems: a comprehensive review from challenges to prevalent solutions. Renew Energy. 2023;212:538-560.

[3]

De Luna P, Hahn C, Higgins D, Jaffer SA, Jaramillo TF, Sargent EH. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science. 2019;364(6438):eaav3506.

[4]

Bagger A, Ju W, Varela AS, Strasser P, Rossmeisl J. Electrochemical CO2 reduction: a classification problem. ChemPhysChem. 2017;18(22):3266-3273.

[5]

Nitopi S, Bertheussen E, Scott SB, et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem Rev. 2019;119(12):7610-7672.

[6]

Zhu P, Wang H. High-purity and high-concentration liquid fuels through CO2 electroreduction. Nat Catal. 2021;4(11):943-951.

[7]

Woldu AR, Huang Z, Zhao P, Hu L, Astruc D. Electrochemical CO2 reduction (CO2RR) to multi-carbon products over copper-based catalysts. Coord Chem Rev. 2022;454:214340.

[8]

Ma W, He X, Wang W, Xie S, Zhang Q, Wang Y. Electrocatalytic reduction of CO2 and CO to multi-carbon compounds over Cu-based catalysts. Chem Soc Rev. 2021;50(23):12897-12914.

[9]

Arán-Ais RM, Gao D, Cuenya BR. Structure-and electrolyte-sensitivity in CO2 electroreduction. Acc Chem Res. 2018;51(11):2906-2917.

[10]

Kim C, Dionigi F, Beermann V, Wang X, Möller T, Strasser P. Alloy nanocatalysts for the electrochemical oxygen reduction (ORR) and the direct electrochemical carbon dioxide reduction reaction (CO2RR). Adv Mater. 2019;31(31):1805617.

[11]

Rossi K, Buonsanti R. Shaping copper nanocatalysts to steer selectivity in the electrochemical CO2 reduction reaction. Acc Chem Res. 2022;55(5):629-637.

[12]

He J, Wu C, Li Y, Li C. Design of pre-catalysts for heterogeneous CO2 electrochemical reduction. J Mater Chem A. 2021;9(35):19508-19533.

[13]

Tomboc GM, Choi S, Kwon T, Hwang YJ, Lee K. Potential link between Cu surface and selective CO2 electroreduction: perspective on future electrocatalyst designs. Adv Mater. 2020;32(17):1908398.

[14]

Wang X, Hu Q, Li G, Yang H, He C. Recent advances and perspectives of electrochemical CO2 reduction toward C2+ products on Cu-based catalysts. Electrochem Energy Rev. 2022;5(S2):28.

[15]

Xue Y, Guo Y, Cui H, Zhou Z. Catalyst design for electrochemical reduction of CO2 to multicarbon products. Small Methods. 2021;5(10):2100736.

[16]

Yu J, Wang J, Ma Y, et al. Recent progresses in electrochemical carbon dioxide reduction on copper-based catalysts toward multicarbon products. Adv Funct Mater. 2021;31(37):2102151.

[17]

Birdja YY, Pérez-Gallent E, Figueiredo MC, Göttle AJ, Calle-Vallejo F, Koper MTM. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat Energy. 2019;4(9):732-745.

[18]

Jouny M, Lv J.-J, Cheng T, et al. Formation of carbon-nitrogen bonds in carbon monoxide electrolysis. Nat Chem. 2019;11(9):846-851.

[19]

Rendón-Calle A, Builes S, Calle-Vallejo F. A brief review of the computational modeling of CO2 electroreduction on Cu electrodes. Curr Opin Electrochem. 2018;9:158-165.

[20]

Saha P, Amanullah S, Dey A. Selectivity in electrochemical CO2 reduction. Acc Chem Res. 2022;55(2):134-144.

[21]

Álvarez A, Borges M, Corral-Pérez JJ, et al. CO2 activation over catalytic surfaces. ChemPhysChem. 2017;18(22):3135-3141.

[22]

Li YC, Wang Z, Yuan T, et al. Binding site diversity promotes CO2 electroreduction to ethanol. J Am Chem Soc. 2019;141(21):8584-8591.

[23]

Kong S, Lv X, Wang X, et al. Delocalization state-induced selective bond breaking for efficient methanol electrosynthesis from CO2. Nat Catal. 2022;6(1):6-15.

[24]

Li J, Wang Z, McCallum C, et al. Constraining CO coverage on copper promotes high-efficiency ethylene electroproduction. Nat Catal. 2019;2(12):1124-1131.

[25]

Li F, Thevenon A, Rosas-Hernández A, et al. Molecular tuning of CO2-to-ethylene conversion. Nature. 2020;577(7791):509-513.

[26]

Pang Y, Li J, Wang Z, et al. Efficient electrocatalytic conversion of carbon monoxide to propanol using fragmented copper. Nat Catal. 2019;2(3):251-258.

