RConstruction of high-loading WO3-x sub-nanometer clusters via orderly-anchored top–down strategy boost acidic hydrogen evolution

Di Wu , Haoyang Du , Ziyi Liu , G. A. Bagliu , Jianping Lai , Lei Wang

EcoEnergy ›› 2024, Vol. 2 ›› Issue (4) : 724 -735.

PDF (3291KB)
EcoEnergy ›› 2024, Vol. 2 ›› Issue (4) : 724 -735. DOI: 10.1002/ece2.63
RESEARCH ARTICLE

RConstruction of high-loading WO3-x sub-nanometer clusters via orderly-anchored top–down strategy boost acidic hydrogen evolution

Author information +
History +
PDF (3291KB)

Abstract

Exploring a simple, rapid, and scalable synthesis method for the synthesis of high loading nonprecious metal sub-nanometer clusters (SNCs) electrocatalysts is one of the most promising endeavors today. Herein, an orderly-anchored top–down strategy is proposed for fabricating a new type of high loading WO3-x SNCs on O-functional group-modified Ketjen black (WO3-x-C (O)) to balance the high loading (49.29 wt.%) and sub-nanometer size. By optimizing the vacancy number, WO2.71-C(O) has extremely large electrochemically active surface area (402 m2 g−1) and high turnover frequency value of 1.722 s−1 at −50 mV (vs. reversible hydrogen electrode). The overpotential of WO2.71-C(O) reaches 22 mV at a current density of 10 mA cm−2, which is significantly better than the commercial Pt/C level (32 mV), achieving a breakthrough in the hydrogen evolution reaction (HER) catalytic activity of nonprecious metals in acidic environment. Theoretical calculations and in situ characterization show that this material allows for the enrichment of reactants (H*) and the optimization of intermediate adsorption, which leads to the enhancement of acidic HER catalytic activity.

Keywords

HER / high loading / non-precious metal / sub nanocluster / top-down strategy

Cite this article

Download citation ▾
Di Wu, Haoyang Du, Ziyi Liu, G. A. Bagliu, Jianping Lai, Lei Wang. RConstruction of high-loading WO3-x sub-nanometer clusters via orderly-anchored top–down strategy boost acidic hydrogen evolution. EcoEnergy, 2024, 2(4): 724-735 DOI:10.1002/ece2.63

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang J, Wang T, Liu P, et al. Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat Commun. 2017;8(1):15437.

[2]

Hu Q, Gao K, Wang X, et al. Subnanometric Ru clusters with upshifted D band center improve performance for alkaline hydrogen evolution reaction. Nat Commun. 2022;13(1):3958.

[3]

Jiang X, Jang H, Liu S, et al. The heterostructure of Ru2P/WO3/NPC synergistically promotes H2O dissociation for improved hydrogen evolution. Angew Chem Int Ed. 2021;60(8):4110-4116.

[4]

Zhang W, Huang B, Wang K, et al. WOx-surface decorated PtNi@Pt dendritic nanowires as efficient pH-universal hydrogen evolution electrocatalysts. Adv Energy Mater. 2020;11(3):2003192.

[5]

Fei H, Dong J, Wan C, et al. Microwave-assisted rapid synthesis of graphene-supported single atomic metals. Adv Mater. 2018;30(35):1802146.

[6]

Chen Z, Gong W, Wang J, et al. Metallic W/WO2 solid-acid catalyst boosts hydrogen evolution reaction in alkaline electrolyte. Nat Commun. 2023;14(1):5363.

[7]

Lu S, Zhang L, Fan K, et al. In situ formation of ultrathin C3N4 layers on metallic WO2 nanorods for efficient hydrogen evolution. Appl Surf Sci. 2019;487(1):945-950.

[8]

Li Y, Liu P, Pan L, et al. Local atomic structure modulations activate metal oxide as electrocatalyst for hydrogen evolution in acidic water. Nat Commun. 2015;6(1):8064.

[9]

Giacometta M, Mario S, Elena B, Salvo M. Engineering hexagonal/monoclinic WO3 phase junctions for improved electrochemical hydrogen evolution reaction. ACS Appl Energy Mater. 2022;5(8):9702-9710.

[10]

Tian H, Cui X, Shi J. Emerging electrocatalysts for PEMFCs applications: tungsten oxide as an example. Chem Eng J. 2021;421(1):129430.

[11]

Han H, Nayak A, Choi H, et al. Partial dehydration in hydrated tungsten oxide nanoplates leads to excellent and robust bifunctional oxygen reduction and hydrogen evolution reactions in acidic media. ACS Sustainable Chem Eng. 2020;8(25):9507-9518.