[27]

Wang Y, Wang Z, Dinh C.-T, et al. Catalyst synthesis under CO2 electroreduction favours faceting and promotes renewable fuels electrosynthesis. Nat Catal. 2019;3(2):98-106.

[28]

Wang X, Wang Z, García de Arquer FP, et al. Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation. Nat Energy. 2020;5(6):478-486.

[29]

Zhuang T.-T, Pang Y, Liang Z.-Q, et al. Copper nanocavities confine intermediates for efficient electrosynthesis of C3 alcohol fuels from carbon monoxide. Nat Catal. 2018;1(12):946-951.

[30]

Zhou Y, Che F, Liu M, et al. Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons. Nat Chem. 2018;10(9):974-980.

[31]

Xing Z, Hu L, Ripatti DS, Hu X, Feng X. Enhancing carbon dioxide gas-diffusion electrolysis by creating a hydrophobic catalyst microenvironment. Nat Commun. 2021;12(1):136.

[32]

Li J, Chen G, Zhu Y, et al. Efficient electrocatalytic CO2 reduction on a three-phase interface. Nat Catal. 2018;1(8):592-600.

[33]

Wakerley D, Lamaison S, Ozanam F, et al. Bio-inspired hydrophobicity promotes CO2 reduction on a Cu surface. Nat Mater. 2019;18(11):1222-1227.

[34]

Ouyang Y, Shi L, Bai X, Ling C, Li Q, Wang J. Selectivity of electrochemical CO2 reduction toward ethanol and ethylene: the key role of surface-active hydrogen. ACS Catal. 2023;13(23):15448-15456.

[35]

Zhao Y, Hao L, Ozden A, et al. Conversion of CO2 to multicarbon products in strong acid by controlling the catalyst microenvironment. Nat Synth. 2023;2(5):403-412.

[36]

Wang X, Ou P, Wicks J, et al. Gold-in-copper at low *CO coverage enables efficient electromethanation of CO2. Nat Commun. 2021;12(1):3387.

[37]

Li F, Li YC, Wang Z, et al. Cooperative CO2-to-ethanol conversion via enriched intermediates at molecule-metal catalyst interfaces. Nat Catal. 2019;3(1):75-82.

[38]

Wakerley D, Lamaison S, Wicks J, et al. Gas diffusion electrodes, reactor designs and key metrics of low-temperature CO2 electrolysers. Nat Energy. 2022;7(2):130-143.

[39]

Lees EW, Mowbray BAW, Parlane FGL, Berlinguette CP. Gas diffusion electrodes and membranes for CO2 reduction electrolysers. Nat Rev Mater. 2022;7(1):55-64.

[40]

Weekes DM, Salvatore DA, Reyes A, Huang A, Berlinguette CP. Electrolytic CO2 reduction in a flow cell. Acc Chem Res. 2018;51(4):910-918.

[41]

Wu D, Jiao F, Lu Q. Progress and understanding of CO2/CO electroreduction in flow electrolyzers. ACS Catal. 2022;12(20):12993-13020.

[42]

Todorova TK, Schreiber MW, Fontecave M. Mechanistic understanding of CO2 reduction reaction (CO2RR) toward multicarbon products by heterogeneous copper-based catalysts. ACS Catal. 2020;10(3):1754-1768.

[43]

Jansonius RP, Reid LM, Virca CN, Berlinguette CP. Strain engineering electrocatalysts for selective CO2 reduction. ACS Energy Lett. 2019;4(4):980-986.

[44]

Xie L, Jiang Y, Zhu W, Ding S, Zhou Y, Zhu JJ. Cu-based catalyst designs in CO2 electroreduction: precise modulation of reaction intermediates for high-value chemical generation. Chem Sci. 2023;14(47):13629-13660.

[45]

Zhou Y, Yeo BS. Formation of C-C bonds during electrocatalytic CO2 reduction on non-copper electrodes. J Mater Chem A. 2020;8(44):23162-23186.

[46]

Marcandalli G, Monteiro MCO, Goyal A, Koper MTM. Electrolyte effects on CO2 electrochemical reduction to CO. Acc Chem Res. 2022;55(14):1900-1911.

[47]

Lv X, Liu Z, Yang C, Ji Y, Zheng G. Tuning structures and microenvironments of Cu-based catalysts for sustainable CO2 and CO electroreduction. Acc Mater Res. 2023;4(3):264-274.

[48]

Deng B, Huang M, Zhao X, Mou S, Dong F. Interfacial electrolyte effects on electrocatalytic CO2 reduction. ACS Catal. 2022;12(1):331-362.

[49]

Hori Y, Murata A, Takahashi R. Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution. J Chem Soc, Faraday Trans 1 Phys Chem Conden Ph. 1989;85(8):2309-2326.

[50]

Jiang G, Han D, Han Z, et al. Rational manipulation of intermediates on copper for CO2 electroreduction toward multicarbon products. Trans Tianjin Univ. 2022;28(4):265-291.

[51]

Liu L, Xiao H. Inverted region in electrochemical reduction of CO2 induced by potential-dependent Pauli repulsion. J Am Chem Soc. 2023;145(26):14267-14275.

[52]

Bagger A, Ju W, Varela AS, Strasser P, Rossmeisl J. Electrochemical CO2 reduction: classifying Cu facets. ACS Catal. 2019;9(9):7894-7899.

[53]

Vasileff A, Xu C, Jiao Y, Zheng Y, Qiao S.-Z. Surface and interface engineering in copper-based bimetallic materials for selective CO2 electroreduction. Chem. 2018;4(8):1809-1831.

[54]

Feaster JT, Shi C, Cave ER, et al. Understanding selectivity for the electrochemical reduction of carbon dioxide to formic acid and carbon monoxide on metal electrodes. ACS Catal. 2017;7(7):4822-4827.

[55]

Whipple DT, Kenis PJA. Prospects of CO2 utilization via direct heterogeneous electrochemical reduction. J Phys Chem Lett. 2010;1(24):3451-3458.

[56]

Lv L, Lu R, Zhu J, et al. Coordinating the edge defects of bismuth with sulfur for enhanced CO2 electroreduction to formate. Angew Chem Int Ed. 2023;62(25):e202303117.

[57]

Long C, Liu X, Wan K, et al. Regulating reconstruction of oxide-derived Cu for electrochemical CO2 reduction toward n-propanol. Sci Adv. 2023;9(43):eadi6119.

[58]

Nam D.-H, Bushuyev OS, Li J, et al. Metal-organic frameworks mediate Cu coordination for selective CO2 electroreduction. J Am Chem Soc. 2018;140(36):11378-11386.

[59]

Yao K, Xia Y, Li J, et al. Metal-organic framework derived copper catalysts for CO2 to ethylene conversion. J Mater Chem A. 2020;8(22):11117-11123.

[60]

Kim C, Weng L.-C, Bell AT. Impact of pulsed electrochemical reduction of CO2 on the Formation of C2+ Products over Cu. ACS Catal. 2020;10(21):12403-12413.

[61]

Ting LRL, Yeo BS. Recent advances in understanding mechanisms for the electrochemical reduction of carbon dioxide. Curr Opin Electrochem. 2018;8:126-134.

[62]

Zang Y, Wei P, Li H, Gao D, Wang G. Catalyst design for electrolytic CO2 reduction toward low-carbon fuels and chemicals. Electrochem Energy Rev. 2022;5(S1):29.

[63]

Yang Z, Oropeza FE, Zhang KHL. P-block metal-based (Sn, In, Bi, Pb) electrocatalysts for selective reduction of CO2 to formate. Apl Mater. 2020;8(6):060901.

[64]

Liu J.-C, Luo F, Li J. Electrochemical potential-driven shift of frontier orbitals in M-N-C single-atom catalysts leading to inverted adsorption energies. J Am Chem Soc. 2023;145(46):25264-25273.

[65]

Shin S.-J, Choi H, Ringe S, et al. Concerted cation-electron transfer mechanism for CO2 electroreduction. ChemRxiv. 2021.

[66]

Yang Y, Shi Y, Yu H, Zeng J, Li K, Li F. Mitigating carbonate formation in CO2 electrolysis. Next Energy. 2023;1(3):100030.

[67]

Fang W, Guo W, Lu R, et al. Durable CO2 conversion in the proton-exchange membrane system. Nature. 2024;626(7997):86-91.

[68]

Dinh C.-T, Burdyny T, Kibria MG, et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science. 2018;360(6390):783-787.

[69]

Peng C, Yang S, Luo G, et al. Surface Co-modification of halide anions and potassium cations promotes high-rate CO2-to-ethanol electrosynthesis. Adv Mater. 2022;34(39):2204476.

[70]

Gorthy S, Verma S, Sinha N, Shetty S, Nguyen H, Neurock M. Theoretical insights into the effects of KOH concentration and the role of OH- in the electrocatalytic reduction of CO2 on Au. ACS Catal. 2023;13(19):12924-12940.

[71]

Monteiro MCO, Dattila F, López N, Koper MTM. The role of cation acidity on the competition between hydrogen evolution and CO2 reduction on gold electrodes. J Am Chem Soc. 2022;144(4):1589-1602.

[72]

Lees EW, Goldman M, Fink AG, et al. Electrodes designed for converting bicarbonate into CO. ACS Energy Lett. 2020;5(7):2165-2173.

[73]

Li YC, Lee G, Yuan T, et al. CO2 Electroreduction from carbonate electrolyte. ACS Energy Lett. 2019;4(6):1427-1431.