[12]

Sharma L, Kumar P, Halder A. Phase and vacancy modulation in tungsten oxide: electrochemical hydrogen evolution. Chemelectrochem. 2019;6(13):3420-3428.

[13]

Zheng H, Mathe M. Hydrogen evolution reaction on single crystal WO3/C nanoparticles supported on carbon in acid and alkaline solution. Int J Hydrogen Energy. 2010;36(3):1960-1964.

[14]

Zhao H, Zhang D, Yuan Y, et al. Rapid and large-scale synthesis of ultra-small immiscible alloy supported catalysts. Appl Catal B Environ. 2022;304(1):120916.

[15]

Jia Z, Qin X, Chen Y, et al. Fully-exposed Pt-Fe cluster for efficient preferential oxidation of CO towards hydrogen purification. Nat Commun. 2022;13(1):6798.

[16]

Dong C, Gao Z, Li Y, et al. Fully exposed palladium cluster catalysts enable hydrogen production from nitrogen heterocycles. Nat Catal. 2022;5(6):485-493.

[17]

Qian L, Wang Z, Beletskiy E, et al. Stable and solubilized active Au atom clusters for selective epoxidation of cis-cyclooctene with molecular oxygen. Nat Commun. 2017;8(1):14881.

[18]

Sun M, Ji J, Hu M, et al. Overwhelming the performance of single atoms with atomic clusters for platinum-catalyzed hydrogen evolution. ACS Catal. 2019;9(1):8213-8223.

[19]

Cheng Q, Hu C, Wang G, Zou Z, Yang H, Dai L. Carbon-defect-driven electroless deposition of Pt atomic clusters for highly efficient hydrogen evolution. J Am Chem Soc. 2020;142(12):5594-5601.

[20]

Lai J, Huang B, Chao Y, Chen X, Guo S. Strongly coupled nickel-cobalt nitrides/carbon hybrid nanocages with Pt-like activity for hydrogen evolution catalysis. Adv Mater. 2019;30:1805541.

[21]

Chahal S, Bhushan R, Kumari P, et al. Microwave nanoarchitectonics of black phosphorene for energy storage. Matter. 2023;7(1):237-254.

[22]

Zhang F, Luo J, Chen J, et al. Interfacial assembly of nanocrystals on nanofibers with strong interaction for electrocatalytic nitrate reduction. Angew Chem Int Ed. 2023;62(38):e202310383.

[23]

Jiang H, Li J, Xiao Z, et al. The rapid production of multiple transition metal carbides via microwave combustion under ambient conditions. Nanoscale. 2020;12(30):16245-16252.

[24]

Zhong G, Xu S, Dong Q, Wang X, Hu L. Rapid, universal surface engineering of carbon materials via microwave-induced carbothermal shock. Adv Funct Mater. 2021;31(18):2010968.

[25]

Shi Y, Zhang D, Miao H, et al. A simple, rapid and scalable synthesis approach for ultra-small size transition metal selenides with efficient water oxidation performance. J Mater Chem A. 2021;9(43):24261-24267.

[26]

Wang L, Wang Y, Xu T, et al. Gram-scale synthesis of single-crystalline graphene quantum dots with superior optical properties. Nat Commun. 2014;5(1):5357.

[27]

Wang H, Xu J, Zhang Q, et al. Advanced ultralow-concentration electrolyte for wide-temperature and high-voltage Li-metal batteries. Adv Funct Mater. 2022;32(23):2112362.

[28]

Ning S, Huberman S, Ding Z, et al. Anomalous defect dependence of thermal conductivity in epitaxial WO3 thin films. Adv Mater. 2019;31(43):1903738.

[29]

Kong H, Yang H, Park J, et al. Spatial control of oxygen vacancy concentration in monoclinic WO3 photoanodes for enhanced solar water splitting. Adv Funct Mater. 2022;32(36):2204106.

[30]

Cheng H, Klapproth M, Sagaltchik A, Li S, Thomas A. Ordered mesoporous WO2.83: selective reduction synthesis, exceptional localized surface Plasmon resonance and enhanced hydrogen evolution reaction activity. J Mater Chem A. 2018;6(5):2249-2256.

[31]

Wu D, Zhang D, Wang Z, et al. Engineering of anchor sites and reaction time to efficiently synthesize high loading and stable sub-nanocluster catalysts. Mater Chem Front. 2022;6(20):3033-3041.

[32]

Wu X, Wang Z, Zhang D, et al. Solvent-free microwave synthesis of ultra-small Ru-MO2C@CNT with strong metal-support interaction for industrial hydrogen evolution. Nat Commun. 2021;12(1):4018.