[74]

O’Brien CP, Miao RK, Liu S, et al. Single pass CO2 conversion exceeding 85% in the electrosynthesis of multicarbon products via local CO2 regeneration. ACS Energy Lett. 2021;6(8):2952-2959.

[75]

Li, J, Kornienko, N. Electrocatalytic carbon dioxide reduction in acid. Chem Catal. 2022;2(1):29-38.

[76]

Yu J, Xiao J, Ma Y, et al. Acidic conditions for efficient carbon dioxide electroreduction in flow and MEA cells. Chem Catal. 2023;3(8):100670.

[77]

Qiao Y, Lai W, Huang K, et al. Engineering the local microenvironment over Bi nanosheets for highly selective electrocatalytic conversion of CO2 to HCOOH in strong acid. ACS Catal. 2022;12(4):2357-2364.

[78]

Ma Z, Yang Z, Lai W, et al. CO2 electroreduction to multicarbon products in strongly acidic electrolyte via synergistically modulating the local microenvironment. Nat Commun. 2022;13(1):7596.

[79]

Ma H, Ibáñez-Alé E, Ganganahalli R, Pérez-Ramírez J, López N, Yeo BS. Direct electroreduction of carbonate to formate. J Am Chem Soc. 2023;145(45):24707-24716.

[80]

Han N, Ding P, He L, Li Y, Li Y. Promises of main group metal-based nanostructured materials for electrochemical CO2 reduction to formate. Adv Energy Mater. 2020;10(11):1902338.

[81]

Liang S, Xiao J, Zhang T, Zheng Y, Wang Q, Liu B. Sulfur changes the electrochemical CO2 reduction pathway over Cu electrocatalysts. Angew Chem. 2023;135(44):e202310740.

[82]

Ye K, Cao A, Shao J, et al. Synergy effects on Sn-Cu alloy catalyst for efficient CO2 electroreduction to formate with high mass activity. Sci Bull. 2020;65(9):711-719.

[83]

Zheng T, Liu C, Guo C, et al. Copper-catalysed exclusive CO2 to pure formic acid conversion via single-atom alloying. Nat Nanotechnol. 2021;16(12):1386-1393.

[84]

Luc W, Ko BH, Kattel S, et al. SO2-induced selectivity change in CO2 electroreduction. J Am Chem Soc. 2019;141(25):9902-9909.

[85]

Ma W, Xie S, Zhang X.-G, et al. Promoting electrocatalytic CO2 reduction to formate via sulfur-boosting water activation on indium surfaces. Nat Commun. 2019;10(1):892.

[86]

Ye, C, Dattila, F, Chen, X, López, N, Koper, M T M. Influence of cations on HCOOH and CO formation during CO2 reduction on a PdMLPt(111) electrode. J Am Chem Soc. 2023;145(36):19601-19610.

[87]

Luc W, Fu X, Shi J, et al. Two-dimensional copper nanosheets for electrochemical reduction of carbon monoxide to acetate. Nat Catal. 2019;2(5):423-430.

[88]

Ma W, Xie S, Liu T, et al. Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C-C coupling over fluorine-modified copper. Nat Catal. 2020;3(6):478-487.

[89]

Huang JE, Li F, Ozden A, et al. CO2 electrolysis to multicarbon products in strong acid. Science. 2021;372(6546):1074-1078.

[90]

García de Arquer FP, Dinh C.-T, Ozden A, et al. CO2 electrolysis to multicarbon products at activities greater than 1 A cm−2. Science. 2020;367(6478):661-666.

[91]

Guo Y, Yao S, Xue Y, Hu X, Cui H, Zhou Z. Nickel single-atom catalysts intrinsically promoted by fast pyrolysis for selective electroreduction of CO2 into CO. Appl Catal B Environ. 2022;304:120997.

[92]

Wang J, Ji Y, Shao Q, et al. Phase and structure modulating of bimetallic CuSn nanowires boosts electrocatalytic conversion of CO2. Nano Energy. 2019;59:138-145.

[93]

Yue P, Fu Q, Li J, et al. Triple-phase electrocatalysis for the enhanced CO2 reduction to HCOOH on a hydrophobic surface. Chem Eng J. 2021;405:126975.

[94]

Wei B, Xiong Y, Zhang Z, Hao J, Shi W. Efficient electrocatalytic reduction of CO2 to HCOOH by bimetallic In-Cu nanoparticles with controlled growth facet. Appl Catal B Environ. 2021;283:119646.

[95]

Wang Z, Li Z, Liu S, et al. Enhancing the selectivity of CO2-to-HCOOH conversion by constructing tensile-strained Cu catalyst. Mater Today Phys. 2023;38:101247.

[96]

Li H, Yue X, Che J, et al. High performance 3D self-supporting Cu−Bi aerogels for electrocatalytic reduction of CO2 to formate. ChemSusChem. 2022;15(7):e202200226.

[97]

Liu, D, Liu, Y, Li, M. Understanding how atomic sulfur controls the selectivity of the electroreduction of CO2 to formic acid on metallic Cu surfaces. J Phys Chem C. 2020;124(11):6145-6153.

[98]

Papangelakis P, Miao RK, Lu R, et al. SO2-tolerant electrocatalytic reduction of CO2 from simulated industrial flue gas. In: ECS Meeting Abstracts. Vol MA2023-2. No. (47);2023:2403.

[99]

Ferri M, Delafontaine L, Guo S, et al. Steering Cu-based CO2RR electrocatalysts’selectivity: effect of hydroxyapatite acid/base moieties in promoting formate production. ACS Energy Lett. 2022;7(7):2304-2310.

[100]

Zhu Q, Wang Z, Chen L, Cheng H, Qi Z. Ionic-liquid-controlled two-dimensional monolayer Bi2MoO6 and its adsorption of Azo molecules. ACS Appl Nano Mater. 2018;1(9):5083-5091.

[101]

Zhou Y, Ren X, Wang X, et al. Promoting CuO/Cu(OH)2 for electrocatalytic reduction of CO2 to HCOOH: the study on pyridine-modified surface active sites. Mol Catal. 2024;556:113929.

[102]

Lin R, Yang H, Zheng H, et al. Efficient integration of carbon dioxide reduction and 5-hydroxymethylfurfural oxidation at high current density. RSC Sustain. 2024;2(2):445-458.

[103]

Xie Y, Ou P, Wang X, et al. High carbon utilization in CO2 reduction to multi-carbon products in acidic media. Nat Catal. 2022;5(6):564-570.

[104]

Fang W, Lu R, Li F.-M, et al. Low-coordination nanocrystalline copper-based catalysts through theory-guided electrochemical restructuring for selective CO2 reduction to ethylene. Angew Chem Int Ed. 2024;63(16):e202319936.

[105]

Xu Y, Li F, Xu A, et al. Low coordination number copper catalysts for electrochemical CO2 methanation in a membrane electrode assembly. Nat Commun. 2021;12(1):2932.

[106]

Zhuang T.-T, Liang Z.-Q, Seifitokaldani A, et al. Steering post-C-C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols. Nat Catal. 2018;1(6):421-428.

[107]

Zhao Z, Chen Z, Zhang X, Lu G. Generalized surface coordination number as an activity descriptor for CO2 reduction on Cu surfaces. J Phys Chem C. 2016;120(49):28125-28130.

[108]

Hu, Q, Han, Z, Wang, X et al. Facile synthesis of sub-nanometric copper clusters by double confinement enables selective reduction of carbon dioxide to methane. Angew Chem Int Ed. 2020;59(43):19054-19059.

[109]

Cai J, Zhao Q, Hsu W.-Y, et al. Highly selective electrochemical reduction of CO2 into methane on nanotwinned Cu. J Am Chem Soc. 2023;145(16):9136-9143.

[110]

Wang X, Xu A, Li F, et al. Efficient methane electrosynthesis enabled by tuning local CO2 availability. J Am Chem Soc. 2020;142(7):3525-3531.

[111]

Schouten KJP, Qin Z, Pérez Gallent E, Koper MTM. Two pathways for the formation of ethylene in CO reduction on single-crystal copper electrodes. J Am Chem Soc. 2012;134(24):9864-9867.

[112]

Schouten KJP, Pérez Gallent E, Koper MTM. The influence of pH on the reduction of CO and CO2 to hydrocarbons on copper electrodes. J Electroanal Chem. 2014;716:53-57.

[113]

Salehi M, Al-Mahayni H, Farzi A, et al. Copper nanoclusters: selective CO2 to methane conversion beyond 1 A/cm2. Appl Catal B Environ Energy. 2024;353:124061.

[114]

Zhang XY, Li WJ, Wu XF, et al. Selective methane electrosynthesis enabled by a hydrophobic carbon coated copper core-shell architecture. Energy Environ Sci. 2022;15(1):234-243.

[115]

Deng B, Huang M, Li K, et al. The crystal plane is not the key factor for CO2-to-methane electrosynthesis on reconstructed Cu2O microparticles. Angew Chem Int Ed. 2022;61(7):e202114080.

[116]

Bai H, Cheng T, Li S, et al. Controllable CO adsorption determines ethylene and methane productions from CO2 electroreduction. Sci Bull. 2021;66(1):62-68.

[117]

Zhu J, Das S, Cool P. Recent strategies for the electrochemical reduction of CO2 into methanol. Adv Catal. 2022;70:29-62.

[118]

Zhao J, Zhang P, Yuan T, et al. Modulation of *CHxO adsorption to facilitate electrocatalytic reduction of CO2 to CH4 over Cu-based catalysts. J Am Chem Soc. 2023;145(12):6622-6627.