[33]

Shi W, Li Z, Gong Z, et al. Transient and general synthesis of high-density and ultrasmall nanoparticles on two-dimensional porous carbon via coordinated carbothermal shock. Nat Commun. 2023;14(1):2294.

[34]

Xu S, Zhong G, Chen C, et al. Uniform, scalable, high-temperature microwave shock for nanoparticle synthesis through defect engineering. Matter. 2019;1(3):759-769.

[35]

Liu H, Wang Z, Li M, et al. Rare-earth-regulated Ru-O interaction within the pyrochlore ruthenate for electrocatalytic oxygen evolution in acidic media. Sci China Mater. 2021;64(7):1653-1661.

[36]

He C, Hu X, Wang J, et al. Defect engineered 2D mesoporous Mo-Co-O nanosheets with crystalline-amorphous composite structure for efficient oxygen evolution. Sci China Mater. 2022;65(12):3470-3478.

[37]

Zhang X, Zhu Z, Liang X, et al. Encapsulating dual-phased MO2C-WC nanocrystals into ultrathin carbon nanosheet assemblies for efficient electrocatalytic hydrogen evolution. Chem Eng J. 2021;408(1):127270.

[38]

Ling Y, Kazim F, Ma S, et al. Strain induced rich planar defects in heterogeneous WS2/WO2 enable efficient nitrogen fixation at low overpotential. J Mater Chem A. 2020;8(26):12996-13003.

[39]

Tourneur J, Fabre B, Loget G, et al. Molecular and material engineering of photocathodes derivatized with polyoxometalate-supported {MO3S4{ HER catalysts. J Am Chem Soc. 2019;141(30):11954-11962.

[40]

Liu Y, Liu S, Lai X, et al. Polyoxometalate-modified sponge-like graphene oxide monolith with high proton-conducting performance. Adv Funct Mater. 2015;25(28):4480-4485.

[41]

Xie C, Chen W, Du S, et al. In-situ phase transition of WO3 boosting electron and hydrogen transfer for enhancing hydrogen evolution on Pt. Nano Energy. 2020;71(1):104653.

[42]

Jiang H, Hong J, Wu X, et al. Insights on the proton insertion mechanism in the electrode of hexagonal tungsten oxide hydrate. J Am Chem Soc. 2018;140(37):11556-11559.

[43]

Wu W, Niu C, Wei C, Jia Y, Li C, Xu Q. Activation of MoS2 basal planes for hydrogen evolution by zinc. Angew Chem Int Ed. 2019;58(7):2029-2033.

[44]

Mao B, Sun P, Jiang Y, et al. Identifying the transfer kinetics of adsorbed hydroxyl as a descriptor of alkaline hydrogen evolution reaction. Angew Chem Int Ed. 2020;59(35):15232-15237.

[45]

Yang S, Gong Y, Manchanda P, et al. Rhenium-doped and stabilized MoS2 atomic layers with basal-plane catalytic activity. Adv Mater. 2018;30(51):1803477.

[46]

Song J, Kim C, Kim M, et al. Generation of high-density nanoparticles in the carbothermal shock method. Sci Adv. 2021;7(48):eabk2984.

[47]

Diao J, Qiu Y, Liu S, et al. Interfacial engineering of W2N/WC heterostructures derived from solid-state synthesis: a highly efficient trifunctional electrocatalyst for ORR, OER, and HER. Adv Mater. 2020;32(7):e1905679.

[48]

Zhang T, Wu J, Tao R, et al. Construction of CuO/Cu/WO3−x/WO3/W self-supported electrodes by a dry chemical route for hydrogen evolution reaction. Appl Surf Sci. 2022;585:152757.

[49]

Peng Y, Shan C, Wang H, et al. Polyoxometalate-derived ultrasmall Pt2W/WO3 heterostructure outperforms platinum for large-current-density H2 evolution. Adv Energy Mater. 2019;9(26):1900597.

[50]

Zhang S, Liu N, Wang H, Lu Q, Shi W, Wang X. Sub-nanometer nanobelts based on titanium dioxide/zirconium dioxide-polyoxometalate heterostructures. Adv Mater. 2021;33(23):2100576.

[51]

Cnagaiah T, Divyani G, Dasadhikary S, Kafle A, Mandal D. Tuning polyoxometalate composites with carbonaceous materials towards oxygen bifunctional activity. J Mater Chem A. 2021;9(14):9228.

RIGHTS & PERMISSIONS

2024 The Author(s). EcoEnergy published by John Wiley & Sons Australia, Ltd on behalf of China Chemical Safety Association.

AI Summary AI Mindmap
PDF (3291KB)

323

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/