[119]

Li, Y, Zhang, H, Chen, T et al. Dual-interfacial electrocatalyst enriching surface bonded H for energy-efficient CO2-to-CH3OH conversion. Adv Funct Mater. 2024;34(14):2312970.

[120]

Ahmad T, Liu S, Sajid M, et al. Electrochemical CO2 reduction to C2+ products using Cu-based electrocatalysts: a review. Nano Res Energy. 2022;1(2):e9120021.

[121]

Gao D, Arán-Ais RM, Jeon HS, Roldan Cuenya B. Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products. Nat Catal. 2019;2(3):198-210.

[122]

Raaijman SJ, Schellekens MP, Corbett PJ, Koper MTM. High-pressure CO electroreduction at silver produces ethanol and propanol. Angew Chem Int Ed. 2021;60(40):21732-21736.

[123]

Zhou Y, Martín AJ, Dattila F, et al. Long-chain hydrocarbons by CO2 electroreduction using polarized nickel catalysts. Nat Catal. 2022;5(6):545-554.

[124]

Torelli DA, Francis SA, Crompton JC, et al. Nickel-gallium-catalyzed electrochemical reduction of CO2 to highly reduced products at low overpotentials. ACS Catal. 2016;6(3):2100-2104.

[125]

Paris AR, Bocarsly AB. Ni-Al films on glassy carbon electrodes generate an array of oxygenated organics from CO2. ACS Catal. 2017;7(10):6815-6820.

[126]

Esmaeilirad M, Jiang Z, Harzandi AM, et al. Imidazolium-functionalized MO3P nanoparticles with an ionomer coating for electrocatalytic reduction of CO2 to propane. Nat Energy. 2023;8(8):891-900.

[127]

Verdaguer-Casadevall A, Li CW, Johansson TP, et al. Probing the active surface sites for CO reduction on oxide-derived copper electrocatalysts. J Am Chem Soc. 2015;137(31):9808-9811.

[128]

Kim SK, Zhang Y.-J, Bergstrom H, Michalsky R, Peterson A. Understanding the low-overpotential production of CH4 from CO2 on Mo2C catalysts. ACS Catal. 2016;6(3):2003-2013.

[129]

Yu S, Yamauchi H, Wang S, et al. CO2-to-methanol electroconversion on a molecular cobalt catalyst facilitated by acidic cations. Nat Catal. 2024;7(9):1000-1009.

[130]

Ding J, Wei Z, Li F, et al. Atomic high-spin cobalt(II) center for highly selective electrochemical CO reduction to CH3OH. Nat Commun. 2023;14(1):6550.

[131]

Wang G, Chen J, Ding Y, et al. Electrocatalysis for CO2 conversion: from fundamentals to value-added products. Chem Soc Rev. 2021;50(8):4993-5061.

[132]

Xu M, Deng T, Liu LX, Han X. Enrichment strategies for efficient CO2 electroreduction in acidic electrolytes. Chem Eur J. 2023;29(67):e202302382.

[133]

Zhao Q, Martirez JMP, Carter EA. Charting C-C coupling pathways in electrochemical CO2 reduction on Cu(111) using embedded correlated wavefunction theory. Proc Natl Acad Sci USA. 2022;119(44):e2202931119.

[134]

Luo M, Wang Z, Li YC, et al. Hydroxide promotes carbon dioxide electroreduction to ethanol on copper via tuning of adsorbed hydrogen. Nat Commun. 2019;10(1):5814.

[135]

Xu A, Hung S.-F, Cao A, et al. Copper/alkaline earth metal oxide interfaces for electrochemical CO2-to-alcohol conversion by selective hydrogenation. Nat Catal. 2022;5(12):1081-1088.

[136]

Zheng Y, Vasileff A, Zhou X, Jiao Y, Jaroniec M, Qiao SZ. Understanding the roadmap for electrochemical reduction of CO2 to multi-carbon oxygenates and hydrocarbons on copper-based catalysts. J Am Chem Soc. 2019;141(19):7646-7659.

[137]

Calle-Vallejo F, Koper MTM. Theoretical considerations on the electroreduction of CO to C2 species on Cu(100) electrodes. Angew Chem Int Ed. 2013;52(28):7282-7285.

[138]

Zhuansun M, Liu Y, Lu R, et al. Promoting CO2 electroreduction to multi-carbon products by hydrophobicity-induced electro-kinetic retardation. Angew Chem. 2023;135(41):e202309875.

[139]

Fan L, Xia C, Yang F, Wang J, Wang H, Lu Y. Strategies in catalysts and electrolyzer design for electrochemical CO2 reduction toward C2+ products. Sci Adv. 2020;6(8):eaay3111.

[140]

Li J, Xu A, Li F, et al. Enhanced multi-carbon alcohol electroproduction from CO via modulated hydrogen adsorption. Nat Commun. 2020;11(1):3685.

[141]

Lum Y, Huang JE, Wang Z, et al. Tuning OH binding energy enables selective electrochemical oxidation of ethylene to ethylene glycol. Nat Catal. 2020;3(1):14-22.

[142]

Zhang Z, Chen S, Zhu J, et al. Charge-separated pdδ−-Cuδ+ atom pairs promote CO2 reduction to C2. Nano Lett. 2023;23(6):2312-2320.

[143]

Jung H, Lee SY, Lee CW, et al. Electrochemical fragmentation of Cu2O nanoparticles enhancing selective C-C coupling from CO2 reduction reaction. J Am Chem Soc. 2019;141(11):4624-4633.

[144]

Li J, Ozden A, Wan M, et al. Silica-copper catalyst interfaces enable carbon-carbon coupling towards ethylene electrosynthesis. Nat Commun. 2021;12(1):2808.

[145]

Wang X, Lu R, Pan B, et al. Enhanced carbon-carbon coupling at interfaces with abrupt coordination number changes. ChemSusChem. 2024;17(15):e202400150.

[146]

Xiao H, Cheng T, Goddard WAI, Sundararaman R. Mechanistic explanation of the pH dependence and onset potentials for hydrocarbon products from electrochemical reduction of CO on Cu(111). J Am Chem Soc. 2016;138(2):483-486.

[147]

Xiao H, Goddard WA, Cheng T, Liu Y. Cu metal embedded in oxidized matrix catalyst to promote CO2 activation and CO dimerization for electrochemical reduction of CO2. Proc Natl Acad Sci USA. 2017;114(26):6685-6688.

[148]

Feng J, Zhang L, Liu S, et al. Modulating adsorbed hydrogen drives electrochemical CO2-to-C2 products. Nat Commun. 2023;14(1):4615.

[149]

Möller T, Filippi M, Brückner S, Ju W, Strasser P. A CO2 electrolyzer tandem cell system for CO2-CO co-feed valorization in a Ni-N-C/Cu-catalyzed reaction cascade. Nat Commun. 2023;14(1):5680.

[150]

Wang P, Yang H, Tang C, et al. Boosting electrocatalytic CO2-to-ethanol production via asymmetric C-C coupling. Nat Commun. 2022;13(1):3754.

[151]

Ishiguro N, Saida T, Uruga T, et al. Operando time-resolved X-ray absorption fine structure study for surface events on a Pt3Co/C cathode catalyst in a polymer electrolyte fuel cell during voltage-operating processes. ACS Catal. 2012;2(7):1319-1330.

[152]

Timoshenko J, Bergmann A, Rettenmaier C, et al. Steering the structure and selectivity of CO2 electroreduction catalysts by potential pulses. Nat Catal. 2022;5(4):259-267.

[153]

Liu W, Zhai P, Li A, et al. Electrochemical CO2 reduction to ethylene by ultrathin CuO nanoplate arrays. Nat Commun. 2022;13(1):1877.

[154]

Lin Y, Wang T, Zhang L, et al. Tunable CO2 electroreduction to ethanol and ethylene with controllable interfacial wettability. Nat Commun. 2023;14(1):3575.

[155]

Li Z, Wang P, Lyu X, et al. Directing CO2 electroreduction pathways for selective C2 product formation using single-site doped copper catalysts. Nat Chem Eng. 2024;1(2):159-169.

[156]

Morales-Guio CG, Cave ER, Nitopi SA, et al. Improved CO2 reduction activity towards C2+ alcohols on a tandem gold on copper electrocatalyst. Nat Catal. 2018;1(10):764-771.

[157]

Chen X, Chen J, Alghoraibi NM, et al. Electrochemical CO2-to-ethylene conversion on polyamine-incorporated Cu electrodes. Nat Catal. 2021;4(1):20-27.

[158]

Yang T, Lin L, Lv X, et al. Interfacial synergy between the Cu atomic layer and CeO2 promotes CO electrocoupling to acetate. ACS Nano. 2023;17(9):8521-8529.

[159]

Jin J, Wicks J, Min Q, et al. Constrained C2 adsorbate orientation enables CO-to-acetate electroreduction. Nature. 2023;617(7962):724-729.

[160]

Ji Y, Chen Z, Wei R, et al. Selective CO-to-acetate electroreduction via intermediate adsorption tuning on ordered Cu-pd sites. Nat Catal. 2022;5(4):251-258.

[161]

Li J, Kuang Y, Zhang X, et al. Electrochemical acetate production from high-pressure gaseous and liquid CO2. Nat Catal. 2023;6(12):1151-1163.

[162]

Dorakhan R, Grigioni I, Lee B.-H, et al. A silver-copper oxide catalyst for acetate electrosynthesis from carbon monoxide. Nat Synth. 2023;2(5):448-457.

[163]

Guo S, Liu Y, Huang Y, et al. Promoting electrolysis of carbon monoxide toward acetate and 1-propanol in flow electrolyzer. ACS Energy Lett. 2023;8(2):935-942.

[164]

Wang H, Xue J, Liu C, et al. CO2 electrolysis toward acetate: a review. Curr Opin Electrochem. 2023;39:101253.

[165]

Sakamoto N, Sekizawa K, Shirai S, et al. Dinuclear Cu(I) molecular electrocatalyst for CO2-to-C3 product conversion. Nat Catal. 2024;7(5):1-11.

[166]

Qi K, Zhang Y, Onofrio N, et al. Unlocking direct CO2 electrolysis to C3 products via electrolyte supersaturation. Nat Catal. 2023;6(4):319-331.

[167]

Li J, Che F, Pang Y, et al. Copper adparticle enabled selective electrosynthesis of n-propanol. Nat Commun. 2018;9(1):4614.

[168]

Wang X, Wang Z, Zhuang T.-T, et al. Efficient upgrading of CO to C3 fuel using asymmetric C-C coupling active sites. Nat Commun. 2019;10(1):5186.

[169]

Wang X, Ou P, Ozden A, et al. Efficient electrosynthesis of n-propanol from carbon monoxide using a Ag-Ru-Cu catalyst. Nat Energy. 2022;7(2):170-176.

[170]

Long C, Wan K, Chen Y, et al. Steering the reconstruction of oxide-derived Cu by secondary metal for electrosynthesis of n-propanol from CO. J Am Chem Soc. 2024;146(7):4632-4641.

[171]

Niu W, Chen Z, Guo W, et al. Pb-rich Cu grain boundary sites for selective CO-to-n-propanol electroconversion. Nat Commun. 2023;14(1):4882.

[172]

Peng C, Luo G, Zhang J, et al. Double sulfur vacancies by lithium tuning enhance CO2 electroreduction to n-propanol. Nat Commun. 2021;12(1):1580.

[173]

Capdevila-Cortada M. Balancing the states. Nat Catal. 2020;3(8):608.

[174]

Chen C, Yu S, Yang Y, et al. Exploration of the bio-analogous asymmetric C-C coupling mechanism in tandem CO2 electroreduction. Nat Catal. 2022;5(10):878-887.

[175]

Gao W, Xu Y, Fu L, Chang X, Xu B. Experimental evidence of distinct sites for CO2-to-CO and CO conversion on Cu in the electrochemical CO2 reduction reaction. Nat Catal. 2023;6(10):885-894.

[176]

Amirbeigiarab R, Tian J, Herzog A, et al. Atomic-scale surface restructuring of copper electrodes under CO2 electroreduction conditions. Nat Catal. 2023;6(9):837-846.

[177]

Capdevila-Cortada M. Taming cation effects. Nat Catal. 2019;2(8):641.

[178]

Zhang Z, Li H, Shao Y, et al. Molecular understanding of the critical role of alkali metal cations in initiating CO2 electroreduction on Cu(100) surface. Nat Commun. 2024;15(1):612.

[179]

Qin X, Hansen HA, Honkala K, Melander MM. Cation-induced changes in the inner-and outer-sphere mechanisms of electrocatalytic CO2 reduction. Nat Commun. 2023;14(1):7607.

[180]

Shin S.-J, Choi H, Ringe S, et al. A unifying mechanism for cation effect modulating C1 and C2 productions from CO2 electroreduction. Nat Commun. 2022;13(1):5482.

[181]

Ye Y, Yang H, Qian J, et al. Dramatic differences in carbon dioxide adsorption and initial steps of reduction between silver and copper. Nat Commun. 2019;10(1):1875.

[182]

Liu X, Schlexer P, Xiao J, et al. pH effects on the electrochemical reduction of CO2 towards C2 products on stepped copper. Nat Commun. 2019;10(1):32.

[183]

Ringe S. The importance of a charge transfer descriptor for screening potential CO2 reduction electrocatalysts. Nat Commun. 2023;14(1):2598.

[184]

Montoya JH, Shi C, Chan K, Nørskov JK. Theoretical insights into a CO dimerization mechanism in CO2 electroreduction. J Phys Chem Lett. 2015;6(11):2032-2037.

[185]

Ross MB, De Luna P, Li Y, et al. Designing materials for electrochemical carbon dioxide recycling. Nat Catal. 2019;2(8):648-658.

[186]

Papangelakis P, Miao RK, Lu R, et al. Improving the SO2 tolerance of CO2 reduction electrocatalysts using a polymer/catalyst/ionomer heterojunction design. Nat Energy. 2024;9(8):1011-1020.

RIGHTS & PERMISSIONS

2024 The Author(s). EcoEnergy published by John Wiley & Sons Australia, Ltd on behalf of China Chemical Safety Association.

AI Summary AI Mindmap
PDF (3375KB)

233

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/